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We integrated genomic and bioinformatic analyses, using data from the largest genome-wide association study of cocaine de-
pendence (CD; n= 6546; 82.37% with CD; 57.39% male) and the largest postmortem gene-expression sample of individuals
with cocaine use disorder (CUD; n= 36; 51.35% with CUD; 100% male). Our genome-wide analyses identified one novel gene
(NDUFB9) associated with the genetic predisposition to CD in African-Americans. The genetic architecture of CD was similar
across ancestries. Individual genes associated with CD demonstrated modest overlap across European-Americans and African-
Americans, but the genetic liability for CD converged on many similar tissue types (brain, heart, blood, liver) across ances-
tries. In a separate sample, we investigated the neuronal gene expression associated with CUD by using RNA sequencing of
dorsal–lateral prefrontal cortex neurons. We identified 133 genes differentially expressed between CUD case patients and co-
caine-free control subjects, including previously implicated candidates for cocaine use/addiction (FOSB, ARC, KCNJ9/GIRK3,
NR4A2, JUNB, and MECP2). Differential expression analyses significantly correlated across European-Americans and African-
Americans. While genes significantly associated with CD via genome-wide methods were not differentially expressed, two of
these genes (NDUFB9 and C1qL2) were part of a robust gene coexpression network associated with CUD involved in neuro-
transmission (GABA, acetylcholine, serotonin, and dopamine) and drug addiction. We then used a “guilt-by-association”
approach to unravel the biological relevance of NDUFB9 and C1qL2 in the context of CD. In sum, our study furthers the
understanding of the genetic architecture and molecular neuropathology of human cocaine addiction and provides a frame-
work for translating biological meaning into otherwise obscure genome-wide associations.

Key words: cocaine dependence; cocaine use disorder; genome-wide association study (GWAS); RNA sequencing; multi-
ancestry; GWAS follow-up

Significance Statement

Our study further clarifies the genetic and neurobiological contributions to cocaine addiction, provides a rapid approach for
generating testable hypotheses for specific candidates identified by genome-wide research, and investigates the cross-ancestral
biological contributions to cocaine use disorder/dependence for individuals of European-American and African-American
ancestries.

Introduction
Neuroscience research has facilitated the identification of genes
studied in hypothesis-driven human genetic research, often

called “candidate gene studies.” The candidate gene literature
proposes numerous associations between genetic variants
within neurotransmitter system genes and cocaine use/addic-
tion. However, some experts question the validity of candi-
date gene research due to a lack of reproducibility (Colhoun
et al., 2003; Munafò and Flint, 2009) and encourage the use of
hypothesis-free genome-wide methods.

Genome-wide association studies (GWASs) have identified
thousands of genetic variants associated with human traits.
However, linking molecular mechanisms to GWAS findings is
challenging. Significant GWAS results do not generally conform
to a priori candidate genes and often reside in non-protein-cod-
ing genomic regions (Maurano et al., 2012). Therefore, individual
gene variants from GWASs are rarely interpreted with concrete
mechanisms. Experimental laboratory studies have unraveled
mechanisms for a few GWAS findings (Claussnitzer et al., 2015;
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Sekar et al., 2016), but these studies are expensive and time in-
tensive, so it is not feasible to apply this line of research for all
GWAS findings. Systematic approaches are needed to prioritize
individual genes from GWASs for follow-up investigation in
specific tissues or cell types. Another important caveat of
GWAS research is that most findings are based on individuals
of European ancestry/ethnicity (Martin et al., 2019), highlight-
ing a priority to investigate the genetic basis of traits among
non-Europeans.

GWASs have discovered four significant genes contributing
to predisposition to cocaine dependence [CD; see Diagnostic and
Statistical Manual of Mental Disorders, 4th edition (DSM-IV)]:
FAM53B, KCTD20, STK38, and C1qL2 (Gelernter et al., 2014;
Huggett and Stallings, 2020). The relevance of these genes to CD
is not fully understood. Follow-up investigation in mice revealed
that Fam53b might influence cocaine self-administration via
midbrain coexpression with Cyfip2 (Dickson et al., 2016), a gene
that influences cocaine-induced sensitization (Kumar et al.,
2013). Similarly, our previous work found that KCTD20 was
associated with human cocaine abuse/dependence through a hip-
pocampal gene coexpression network implicated in synaptic
plasticity (Huggett and Stallings, 2020). This work provides a
“guilt-by-association” approach to infer the role of newly associ-
ated disease genes and helps to contextualize and interpret other-
wise ambiguous genetic associations. Given the surplus of
publically available bioinformatic data, systems-based computa-
tional follow-up may be a fruitful line of inquiry that could help
to translate biological meaning to obscure genetic associations.

