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Estrogen Receptor a Regulates Ethanol Excitation of Ventral
Tegmental Area Neurons and Binge Drinking in Female
Mice
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Elevations in estrogen (17f-estradiol, E2) are associated with increased alcohol drinking by women and experimentally
in rodents. E2 alters the activity of the dopamine system, including the VTA and its projection targets, which plays an
important role in binge drinking. A previous study demonstrated that, during high E2 states, VTA neurons in female
mice are more sensitive to ethanol excitation. However, the mechanisms responsible for the ability of E2 to enhance
ethanol sensitivity of VTA neurons have not been investigated. In this study, we used selective agonists and antagonists
to examine the role of ER subtypes (ERa and ERp) in regulating the ethanol sensitivity of VTA neurons in female mice
and found that ERa promotes the enhanced ethanol response of VTA neurons. We also demonstrated that enhancement
of ethanol excitation requires the activity of the metabotropic glutamate receptor, mGluR1, which is known to couple
with ERa at the plasma membrane. To investigate the behavioral relevance of these findings, we administered lentivirus-
expressing short hairpin RNAs targeting either ERa or ERf into the VTA and found that knockdown of each receptor in
the VTA reduced binge-like ethanol drinking in female, but not male, mice. Reducing ERa in the VTA had a more dra-
matic effect on binge-like drinking than reducing ERf, consistent with the ability of ER« to alter ethanol sensitivity of
VTA neurons. These results provide important insight into sex-specific mechanisms that drive excessive alcohol
drinking.
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Estrogen has potent effects on the dopamine system and increases the vulnerability of females to develop addiction to sub-
stances, such as alcohol. We investigated the mechanisms by which estrogen increases the response of neurons in the VTA to
ethanol. We found that activation of the ER« increased the ethanol-induced excitation of VTA neurons. 173 -Estradiol-medi-
ated enhancement of ethanol-induced excitation required the metabotropic glutamate receptor mGluR1. We also demon-
strated that ERs in the VTA regulate binge-like alcohol drinking by female, but not male, mice. The influence of ERs on binge
drinking in female mice suggests that treatments for alcohol use disorder in women may need to account for this sex
difference.
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Binge drinking is defined by the National Institute on Alcohol
Abuse and Alcoholism as consuming enough alcohol within a 2
h period to reach a blood ethanol concentration (BEC) of at least
0.08%. Binge drinking accounts for more than half of the deaths
and three-fourths of the economic costs associated with excessive
drinking (Stahre et al., 2014; Sacks et al, 2015). Women are
more susceptible than men to the devastating health effects asso-
ciated with alcohol abuse, including liver disease, cardiomyopa-
thy, brain damage, and heightened risk for breast cancer (Agabio
et al,, 2016; White et al., 2017; Szabo, 2018). Women who binge
drink also report having more physically and mentally poor days
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compared with male binge drinkers (Wen et al, 2012).
Unfortunately, more women are drinking excessively now com-
pared with previous decades (Grant et al., 2017). The biological
factors that contribute to binge drinking by women are not well
understood, although ovarian hormones, specifically estrogen
(17 B-estradiol [E2]), may play a role. Circulating E2 levels in
women are positively associated with alcohol consumption
(Muti et al., 1998; Martin et al., 1999; Martel et al., 2017), and
numerous alcohol drinking studies in female rodents have dem-
onstrated that E2 administration increases alcohol drinking
(Ford et al., 2002a, 2004; Marinelli et al., 2003; Reid et al., 2003;
Quirarte et al., 2007; Rajasingh et al., 2007; Satta et al., 2018a).
Understanding the molecular and cellular mechanisms of action
of E2 in enhancing ethanol drinking is important for developing
new approaches to reduce excessive drinking by women.

The mesocorticolimbic dopamine (DA) system is critical for
the rewarding and reinforcing effects of ethanol (Gonzales et al.,
2004; Lovinger and Alvarez, 2017). E2 has potent modulatory
effects on this system (Yoest et al., 2018a). For example, E2
enhances cocaine-, amphetamine-, and potassium-stimulated
DA release in the striatum of rats and mice (Becker, 1990a,b;
Thompson and Moss, 1994; Tobiansky et al., 2016; Yoest et al.,
2018b), and potentiates ethanol-stimulated DA release in the
PFC of female rats (Dazzi et al., 2007). In accord with this find-
ing, ethanol-induced excitation of VTA neurons in female mice
is augmented when E2 levels are elevated (Vandegrift et al,
2017). However, the specific estrogen receptor(s) (ERs) that
mediate(s) the enhancement of ethanol-stimulated firing of VTA
neurons is/are currently not known.

The first goal of this study was to determine whether ER« or
ERp is responsible for the effect of E2 on the response of VTA
neurons to ethanol. We used selective agonists and antagonists to
ERa and ERB combined with extracellular recordings of VTA
neurons. Because membrane-bound ERs can rapidly activate cell
signaling pathways through interactions with metabotropic gluta-
mate receptors (mGluRs) and affect neurotransmission and
behavior (Tonn Eisinger et al., 2018), the second goal of this study
was to determine whether the enhancement of ethanol-stimulated
VTA neuron firing by E2 is dependent on mGluR1 activity.

The third goal of this study was to examine the potential rele-
vance of ERs expressed in the VTA on alcohol drinking. We
used virus-expressed short hairpin (sh)RNAs to reduce the
expression of ERa or ERB in the mouse VTA and measured
binge ethanol drinking. Together, the results from our behavioral
and electrophysiological experiments indicate that ERa activa-
tion in the VTA enhances both ethanol-stimulated firing of VTA
neurons and binge drinking in female mice. These studies pro-
vide important mechanistic and behavioral insights into ER sig-
naling in the brain that are relevant to alcohol use disorder in
females.

Materials and Methods

Animals. Female C57BL/6] mice were purchased from The Jackson
Laboratory at the age of 8 weeks and used for immunohistochemistry
(IHC), electrophysiology, and behavioral experiments at the age of 10-
14 weeks. Male C57BL/6] mice were also purchased from The Jackson
Laboratory at the age of 8 weeks and used for behavioral experiments at
the age of 10-14 weeks. Transgenic mice containing a bacterial artificial
chromosome-expressing EGFP under the control of the Esr2 promoter
were obtained from the Mutant Mouse Regional Resource Center at the
University of California, Davis (strain B6.FVB(Cg)-Tg(Esr2-EGFP)
1D169Gsat/TmilMmucd, stock #036904-UCD) (Milner et al., 2010) and
were used as a reporter for ER expression in IHC experiments due to a
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lack of commercially available antibodies specific for mouse ERJ
(Snyder et al,, 2010). Mice containing a floxed Esrl (Esr1 fl/fl) allele in
which exon 3 is flanked by loxP sites were originally obtained from
Sohaib A. Khan and have been backcrossed to C57BL/6] for 12 genera-
tions (Feng et al., 2007). Mice were bred at University of Illinois at
Chicago, and homozygous offspring ranged in age from 3 to 6 months at
the time of electrophysiology experiments. Mice were housed in groups
of 3-5 in a temperature- and humidity-controlled room with a 12 h
light/dark cycle (lights on at 6:00 A.M.), with food and water available
ad libitum, except water was not available during the limited-access etha-
nol drinking tests described below. Animal care adhered to the National
Institutes of Health’s Guide for the care and use of laboratory animals,
and all procedures were approved by the University of Illinois at
Chicago Animal Care Committee.

Vaginal cytology. The estrous cycles of gonadally intact female mice
were assessed by vaginal cytology for at least 2 weeks before performing
experiments, as previously described (Vandegrift et al., 2017). Briefly, a
cotton swab was moistened with sterile water and gently rotated at the
vaginal opening. The swab was wiped on a microscope slide, and the
smear was immediately analyzed by bright field microscopy using an
EVOS FL inverted microscope (Thermo Fisher Scientific). Estrus was
identified by a large quantity of cornified epithelial cells, whereas dies-
trus was determined by a predominance of leukocytes (Nelson et al.,
1982). These two phases differ in circulating E2 levels. Serum E2 levels
in mouse are higher during late diestrus (diestrus II) than estrus and are
not statistically significantly different from levels during proestrus as
measured by gas chromatography-tandem mass spectrometry (Nilsson
etal., 2015).

Fluorescent IHC. Mice were killed using a lethal dose of a commercial
euthanasia solution containing pentobarbital (Somnasol) and transcardially
perfused with ice-cold PBS, followed by 4% PFA. Brains were removed and
postfixed in PFA overnight and cryoprotected in 30% sucrose. Serial coronal
sections (40-pum-thick) were collected through the VTA. Sections were
blocked in 5% normal donkey serum (Jackson ImmunoResearch
Laboratories, #017-000-121, RRID:AB_2337258) and then incubated
with various combinations of the following primary antibodies: ERe, rab-
bit polyclonal, Sigma Millipore, #06-935, RRID:AB_310305; GFP, mouse
monoclonal 3E6, Thermo Fisher Scientific, #A-11120, RRID:AB_221568;
TH, mouse monoclonal LNC1, Sigma Millipore, #MAB318, RRID:AB_
827536; TH, rabbit polyclonal, Sigma Millipore, #AB152, RRID:AB_
390204; Cre recombinase, rabbit monoclonal, Cell Signaling Technology,
#15036, RRID:AB_2799373. Secondary antibodies were AlexaFluor-594-
conjugated donkey anti-rabbit (Jackson ImmunoResearch Laboratories,
#711-585-152, RRID:AB_2340621) and AlexaFluor-488-conjugated don-
key anti-mouse (Jackson ImmunoResearch Laboratories, #715-545-150,
RRID:AB_2340846). Sections were mounted onto slides with Vectashield
mounting medium (Vector Laboratories). Images in Figures 1 and 3 were
acquired with an LSM 710 laser scanning confocal microscope using a
40x objective (Carl Zeiss; all mice were in estrus). Images from Figure 6
were acquired using an EVOS FL microscope (Thermo Fisher Scientific)
using a 4x objective. ImageJ software (National Institutes of Health) was
used for quantification of ER« expression in TH-expressing cells in mice
injected with adeno-associated virus-9 (AAV9) in the VTA. Images were
obtained from 2 sections per mouse, and density of ERa immunoreactiv-
ity was obtained from 8 TH-positive cells/mouse. Average ERa density
was calculated from these 8 cells/mouse, and this value was used as an
individual data point (n = 6 mice per group).

Ovariectomy (OVX). Mice were anesthetized with intraperitoneal
injections of ketamine (100 mg/kg) and xylazine (8 mg/kg). Hair on the
dorsal flanks was trimmed using a hair trimmer, and the skin was disin-
fected using 70% isopropanol wipes. Bilateral incisions were made in the
skin, and a small hole was teased in the muscle wall to allow access to the
abdomen. The ovaries and associated fat pads were dissected away from
the uterine horns. The muscle wall was sutured, and the skin was closed
with wound clips. Mice received a subcutaneous injection of 2 mg/kg
meloxicam immediately after surgery and once on the following day for
analgesia. Cessation of the estrous cycle was verified by obtaining vaginal
smears for a few days after OVX. Mice recovered for 2 weeks before be-
ginning drug treatments.
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Figure 1.

ERcr and ER3 are expressed in DA neurons and nondopaminergic cells in the VTA. Brain sections containing the VTA from female mice in estrus were processed for fluorescent

IHC with antibodies to ERc, GFP (reporter for ER3 expression), and TH. A-C, Representative images showing ERcx (magenta) and GFP (green) colocalization in the VTA of an ER 3 -GFP reporter
mouse. White arrows indicate examples of ERa"/GFP™ cells. Yellow arrowheads indicate examples of ERav" /GFP™ cells. D-F, Representative images showing ERcr (magenta) and TH (green)
colocalization in the VTA of a (57BL/6) mouse. White arrows indicate examples of ERae™/TH™ cells. Yellow arrowheads indicate examples of ERar™/TH™ cells. G-1, Representative images of
TH (magenta) and GFP (green) colocalization in the VTA of an ER/3-GFP reporter mouse. White arrows indicate examples of TH*/GFP™ cells. Yellow arrows indicate examples of TH™/GFP™

cells. Scale bar, 50 pm.

In vivo drug treatments. Diarylpropionitrile (DPN, selective ER3 ago-
nist, Tocris Bioscience), 4,4’ 4" -(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphe-
nol (PPT, selective ERa agonist, Tocris Bioscience), and E2-3-benzoate,
herein referred to as E2 (Sigma Millipore), were prepared in solutions of
90% sesame 0il/10% ethanol (VEH). DPN and PPT were prepared to final
concentrations of 0.5mg/ml. Mice were injected subcutaneously with
~1mg/kg in a 50 ul volume (final ethanol dose from vehicle solution
was < 0.2 g/kg). Mice were treated once per day for 3 d, with the final dose
given 1 h before death. For E2 treatment, 0.2 ug E2 in 50 ul volume
(~10 ug/kg) was injected subcutaneously on the first 2d and 1 ug of E2 in
50 ul volume (~50 ug/kg) on the third day, 1 h before death. These doses
and timing of E2 treatment were chosen because they result in E2 plasma
levels similar to proestrus (Vandegrift et al., 2017), when E2 levels peak. The
concentrations of PPT and DPN were chosen to balance receptor selectivity
with occupancy (Sepehr et al., 2012; Hilderbrand and Lasek, 2018).