Despite the rising rates of cocaine and drug-related overdoses
in the United States (NIDA, 2020) postmortem brain data on
substance use disorders remain limited. The largest cocaine-
related human brain sample used RNA-sequencing (RNA-seq)
on dorsolateral PFC (dlPFC) neurons from individuals of mixed
ancestries (Ribeiro et al., 2017). The PFC is a critical region for
the neuropathology of cocaine addiction and plays a role in deci-
sion-making and salience attribution, and promotes inhibitory
control over drug addiction (Goldstein and Volkow, 2011).
Rodent models suggest that PFC glutamate neurons provide
“top-down” control of reward circuitry and increase motivation
to seek/use cocaine (Kalivas et al., 2005), but little is known
regarding the neuroadaptations underlying PFC dysfunction in
human cocaine addicts. Ribeiro et al. (2017) identified associa-
tions of various immediate early genes (FOS, JUN, and JUNB)
with dlPFC neuroadaptations of cocaine use disorder (CUD; see
DSM-V) and found one gene coexpression network associated
with CUD that was enriched for neuroplasticity processes and
GWAS associations for body mass index and obesity. Notably,
while, genome-wide research has begun to disentangle the
genetic architecture of human traits across ancestries (Peterson
et al., 2019), we are aware of no transcriptome-wide studies char-
acterizing potential similarities/differences across ancestries/eth-
nicities. Future research is warranted to clarify the links between
the genetic risk for substance abuse and the neurobiological
characteristics of the addicted brain, while also investigating how
gene expression generalizes across ethnicities.

This study aimed to unravel the genetic architecture and
molecular neuropathology of human cocaine addiction.
Integrating genomic and bioinformatic methods, we identi-
fied specific genes and tissues associated with the predispo-
sition to CD and characterized PFC neuroadaptations
associated with CUD. We translated findings across ances-
tries and methods, and sought to make human genetic find-
ings more relevant for neuroscientists.

Materials and Methods
Genome-wide analyses
Sample. We used case-control GWAS summary statistics from the study
by Gelernter et al. (2014), which were based on data from 3370 African-
Americans (44.18% female; mean age = 41.71 years) and 3176 European-
Americans (40.96% female; mean age = 37.35 years). Participants were a
part of the Study of Addiction: Genetics and Environment (SAGE) or
were recruited via clinical settings in the northeastern United States.
Genome-wide analyses were performed separately by ancestry to account
for population stratification. GWAS summary statistics corrected for relat-
edness via generalized estimating equations and adjusted for three ances-
tral principal components, age, and sex, but not co-occurring substance
abuse or other psychiatric comorbidities. All participants reported trying
cocaine and 90.39% of African-Americans and 73.96% of European-
Americans had a lifetime diagnosis of CD (31 Symptoms using DSM-IV
criteria). In a portion of this sample, measurements of CD yielded high in-
ternal reliability (k. 0.80; Pierucci-Lagha et al., 2005), indicating reliable
trait measurement. Stringent quality control was applied to the genotypic
data of all subjects and imputation was performed using the 1000
Genomes Project reference panel.

Experimental design and analysis—gene-based associations. To detect
specific protein-coding genes underlying the predisposition of CD, we
conducted Multi-marker Analysis of GenoMic Annotation (MAGMA,
version 1.06; de Leeuw et al., 2015) gene-based association tests by sub-
mitting summary statistics to the Functional Mapping and Annotation
(FUMA, version 1.1.2) GWAS pipeline (Watanabe et al., 2017).
Contrary to GWAS, which performs millions of regressions for all com-
mon gene variants across the genome, gene-based associations perform
one regression per protein-coding gene and therefore reduce the multi-
ple testing burdens of GWAS and offer more interpretable results. Most
protein-coding genes have a multitude of gene variants. MAGMA gene-
based tests use a principal components analysis to reduce the numerous
variants for a certain gene into a single signal, which is then associated
with the trait (de Leeuw et al., 2015). Our gene-based analyses included
all single nucleotide polymorphisms (SNPs) within protein-coding
regions of the genome (Ensembl version 85) that had a minor allele
frequency.1%. In total, our gene-based tests included 18,122 genes for
the African-American sample and 18,220 genes for the European-
American sample (18,903 shared genes). We compared the results of our
previously published gene-based test of CD in European-Americans
(Huggett and Stallings, 2020) to the African-American sample and used
a Bonferroni correction for multiple testing to determine genome-wide
significance (p, 2.7e-6). Note that this standard Bonferroni p value cor-
rection (FUMA default) demarks a less significant threshold than the
original GWAS (p, 5.0e-8; Gelernter et al., 2014) due to the reduction
of tests performed (;18,000 vs;9 million).