Extracellular recordings and in vitro drug treatments. VT A-contain-
ing brain slices were prepared for extracellular electrophysiology as pre-
viously described (Brodie et al., 1999; Dutton et al., 2017). Recording
electrodes were placed in the VTA under visual control. Only those neu-
rons that were located within the lateral VTA and conformed to the cri-
teria for DA neurons established in the literature and in this laboratory
(Brodie et al., 1988; Lacey et al., 1989; Mueller and Brodie, 1989) were
studied. Not all VTA neurons in this study were characterized

pharmacologically with baclofen as DA-containing neurons (Margolis et
al., 2006, 2012), but all of the neurons conforming to these electrophysi-
ological criteria that have been tested with baclofen (0.1-1 um) in our
laboratory have been inhibited; sensitivity to inhibition by baclofen is a
property of DA VTA neurons, but not GABAergic VTA neurons
(Margolis et al.,, 2012). Spontaneous spike frequency (firing rate) was
recorded, and changes in firing rate were determined. A calibrated
infusion pump was used to apply ethanol and the mGluR1 antago-
nist JNJ 16259685 to the aCSF from stock solutions prepared at 100-
1000 the final concentration. JNJ 16259685 was prepared in 100%
DMSO, and the final concentration in the bath was 0.2 um. The
ERpB antagonist PHTPP (4-[2-phenyl-5,7-bis(trifluoromethyl)pyra-
zolo[1,5-a]pyrimidin-3-yl]phenol, Tocris Bioscience) and ER«a
antagonist MPP (1,3-bis(4-hydroxyphenyl)—4-methyl-5-[4-(2-piperidiny-
lethoxy)phenol]-1H-pyrazole dihydrochloride, Tocris Bioscience) were
administered via the micropipette by adding the drug to the microelectrode
filling solution. Drugs were added to the 0.9% NaCl microelectrode filling
solution, and time was permitted for the antagonists to diffuse from the re-
cording pipette into the extracellular space around the neuron being
recorded.

Viral vectors. Lentiviruses expressing shRNAs targeting Esrl
(shEsr1-1785, GGCATGGAGCATCTCTACA), Esr2 (shEsr2-1089,
GTACGAAGACAGAGAAGTG), or a sequence not predicted to target
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drinking by the National Institute on Alcohol
Abuse and Alcoholism. For ethanol drinking,
mice were given access to a single bottle of 20%
ethanol, 3 h into the dark cycle for 2 h per day on
Tuesday through Thursday and 4 h on Friday.
Ethanol intake was measured on Friday at 2 and 4
h into the session. Blood was collected from the
tail vein immediately after the 4 h session on
Friday, and BECs were measured using a nicotina-
mide adenine dinucleotide-alcohol dehydrogenase
enzymatic assay (Zapata et al., 2006). Two inde-
30 pendent cohorts of mice were injected with lentivi-
ruses and tested for ethanol drinking, and data
were combined from both cohorts after excluding
inaccurate or absent viral infections (shScr, n=10;
shEsrl, n=10; shEsr2, n=9). For sucrose drink-
ing, animals were presented with a solution of 2%
sucrose in water instead of ethanol using the same
drinking in the dark procedure as described for
ethanol. Two independent cohorts of mice were
injected with lentiviruses and tested for sucrose
drinking and data combined from both cohorts
(shScr, n=11; shEsrl, n=10; shEsr2, n=8). Viral
infection in the VTA was confirmed for both
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Figure 2.

*p << 0.05 (post hoc Holm-Sidak’s multiple comparisons test).

any gene in the mouse genome (shScr) were generated from the pLL3.7
vector (Lasek et al., 2007). The Esrl-targeting sequence was obtained
from Musatov et al. (2006), who demonstrated an 80% reduction in ER«
protein and transcript in vitro and complete lack of ERa protein in the
hypothalamus after AAV injection. We previously validated the shEsrl
lentiviral construct used in this study in vitro in Satta et al. (2018b) and
observed a 70% knockdown of Esrl transcript. The lentiviral construct
expressing shEsr2 was tested for the ability to knock down Esr2 in Neuro-
2a cells and reduced Esr2 transcript levels by 94.3 = 1.5%. We were unable
to validate the shEsr2 construct in vivo because transcript levels in the
VTA are below the limit of detection by qPCR (Cq values ~34) and
because there are no commercially available antibodies specific to mouse
ERpB (Snyder et al,, 2010). The pLL3.7 vector included a CMV-enhanced
EGFP reporter cassette for infection site verification after the completion
of behavioral testing. Lentiviral plasmids are available from Addgene
(#120720 and #120722). The AAV-expressing Cre recombinase from the
rat TH promoter (AAV.IrTH.PLCre.SV40) was a gift from James M.
Wilson (Addgene, viral prep #107788-AAV9, RRID:Addgene_107788).

Stereotaxic injection of virus into the VTA. Gonadally intact, female
mice were anesthetized with a solution of ketamine and xylazine and
placed in a digital stereotaxic alignment apparatus. After bregma align-
ment and skull leveling, 0.28 mm diameter holes were drilled bilaterally
(AP: —3.2, ML: %0.5) for virus microinjection. Virus was delivered to
the VTA (DV: —4.7) at a rate of 0.2 ul/min for a total injection volume
of 1ul or 0.5 ul/hemisphere for lentivirus or AAV, respectively. After
surgery, mice were maintained on a normal 12 h light/dark cycle for
1 week. Mice were then either kept in normal housing conditions for an
additional 3 weeks before electrophysiology (AAV) or transferred to a
reversed light/dark cycle room (lights off at 10:00 A.M. and on at 10:00
P.M.) and housed individually for 2 weeks to acclimate to the change in
light/dark cycle before testing drinking (lentivirus).

Ethanol and sucrose drinking tests. The drinking in the dark proce-
dure was used as a model of binge ethanol consumption because it allows
mice to achieve blood ethanol levels exceeding 80 mg/dl in a 2-4 h period
(Rhodes et al, 2007; Dutton et al, 2017), which is defined as binge

Ethanol concentration (mM)

Activation of ERa enhances ethanol sensitivity of VTA neurons. Extracellular recordings were obtained from
VTA neurons in OVX mice treated systemically with an ER3 agonist (DPN), ERcx agonist (PPT), or vehicle (VEH). A-C, Rate
meter graphs represent response to 40-120 mm ethanol of a representative neuron from an OVX mouse treated with VEH
(A), DPN (B), or PPT (C). D, Ethanol concentration-response graph (40, 80, and 120 mm). Neurons from OVX mice treated
with PPT (n=10), but not DPN (n = 10), had enhanced excitation by ethanol compared with VEH-treated mice (n=11).

cohorts, except the in the second shScr (n=5) con-
trol group because of an error in tissue processing.
However, the two shScr cohorts did not differ stat-
istically in sucrose intake, and so the second cohort
was included in the data analysis.

Experimental design and statistical analysis.
Details on numbers and sex of animals used are
indicated in the Results section for each experi-
ment. Data are presented as the mean = SEM.
Statistical comparisons were made using Student’s ¢
test, one-way ANOVA, two-way ANOVA, or two-
way repeated-measures ANOVA as indicated for
each experiment in Results. Holm-Sidak’s or Tukey’s multiple comparisons
tests were performed as indicated (Prism, GraphPad Software). A p value
of < 0.05 was considered significant.

120

Results

ERa and ERp are expressed in DA neurons and non-DA cells
in the mouse VTA

The ERs, ERa and ERB, have been detected in the VTA of mice
and rats (Kritzer, 1997; Shughrue et al., 1997; Shughrue and
Merchenthaler, 2001; Creutz and Kritzer, 2002; Mitra et al.,
2003; Kritzer and Creutz, 2008; Milner et al., 2010). In rats, ERa
and ERB immunoreactivity is observed in DA neurons and
non-DA cells in the VTA as demonstrated by dual-labeling with
an antibody to TH, an enzyme in the DA biosynthetic pathway
(Creutz and Kritzer, 2002; Kritzer and Creutz, 2008), but to our
knowledge, this has not been investigated in mice. To confirm
that ERa and ERB are present in DA neurons in the mouse
VTA, we performed fluorescent IHC on VTA sections of gona-
dally intact female mice. Transgenic mice expressing EGFP from
the Esr2 promoter (the gene encoding ER3) were used as a re-
porter for ERB expression, and the GFP signal was amplified
with an antibody to GFP. We first examined GFP and ER« local-
ization and observed both ERa and GFP immunoreactivity in
the VTA (Fig. 1A-C). Nearly all of the cells expressing GFP were
positive for ERe, but there were many cells that were positive
for ERa that did not express GFP. These results suggest that
ERa and ERB are coexpressed in some cells in the VTA, but
that ERa is expressed more widely than ERB in the VTA. GFP
was visible in TH-positive and TH-negative cells, indicating
that ERB is expressed in both DA and non-DA cells in the
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Figure 3.  ER« regulates ethanol sensitivity of VTA neurons from mice in diestrus. A, B, Rate meter graphs represent the response of a representative neuron to 80 mm ethanol (EtOH) before
and after treatment with the ERa antagonist MPP from mice in estrus (4) and diestrus (B). C, Graph of neuronal responses to 80 mm EtOH from mice in estrus (n =5) and diestrus (n=6)
before and after treatment of slices with MPP. The enhanced EtOH-induced excitation of neurons from mice in diestrus was decreased after treatment with MPP, whereas the EtOH responses
of VTA neurons from mice in estrus are unchanged by MPP. **p << 0.05, comparing diestrus with estrus before MPP treatment and comparing responses in diestrus before and after MPP by
post hoc Sidak’s multiple comparisons test. D, E, Rate meter graphs represent the response of a representative neuron to 80 mm EtOH before and after treatment with the ER3 antagonist
PHTPP from mice in estrus (D) and diestrus (E). F, Graph of neuronal responses to 80 mm EtOH from mice in estrus (n = 6) and diestrus (n = 5) before and after treatment of slices with PHTPP.
There was no change in EtOH excitation after PHTPP treatment, but there was a significant main effect of cycle phase. *p << 0.05, main effect of cycle (two-way ANOVA). G, Representative
image showing Cre recombinase expression in TH-expressing neurons in the VTA. Brain sections transduced with AAV9-Th-Cre virus were processed for fluorescent IHC with antibodies to Cre
recombinase (magenta) and TH (green). White arrows indicate TH-positive and Cre-positive cells. Yellow arrowheads indicate 2 cells expressing Cre but not TH. Scale bar, 20 m. H, Graph of
% of Cre-expressing cells that also express TH in control and £sr1 fl/fl mice (n =6 mice, each mouse as the mean of 8 neurons). /, Graph of ERce immunoreactivity in TH-expressing cells in con-
trol and £sr7 fI/fl mice (n = 6 mice, each mouse as the mean of 8 neurons). J, Graph of neuronal responses to EtOH (40, 80, and 120 mw) in control mice and Esr7 fI/fl mice in estrus and dies-
trus. *p << 0.05; ****p < 0.0001; Tukey's test after two-way repeated-measures ANOVA.

mouse VTA (Fig. 1G-I). Finally, we examined ERa and TH im-
munostaining in nontransgenic female C57BL/6] mice and
observed that ERa immunoreactivity was visible in both TH-
positive and TH-negative cells in the VTA (Fig. 1D-F). Together,
these results indicate that ERe and ERf are expressed in DA
neurons of the female mouse VTA.

Baseline firing rates of female mouse VT A neurons

A total of 95 VTA neurons from 59 mice were recorded. Specific
numbers of neurons and mice for each experiment are described
separately in Results for that experiment. The initial firing rates of
the neurons ranged from 0.54 to 4.66 Hz, and the mean firing rate
was 1.92 = 0.11 Hz. There was a significant difference in baseline
firing rates between neurons from mice in diestrus and estrus,
with a mean firing rate of 2.28 = 0.25Hz during estrus and
1.71 = 0.18 Hz during diestrus (¢(33) = 1.89, p=0.034). There were

no significant differences in baseline firing rates between neurons
from OVX mice treated with VEH (2.34 +0.38Hz), PPT
(157 = 0.23 Hz), DPN (1.97 = 0.33 Hz), or E2 (1.85 + 0.27 Hz;
one-way ANOVA, F,,5) = 1.45, p = 0.24). There were also no sig-
nificant differences in baseline firing among the groups in experi-
ments using Esrl fl/fl and control mice transduced with AAV-
expressing Cre recombinase, with control-estrus (2.89 + 0.52 Hz),
control-diestrus (2.84 = 0.17 Hz), Esr1 fl/fl-estrus (2.82 = 0.66 Hz),
or Esrl fl/fl-diestrus (2.91 = 0.48 Hz; one-way ANOVA, Fg19) =
0.0063, p = 0.99).