To interrogate specific alleles underlying the genetic predisposition to
CD, we investigated specific SNPs driving genome-wide significant associ-
ations. First, we reported the lead SNP from each genomic region, the total
SNPs within each gene, as well as the number of parameters for each gene,
which reflects independent linkage disequilibrium blocks within genes.
“Causal” SNPs are more likely to confer a biological consequence in pro-
tein or transcript function. Leveraging DNA sequencing data from 71,702
individuals, we queried the Genome Aggregation Database (version 3;
Karczewski et al., 2019; https://gnomad.broadinstitute.org/) for missense
mutations, or SNPs that code for an amino acid substitution, among ge-
nome-wide significant gene-based test results. To determine whether a
missense mutation was significantly associated with CD, we used a
Bonferroni correction for all missense variants within each gene. We also
estimated the relationship between particular missense mutations and the
lead SNP of a gene using LDlink (Machiela and Chanock, 2015; https://
ldlink.nci.nih.gov/), which computes linkage disequilibrium between loci
by ancestry.

Our study then refined the focus of gene-based associations with CD
from a genome-wide perspective to a candidate systems approach, select-
ing genes from typically studied neurotransmitter systems. In total, these
analyses included 130 genes from GABA, glutamate, acetylcholine,
endocannabinoid, dopamine, epinephrine/norepinephrine, and sero-
tonin systems encompassing synthesis, vesicular transport, receptors,
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degradation, and reuptake genes. Since these classical genes rarely sur-
pass conservative genome-wide significance thresholds, we assessed
whether these hypothesis-driven neurotransmitter genes surpassed a
nominally significant p value threshold (p, 0.05), as is typically used in
the candidate gene literature. Collapsing across ancestries, we tested
whether these candidate neurotransmitter genes were enriched for being
nominally associated with CD using a Fisher’s exact test.

Tissue enrichment. To identify tissues underlying the genetic patho-
physiology of CD, we performed tissue enrichment analyses. These anal-
yses assess where genes underlying the predisposition of a trait might be
exerting a functional role. Tissue enrichment analyses identified which
tissues a list of input genes demonstrated differential expression (upreg-
ulated or downregulated). We assessed tissue enrichment in 53 tissues
from hundreds of healthy human samples (GTEx Consortium, 2013)
and performed analyses separately by ethnicity- including genes nomi-
nally associated with CD (unadjusted p, 0.05; 901 genes in African-
Americans and 1008 genes in European-Americans). Tissue enrichment
analyses used competitive hypergeometric tests to compare a specific
tissue type versus all other tissues and incorporated a Bonferroni
multiple-testing correction to ascertain significantly enriched tissues
(p, 0.05/53).

Neuron-specific RNA-seq analyses
Sample. Next, we performed neuron-specific RNA-seq analyses using
publically available data from the largest postmortem human brain study
on cocaine use (Gene Expression Omnibus #GSE99349). Cocaine users
(n= 19; 100% male; 6 African-Americans, 6 European-Americans, and 7
Hispanics or Latinos) died from the toxic effects of chronic cocaine
abuse and met the criteria for CUD (see DSM-V criteria). Age-matched
and race-matched cocaine-free control subjects (n=17; 7 African-
Americans, 4 European-Americans, and 6 Hispanics or Latinos) were
selected from homicides and accidental or cardiac-related deaths and
had negative urine screening results for common drugs before death.
Case patients and control subjects did not significantly differ on post-
mortem index (PMI), RNA integrity (RIN), age, or brain pH level, (all |
t |. 1.69, all p. 0.100).