Activation of ERa enhances ethanol sensitivity of VTA
neurons

We previously demonstrated that OVX mice treated with E2 ex-
hibit enhanced ethanol-induced excitation of VTA neurons
(Vandegrift et al., 2017). In order to determine which ER is
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et al., 2017). This enhancement of ethanol-
induced excitation in diestrus is blocked by
acute administration of the ERae/ER antago-
nist, ICI 182780, directly to the VTA slice
(Vandegrift et al, 2017). To determine
whether this effect results from blocking the
activity of a specific ER, we administered
MPP, an ERa-selective antagonist, or PHTPP,
an ERp-selective antagonist, to VTA slices
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120 from mice in diestrus or estrus using the re-
cording pipette. The response to 80 mm etha-
nol was tested before administration of the
antagonist and again 70-80 min later, after the
antagonist diffused from the recording pipette
onto the cell of interest. The ERar antagonist
MPP decreased the excitatory response of
VTA neurons to ethanol from mice in dies-
trus but had no effect on neurons from mice
in estrus (Fig. 3A-C; diestrus, n=5 cells from
5 mice; estrus, n=6 cells from 4 mice; two-
way repeated-measures ANOVA, time: Fg)
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Figure 4.

measures ANOVA).

involved in enhancing ethanol sensitivity, we measured ethanol-
induced excitation (40-120 mm) of VTA neurons from OVX
mice treated with PPT (an ERa-selective agonist), DPN (an
ER B -selective agonist), or VEH. VTA neurons from OVX mice
treated with PPT had significantly higher ethanol-induced exci-
tation compared with neurons from DPN- and VEH-treated
mice (Fig. 2; VEH, n=11 cells from 4 mice; PPT, n=10 cells
from 3 mice; DPN, n =10 cells from 4 mice; two-way repeated-
measures ANOVA, ethanol concentration: Fps6 = 57.02,
p <0.0001; treatment: F(,,g) = 4.05, p=10.028; concentration x
treatment interaction: Fyss) = 3.06, p= 0.024). In response to
bath application of 80 mm ethanol, the firing rate of neurons
from PPT-treated mice increased by 18.5 = 1.97%. In compari-
son, the firing rate of neurons from DPN- and VEH-treated
mice increased by 7.7 + 1.8% and 11.1 * 2.8%, respectively. Post
hoc Holm-Sidak’s multiple comparisons test demonstrated a sig-
nificant increase in ethanol-induced excitation in response to 80
mM ethanol from mice treated with PPT compared with VEH
(p=0.046) and DPN (p=0.0044), and in response to 120 mm
ethanol from mice treated with PPT compared with VEH
(p=0.038) and DPN (p = 0.0082). These results indicate that acti-
vation of ERa enhances the response of VTA neurons to ethanol
in OVX mice and suggests that the E2-induced increase in etha-
nol sensitivity is likely due to activation of ERa.

ERa regulates ethanol sensitivity of VT A neurons from mice
in diestrus

VTA neurons from mice in diestrus are more sensitive to ethanol
excitation compared with neurons from mice in estrus (Vandegrift

Ethanol Concentration (mM)

mGluR1 is required for the E2-induced enhancement of ethanol excitation. A, Rate meter graph represents
the response to 40-120 mm ethanol of a representative neuron from an OVX mouse treated with vehicle (VEH) before and
after treatment with the mGluR1 antagonist JNJ 16259685. B, Ethanol concentration-response graph of neurons (n=5)
from OVX mice treated with VEH showing responses before (DMSO vehicle) and after slice treatment with JNJ 16259685.
C, Rate meter graph represents the response to 40-120 mm ethanol of a representative neuron from an E2-treated OVX
mouse before and after treatment with JNJ 16259685. D, Ethanol concentration-response graph of neurons (n=6) from
Ell-treated OVX mice before and after treatment of slices with JNJ 16259685. The ethanol excitation of neurons from E2-
treated OVX mice was significantly reduced after JNJ 16259685. *p << 0.05, main effect of treatment (two-way repeated-

100~ 120 = 7.46, p=0.023; phase: F(; ) = 3.50, p = 0.094;

time x phase interaction: F;o = 10.50,
p=0.01). Post hoc Holm-Sidak’s multiple
comparisons test demonstrated a significant
difference in ethanol-induced excitation between
estrus (9.9 = 1.4% increase) and diestrus (15.9
+ 0.8% increase) before MPP treatment
(p=0.0054), consistent with our previous find-
ings (Vandegrift et al., 2017). After adminis-
tration of MPP, there was no longer a
difference (p =0.60) in ethanol-induced exci-
tation between diestrus (9.6 & 1.3% increase)
and estrus (10.5 = 1.1% increase) because of
a significant reduction in ethanol-induced
excitation in neurons from mice in diestrus (p=0.0058). These
results suggest that ER« acutely regulates ethanol sensitivity in the
VTA in an estrous cycle phase-dependent manner.

In contrast to results obtained with the ERa antagonist, the
ERpB antagonist PHTPP had no effect on ethanol sensitivity of
VTA neurons. As expected, there was a significant main effect of
estrous cycle phase, indicating enhanced ethanol excitation in
neurons from mice in diestrus compared with estrus (Fig. 3D-F;
diestrus, n=5 cells from 4 mice; estrus, n=6 cells from 5 mice;
two-way repeated-measures ANOVA, time: F;o) = 0.18,
p=0.68; phase: F(; ) = 7.17, p=0.025; time x phase interaction:
F(1,9) = 0.088, p=0.77). Neurons from mice in estrus exhibited
no increase in the response to ethanol, as ethanol increased firing
by 8.0 = 1.2% and 7.9 = 1% before and after PHTPP delivery,
respectively. Likewise, while neurons from mice in diestrus ini-
tially responded to 80 mum ethanol with an 18.1 * 3.3% increase
in firing rate, after PHTPP delivery, these neurons responded
similarly to ethanol with a 17.4 = 4.5% increase in firing rate.
Together, these results indicate that ERe, but not ER3, enhances
the ethanol-induced excitation of VTA neurons in female mice
during diestrus, when E2 levels are higher than in estrus.

Our results indicate that ERa in the VTA is necessary for the
increased ethanol sensitivity of VT'A neurons. As demonstrated
in Figure 1, ERa is expressed in DA and non-DA cells in the
VTA and could conceivably act in non-DA cells to alter the exci-
tation of DA neurons. To determine whether ERa expression in
VTA DA neurons alters ethanol-induced excitation, we per-
formed an experiment in which we transduced VTA neurons in
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homozygous floxed Esrl (gene encoding A
ERa, Esrl fl/fl) mice with an AAV9 driving
Cre recombinase expression from the Th
promoter to conditionally KO expression of
ERa in VTA DA neurons. Female C57BL/6
mice with nonfloxed Esrl alleles were
injected with the virus as controls. Immu-
nostaining of brain sections with Cre and
TH antibodies 4 weeks after virus infusion
demonstrated that ~70% of Cre-positive
cells were immunoreactive for TH (Fig. 3G, 00
H), indicating that the majority of cells
expressing Cre were DA neurons. However,
~30% of cells that expressed Cre did not
have visible TH immunoreactivity. This is
not unexpected, given that Th mRNA has
been found to be expressed in cells that do
not produce TH protein (Yamaguchi et al.,
2015). We also quantified ERa protein lev-
els in TH-positive cells in separate adjacent
brain sections using immunofluorescent
antibodies. Despite the fact that not all TH-
positive cells express ERa, and that we were 0
unable to determine whether cells were also
coexpressing Cre (due to limitations in the
species of the available antibodies), we
found that ER« protein was reduced in TH-
expressing cells by ~50% compared with
control mice injected with AAV (Fig. 31
tao) = 1.78, p=0.106), demonstrating that
Cre reduced expression of ERa. TH inten-
sity did not differ between control and Esr!l
fl/fl mice transduced with AAV (data not
shown). We next measured ethanol-
induced excitation of VTA neurons from control and EsrI fl/fl
mice transduced with AAV that were in estrus or diestrus.
Control mice in diestrus exhibited increased sensitivity to etha-
nol-induced excitation compared with all other groups (Fig. 3J;
control-diestrus, 6 cells from 3 mice; control-estrus, 3 cells from
2 mice; Esrl fl/fl-diestrus, 5 cells from 3 mice; Esr1 fl/fl-estrus, 6
cells from 3 mice; two-way repeated-measures ANOVA, ethanol
concentration: F, 47 = 11.73, p < 0.0001; genotype-phase: F(3 47
= 13.33, p<0.0001; interaction: Fg47 = 1.117, p=0.367). Post
hoc Tukey’s multiple comparisons test was used to determine the
difference between genotypes at specific phases. There were signif-
icant differences between control-diestrus and control-estrus
(p=0.021), control-diestrus and Esrl fl/fl-diestrus (p < 0.0001),
and control-diestrus and Esrl fl/fl-estrus (p < 0.0001). These
results strongly support the hypothesis that ERa acts in VTA DA
neurons to regulate sensitivity to ethanol-induced excitation.
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Figure 5.

mGluR1 is required for the E2-induced enhancement of
ethanol excitation

E2 rapidly activates membrane-bound ERs that couple to
mGluRs in hippocampal (Huang and Woolley, 2012) and striatal
(Grove-Strawser et al., 2010) neurons. We hypothesized that
mGIluR activation might be occurring in the VTA of mice after
E2 treatment and thus contributing to the enhancement of etha-
nol-simulated firing. To test this, OVX mice were administered
E2 or VEH, and the response to 40-120 mm ethanol was meas-
ured in VTA neurons before and after bath application of the
mGluR1 antagonist, JNJ 16259685. JNJ 16259685 did not affect
ethanol excitation of VTA neurons from OVX mice treated with
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mGluR1 regulates ethanol sensitivity of VTA neurons from mice during diestrus. A, Rate meter graph repre-
sents the response of an individual neuron to 40-120 mm ethanol before and after treatment with the mGIuR1 antagonist
INJ 16259685 from a mouse in estrus. B, Ethanol concentration-response graph of neurons (n=5) from mice in estrus
before and after treatment of slices with JNJ 16259685. C, Rate meter graph represents the response of an individual neu-
ron to 40-120 mu ethanol before and after treatment with JNJ 16259685 from a mouse in diestrus. D, Ethanol concentra-
tion-response graph of neurons (n = 6) from mice in diestrus before and after treatment of slices with JNJ 16259685. The
ethanol excitation of neurons from mice in diestrus was significantly reduced after treatment. *p << 0.05, main effect of
treatment (two-way repeated-measures ANOVA).

VEH (Fig. 4A,B; n =5 cells from 3 mice, two-way repeated-meas-
ures ANOVA, treatment: F(; 4y = 0.52, p=0.51; ethanol concen-
tration: Fg = 21.47, p=0.0006; treatment X concentration
interaction: Fpg) = 1.39, p=0.30). In contrast, JN]J 16259685
decreased the response of VT'A neurons to ethanol in OVX mice
treated with E2 (Fig. 4C,D; n=6 cells from 6 mice, two-way
repeated-measures ANOVA, treatment: F(; 5) = 111.58, p=0.019;
ethanol concentration: F; 19y = 30.44, p < 0.0001; treatment X
concentration interaction: F, 1) = 1.56, p=0.26). Neurons from
E2-treated OVX mice initially responded to 80 mm ethanol with
a 17.8£2.7% increase in firing rate. After 45min of JNJ
16259685 exposure, the neurons responded to ethanol with a
9.9 * 3.1% increase in firing rate. These results indicate that E2-
mediated enhancement of excitation by ethanol depends on
mGIluR1 activation.

mGluR1 regulates ethanol sensitivity of VT A neurons from
mice during diestrus

We tested whether the increased ethanol sensitivity we observed
during diestrus compared with estrus could be attributed to acti-
vation of mGluR. We measured the response to 40-120 mwm etha-
nol in VTA neurons from mice in diestrus and estrus before and
after bath application of JNJ 16259685. Ethanol excitation of
VTA neurons from females in estrus did not change after treat-
ment with JNJ 16259685 (Fig. 5A,B; n =5 cells from 4 mice, two-
way repeated-measures ANOVA, treatment: F;4 = 0.18,
p=0.70; ethanol concentration: F, gy = 60.66, p << 0.0001; treat-
ment X concentration interaction: F5) = 1.51, p = 0.28). For
example, neurons from mice in estrus exhibited a 10.4 = 1.6%
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expression in the VTA might regulate
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Figure 6. Intra-VTA knockdown of ERs reduces binge ethanol consumption in female mice. Gonadally intact female mice were  the 4 d. Ethanol intake during the 4 h

injected with lentivirus expressing shScr (control, n = 10), shEsr1 (n = 10), or shEsr2 (n =9) and tested for binge ethanol drinking
in the drinking in the dark test. A, Ethanol intake in g/kg over 2 h on each day of drinking. *p << 0.05, ****p < 0.0001. B,
Ethanol intake in g/kg during the final 4 h drinking session. **p < 0.01. €, BECs after the final 4 h drinking session. D, Water
intake during a 2 h session conducted 1d before testing ethanol drinking. E, Separate groups of mice were injected with lentivirus
expressing shScr (n = 11), shEsr1 (n = 10), or shEsr2 (n=8) and tested for consumption of 2% sucrose using the same procedure
as was used for ethanol drinking. Shown is sucrose intake in ml/kg over 2 h on each day of drinking. F, Sucrose intake in mi/kg
during the final 4 h session. G, lllustration of a coronal brain section showing injection site in the VTA (shaded magenta). For ref-
erence, yellow represents hippocampal structures and gray represents the cingulum. H, Representative image of viral transduction
in the VTA of mice. Green represents GFP. Magenta represents TH. Scale bar, 1 mm. RN, Red nucleus; Aq, aqueduct; SNR, substan-

tia nigra pars reticulata; ml, medial lemniscus.

increase in firing in response to 80 mm ethanol before treatment
with the mGluR1 antagonist and an 8.9 * 1.7% increase after
treatment. In contrast, treatment with JNJ 16259685 decreased
ethanol excitation of VTA neurons from females in diestrus (Fig.
5C,D; n=6 cells from 6 mice, two-way repeated-measures
ANOVA, treatment: F(;5) = 7.44, p=0.041; ethanol concentra-
tion: F, 19y = 6.56, p=0.015; treatment x concentration interac-
tion: F10) = 2.46, p=0.14). Neurons from mice in diestrus
responded to 80 mM ethanol with a 14.9 & 1.6% increase in firing
rate before treatment with the mGluR1 antagonist and a
7.9 = 3.1%. increase in firing rate after treatment. These results
indicate that mGluR1 activity is required for the increased sensitiv-
ity of VTA neurons to ethanol from mice in diestrus, similar to
what we observed in mice treated with E2.