Data preparation. For more details on the sample, tissue preparation,
RNA extraction, library construction, and RNA-seq protocol, see the
study by Ribeiro et al. (2017). Briefly, dlPFC tissue was extracted from
the middle frontal gyrus at the lateral portion of Brodmann’s area 46.
Fluorescence-activated cell sorting dissociated dlPFC cell types, and neu-
ronal nuclei were isolated/extracted via the mouse anti-NeuN antibody.
RNA isolation was conducted via a Direct-zol RNA Miniprep Kit (cata-
log #R2050, Zymo Research). Indexed libraries were constructed using
10ng of nuclear RNA from each sample with the Clontech SMARTer
Stranded Total RNA-Seq Library Preparation Kit (catalog #634839,
Takara). Paired end (2� 125) RNA-seq was performed using the HiSeq-
2000 Sequencing System (Illumina) and resulted in an average of
50,925,315 read pairs per sample.

We preprocessed the RNA-seq data from the study by Ribeiro et al.
(2017), via Trimmomatic version 0.36 to eliminate short and low-quality
reads (Phred score, 20 or, 100 bases) as well as Illumina adapters,
which resulted in an average of 30,486,006 read pairs per sample. We
then aligned the RNA-seq data to the hg19 reference genome via the
Spliced Transcripts Alignment to a Reference (STAR; Dobin et al.,
2013). On average, we had 26,476,583 (SD=6,173,119) uniquely mapped
read pairs per sample, with a mean alignment rate of 86.84%
(SD=5.86%) and observed no significant differences in read alignment
between case patients and control subjects (t=0.668, p=0.509). Our
study used HTSeq software (Anders et al., 2015) to transfer mapped
reads into discrete genes/transcripts.

Our reanalysis of the data from the study by Ribeiro et al. (2017) dif-
fered in two ways. First, we defined differentially expressed genes with
an adjusted p value threshold of Benjamini–Hochberg false discovery
rate (FDR), 0.05. Second, we normalized RNA-seq data with SCnorm,
a method that uses quantile regression and seems to properly handle
data derived from single-cell types (Bacher et al., 2017). RNA-seq
approaches from a single cell (type) differ from regular RNA-seq due to
the presence of technical noise (i.e., zero-inflated read counts of genes

not expressed in sequenced cells) and may require sensitive statistical
care. To test whether SCnorm increased power, we assessed the number
of differentially expressed genes identified from this technique compared
with a standard normalization method (DESeq2 scale factors). Without
covariates, we found just six differentially expressed genes/transcripts
(padj , 0.05) using the standard scale factor approach, but identified 250
differentially expressed genes/transcripts (padj , 0.05) via the SCnorm
technique. Additionally, we found appreciable evidence for zero-inflated
read counts and discovered that SCnorm successfully accommodated for
this noise (data are available on request), perhaps stemming from non-
neuronal genes/transcripts. Accordingly, the lowest decile of normalized
read counts was enriched for cortical astrocytes (padj = 6.92e-4) and oli-
godendrocytes (padj = 0.002), but not for cortical neuronal cell types (all
padj . 0.999), as observed from a cell-specific expression analysis
(Dougherty et al., 2010). Thus, we normalized the RNA-seq data with
SCnorm (for our differential expression analyses) as it appeared to prop-
erly account for technical artifacts and afforded increased statistical
power.

Experimental design and analysis—differential expression. We used
DESeq2 (Love et al., 2014) to assess differentially expressed genes/transcripts
and to investigate the association of differential expression analyses across
ancestries. We used the full sample to identify differentially expressed genes/
transcripts (49,496 total genes/transcripts), which controlled for RIN, PMI,
age, race (European-American = �1; Hispanic=0; African-American=1),
blood alcohol content, smoking status (smokers=1; nonsmokers=0), and
hidden batch effects (two surrogate variables via the svaseq package; Leek,
2014).

To complement our genome-wide analyses, we investigated the asso-
ciation between ancestry-specific differential expression results from
African-American (n=13) and European-American (n=10) subsam-
ples. Because of low sample size for ancestry-specific differential expres-
sion analyses, we did not control for all possible confounds, but adjusted
for two common and salient covariates (PMI and age). Log fold change
estimates from differential expression analyses are estimated with noise,
especially among lowly expressed genes/transcripts. To accommodate
for this error/noise and enable transcriptome-wide investigation (e.g.,
low and high expressed genes/transcripts), our cross-ancestry RNA-seq
analysis focused on test statistics from differential expression analyses
(DESeq2 Wald statistics), which account for log fold change effect size
and standard error (SE) for individual genes/transcripts. Additionally,
we selected the genes/transcripts with a differential expression Wald-sta-
tistic . |2| in either European-American- or African-American-specific
analyses (705 genes/transcripts) and investigated the cross-ancestry cor-
relation of cocaine-related gene/transcripts.