Intra-VTA knockdown of ERs reduces binge ethanol
consumption in female mice

Female mice drink more alcohol than male mice in a binge
drinking test, an effect that is attributed to E2 (Satta et al,
2018a). Our results demonstrating that ER« activation increases
the sensitivity of VTA neurons to ethanol suggest that ER«a

session on day 4 was attenuated by a
reduction in ER levels in the VTA (Fig.
6B; Fp26) = 6.85, p=0.0041). Multiple
comparisons testing revealed a signifi-
cant 29% decrease in ethanol drinking
in mice expressing shEsrl (p=0.0030)
and a nonsignificant 17% decrease in
mice expressing shEsr2 (p=0.097) in
the VTA during the 4 h session.
Consistent with reduced ethanol intake
during the 4 h session, BECs were
lower in mice with ER knockdown in
the VTA (Fig. 6C; one-way ANOVA, F(,,5) = 3.35, p=0.051).
This effect was driven by a 55% reduction in BECs in the shEsrl
treatment group (p=0.041), as BECs in the shEsr2 group were
not significantly different from the shScr group (24% reduction,
p=0.51). We also tested water intake 1 d before measuring etha-
nol consumption in the same mice and did not observe an effect
of ER knockdown on water intake during a 2 h period (Fig. 6D),
indicating that reducing ERs in the VTA does not affect general
fluid intake. Viral transduction in the VTA was confirmed by
dual immunofluorescent staining of brain sections using anti-
bodies to TH and GFP (Fig. 6G,H). GFP was visible in the VTA
and just dorsal to the VTA, extending slightly into the red nu-
cleus; however, this region does not have detectable expression
of ERs (Mitra et al., 2003). Selective knockdown of ERs in the
VTA did not affect estrous cycles (data not shown), as mice con-
tinued to cycle normally throughout the duration of the experi-
ment. Binge ethanol drinking also did not significantly vary
during the estrous cycle, as reported previously (Satta et al.,
2018a), nor was drinking altered only at specific phases of the
estrous cycle by knockdown of ERs (data not shown). These
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results indicate that reducing levels of
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whether the effect of ER knockdown in
the VTA is sex-specific, we injected
lentiviruses expressing shScr, shEsrl,
or shEsr2 into the VTA of male mice
and tested them in the ethanol drink-
ing in the dark test. Despite the fact
that ERs are expressed in the VTA of
males (Fig. 7) (Kritzer, 1997), knock-
down of Esrl or Esr2 did not alter
ethanol drinking in male mice (Fig. 7).
Fluorescent ~immunostaining with
antibodies to GFP and ERa demonstrated a 54% reduction in
ERa levels in shEsr1 virus-infected cells. These results suggest a
sexually dimorphic role for ERs in the VTA in ethanol binge
drinking.

Figure 7.

Discussion

The primary novel findings of this study are as follows: (1) acti-
vation of ERa potentiates ethanol-induced excitation of VTA
neurons; and (2) ERa, and to a lesser extent ERB, in the VTA
regulates binge-like ethanol drinking. We previously demon-
strated that VTA neurons from mice in diestrus and E2-treated
OVX mice are more sensitive to ethanol excitation than neurons
from mice in estrus and VEH-treated OVX mice (Vandegrift et
al., 2017). Multiple studies have found that E2-treated females
consume more ethanol under various access conditions, includ-
ing those that promote binge drinking (Ford et al., 2002a, 2004;
Marinelli et al., 2003; Reid et al., 2003; Quirarte et al., 2007;
Rajasingh et al., 2007; Satta et al., 2018a). Before this study, it was
not known which ER(s) are responsible for these behavioral and
neurophysiological effects.

Evidence that ER« is responsible for the increased sensitivity
of VTA neurons to ethanol in females is provided by our experi-
ments in OVX mice treated with the selective ERa agonist, PPT,
and in brain slices from mice in diestrus treated with the ERa
antagonist, MPP. PPT treatment of OVX mice mimicked the
effect of E2 treatment, indicating that activation of ER« is most
likely the mechanism by which E2 increased ethanol excitation of
VTA neurons. We confirmed a role for ERe in the enhanced sen-
sitivity to ethanol in gonadally intact mice in diestrus, showing
that acute application of MPP decreased ethanol induced

Intra-VTA knockdown of ERs does not affect binge ethanol consumption in male mice. Gonadally intact male mice
were injected with lentivirus expressing shScr (n =7), shEsr1 (n=10), or shEsr2 (n =7) and tested for binge ethanol drinking in
the drinking in the dark test. A, Ethanol intake in g/kg over 2 h on each day of drinking. B, Ethanol intake in g/kg during the
final 4 h drinking session. C, BECs after the final 4 h drinking session. D, Representative images of GFP (green) and ERax (ma-
genta) immunostaining in the VTA after the completion of the drinking test in mice that received lentivirus expressing shScr
(right) or shEsr1 (left). White arrows indicate a GFP-labeled cell with ERcx staining in the shScr sample and reduced ER«x staining
in the shEsr1 sample. Yellow double arrowhead indicates an uninfected ERa-positive cell. £, Quantification of ERcx fluorescence
intensity in GFP-positive cells in the VTA of mice receiving virus expressing shScr or shEsr1. Data are presented as corrected total
cell fluorescence (calculated as integrated density — area of selected cell x mean fluorescence of background readings). For each
group, mean fluorescence from 7 cells (from 5 animals) is shown. *p = 0.051.

excitation when E2 levels are rising (Nilsson et al., 2015). This
result demonstrates that ERe is important for the enhanced
response to ethanol in a natural hormonal state, and not just in
gonadectomized mice treated with E2. In contrast to the results
obtained with ERa, pharmacological manipulation of ERB did
not alter the potency of ethanol on VTA neurons, although ERS
is expressed in the VTA. Together, these data demonstrate an im-
portant role for E2 acting on ERa to increase ethanol sensitivity of
VTA neurons.

It is likely that the ability of ERa to enhance ethanol-induced
excitation of VT'A neurons is through direct action in DA neu-
rons. We demonstrated that KO of ERa in VTA DA neurons
using a genetic approach eliminated the enhanced sensitivity of
these neurons to ethanol-induced excitation. One caveat of this
experiment is that we observed some expression of Cre recombi-
nase in neurons that were not immunoreactive for TH. These
neurons could be expressing Th mRNA but not producing TH
protein, which has been described by Yamaguchi et al. (2015).
There is still a slight possibility that ER« acts in non-DA cells in
the VTA to alter ethanol-induced excitation of DA neurons
because we found that ERe is expressed in the soma of both DA
and non-DA cells in the VTA. ERa is probably also present in
neuronal terminals in the VTA, such as those from the medial
preoptic area that project to the VTA and are known to regulate
DA release in the NAc (Tobiansky et al., 2016; McHenry et al.,
2017). Further investigation is needed to definitively conclude
that ERa regulates responses to ethanol through direct action in
VTA DA neurons.

Our results suggest that activation of ERa would increase
ethanol-stimulated DA release in target regions, such as the
NAc, which might contribute to enhanced rewarding and rein-
forcing effects of ethanol during high-estrogen states. Dazzi et al.
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(2007) demonstrated that ethanol increased DA release in the
PFC of OVX rats treated with E2, but not in untreated OVX rats,
and that treatment with the selective ER modulator clomifene
prevented the ethanol-induced DA elevation. It remains to be
determined whether treatment with an ERa-selective agonist or
antagonist would alter ethanol-induced elevation of DA in
regions, such as the NAc and PFC.

It is important to point out that basal firing rates of VTA neu-
rons from mice in estrus were slightly higher than neurons from
mice in diestrus. Other groups have shown that basal firing rate
and bursting of VTA neurons are greater in estrus compared
with diestrus (Zhang et al, 2008; Calipari et al, 2017).
Supporting this observation, DA levels in the PFC and striatum
of rats are also higher in estrus compared with diestrus (Xiao
and Becker, 1994; Dazzi et al., 2007). Of note, acute treatment of
VTA slices with ER antagonists did not decrease basal firing rates
of VTA neurons. We also did not observe a difference in baseline
firing rates in OVX mice treated with E2 compared with VEH. It
is possible that the slightly higher firing rate observed in estrus
compared with diestrus is not due to ongoing ER activity, but
instead might result from actions of progesterone or progester-
one-derived neurosteroids (Maguire et al., 2005).

The potential signaling mechanism(s) by which ERa
increased the ethanol sensitivity of VT'A neurons was provided
by our experiments using an mGluR1 antagonist, which
decreased ethanol stimulation of neurons from mice in diestrus
and of neurons from OVX mice treated with E2. These results
indicate that mGluRl1 is required for E2-mediated enhancement
of ethanol-induced excitation of VT'A neurons, and suggest that
the effects of E2 may be due to rapid signaling at the cell mem-
brane. ERs (both ERa and ERS) functionally couple to mGluRs
in various brain regions, such as the hippocampus, striatum, and
hypothalamus (Dewing et al., 2007; Grove-Strawser et al., 2010;
Huang and Woolley, 2012; Oberlander and Woolley, 2016). ERa
and mGluRs are associated in complexes at the cell membrane
with caveolin proteins (Razandi et al., 2002; Boulware et al.,
2007, 2013; Dewing et al., 2007; Meitzen et al., 2013; Tabatadze
et al., 2015; Pastore et al., 2019). Our results support the possibil-
ity that a similar coupling of ERa and mGluR1 occurs in the
VTA of females and that this interaction is an important regula-
tor of the sensitivity of VTA neurons to ethanol excitation.
Determining whether there is a physical and functional interac-
tion in the VTA between ERa and mGluR1 will be an important
area for future research. In the hippocampus, E2 acts via
mGluR1 to increase the production of the endocannabinoid
anandamide, which functions in a retrograde manner to activate
presynaptic cannabinoid (CB1) receptors, resulting in a suppres-
sion of presynaptic GABA release (Huang and Woolley, 2012).
This mechanism could conceivably increase the sensitivity of
VTA neurons to ethanol. Activation of ERa/mGluR1 by E2 in
the hippocampus also increases phosphorylation of ERK, which
is important for the enhancement of memory by E2 (Boulware et
al,, 2013).

ERs in the VTA of female mice are important for promoting
binge-like alcohol drinking, as demonstrated by shRNA-medi-
ated knockdown of ERa and ER3. We found a stronger decrease
in ethanol drinking by reducing levels of ERa compared with
ERB. It is possible that this is because ERa, and not ERp,
enhances excitation of VTA neurons by ethanol. We observed
greater expression of ERa versus ERB in the VTA, and it is also
possible that the increased abundance of ERe is responsible for
its more prominent role in alcohol drinking. Reducing levels of
ERp in the VTA modestly decreased binge-like ethanol drinking
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by females. Although ERB does not alter the excitatory effect of
ethanol on VTA neurons, it may play a role in the VTA in alco-
hol drinking by affecting the innate physiology of VT'A DA neu-
rons independently of ethanol stimulation, for instance, by
altering the expression of various receptors or ion channels, or
by altering the physiology of non-DA neurons that indirectly
affect VTA DA neurons. Future experiments will examine how
ERp acts to alter neuronal activity in the VTA.

One might have predicted from our electrophysiology results
that: (1) ethanol consumption during diestrus would be higher
than in estrus because of the greater response to ethanol during
this phase, and (2) knockdown of ERe in the VTA would only
decrease ethanol drinking during diestrus, because the ER« an-
tagonist MPP only altered ethanol-induced excitation of VTA
DA neurons in diestrus and not in estrus. A close examination of
our data indicated that there was no effect of estrous cycle phase
on alcohol consumption, consistent with our previous findings
and those of others (Roberts et al., 1998; Ford et al., 2002b;
Priddy et al., 2017; Satta et al., 2018a). Knockdown of ER« in the
VTA also did not decrease drinking only during diestrus; ethanol
consumption was reduced by knockdown of ERa regardless of
estrous cycle phase. ERs in the VTA are important for promoting
ethanol drinking in female mice, possibly through multiple
mechanisms, including enhancing ethanol excitation of VTA
neurons.

Interestingly, knockdown of ERs in the VTA of male mice
did not affect binge-like ethanol drinking, despite the fact that
males express ERa and ERB in the VTA. Sex differences in the
responses to E2 are not unprecedented. For example, E2 sup-
presses inhibitory neurotransmission in the hippocampus in
females, but not in males, and this effect is mediated by ER« that
are coupled to mGluR1 (Huang and Woolley, 2012) and the abil-
ity of E2 to increase the interaction of ERa and mGluRl in
females but not in males (Tabatadze et al, 2015). Given our
results demonstrating that E2 enhancement of ethanol excitation
of VTA neurons requires mGluR1 activity, it is possible that an
ERa/mGluR1 interaction is also operative in the VTA, resulting
in a sex-specific role of ERs in the VTA on ethanol drinking. A
more complete understanding of the E2-dependent signaling
mechanism(s) in the VTA that drive binge ethanol drinking is an
important area for future research and may lead to more effective
treatments to reduce excessive drinking by women.
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