Gene coexpression networks. Next, our study used a systems-genetics
approach to model clusters of genes derived from correlated RNA
expression (gene coexpression networks/gene networks). The reader
should note that these analyses do not determine gene coexpression net-
works a priori, but rather create gene networks from the observed RNA-
seq data. Specifically, we conducted a signed weighted gene coexpression
network analysis (WGCNA; Langfelder and Horvath, 2008), using the
same input parameters as our previous work (Huggett and Stallings,
2020). Briefly, we filtered genes/transcripts based on expression level,
such that we only included genes/transcripts with an average baseline
expression.1 read count per sample, which resulted in a total of 15,178
genes/transcripts for WGCNA modeling. Our WGCNA approach com-
puted Pearson Product-Moment Correlations of normalized RNA
expression (log2-counts per million) of all WGCNA genes/transcripts
with themselves and weighted these correlations by raising them to the
(default) power of 12, which satisfied WGCNA distribution assumptions
(scale-free topology= 0.84). Then, using a dynamic tree-cutting algo-
rithm, we split clusters of correlated/coexpressed genes into defined
WGCNA gene coexpression networks (minimummodule size = 50).

To validate ourWGCNA gene networks, we used a Z summary mod-
ule preservation statistic (Langfelder et al., 2011). Z summary statistics
.10 indicate that gene networks are highly robust and reproducible,
and Z summary statistics .2 suggest that WGCNA gene networks are
weak to moderately reproducible. Our validation approach was based on
previous work (Vanderlinden et al., 2013) that incorporates a within-
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Figure 1. Miami plot visualizing results from gene-based association analyses. Each dot represents an individual protein-coding gene, the x-axis denotes chromosome number, and the y-
axis shows the�log10 p value. African-American results are displayed on top and European-American results (Huggett and Stallings, 2020) are shown on the bottom. The dashed red line rep-
resents genome-wide significance, and the dashed brown line represents an unadjusted/nominal p value threshold,0.05. Red dots are genes nominally significant in both African-Americans
and European-Americans.

Table 1. SNP associations with CD

SNPs associated with the genetic predisposition to cocaine dependence by ancestry

NDUFB9 C1qL2 KCTD20 and STK38

Ancestry AA EA AA EA AA EA
SNPs (n) 174 205 10 74 215 174
Parameters (n) 51 29 4 14 38 17
Lead SNP rs77422927 rs13020121 rs9470273
Minor allele C A T
Minor allele frequency 0.021 0.096 0.2247 0.30025 0.3192 0.21828
psnp_Lead 6.42E-06 0.963 0.902 2.22E-06 0.0253 1.42E-06
Direction of effect 1 1 1 � 1 1
Missense SNP rs34095749 NA rs2239808 (KCTD20)
Minor allele T NA C
Minor allele frequency 0.013 0.050 NA NA 0.4206 0.21439
Missense SNP Proline_157_Serine NA NA Serine_171_Threonine
psnp_Missense 0.00568 0.841 NA NA 0.0501 1.28E-05
LD with lead SNP (R2) 0.4917 0.5154 NA NA 0.609 0.9629
Direction of effect 1 1 NA NA 1 1

We collapsed KCTD20 and STK38 into a single category because they stem from the same genomic region. AA, African-American ancestry; EA, European-American ancestry. The number of parameters represents the number of
independent signals tested within a protein-coding gene and differ across ancestries due to disparate LD patterns. We estimated the linkage disequilibrium patterns of missense variants with lead SNPs using LDlink, and
selecting the African-American and CEU (Northern Europeans from Utah) reference panels. Note that C1qL2 only had one missense mutation but was not tested or included in the genome-wide association study on cocaine
dependence due to low minor allele frequency across ancestries (,1%).
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sample and out-of-sample gene network validation technique. Our
within-sample gene network validation analysis is indicative of WGCNA
network stability and compared the WGCNA networks from the current
study to 100 bootstrapped samples from the same dataset (human dlPFC
neurons; n=37). Then to assess whether gene networks were robust in a
separate sample, we tested whether our constructed WGCNA gene net-
works were reproducible in an independent sample using RNA-seq data
of hippocampal tissue from human cocaine users/addicts and control
subjects (Zhou et al., 2011).

Similar to previous research (Ponomarev et al., 2012), we used an
effect size-based approach leveraging test statistics from our full sample
differential expression analysis (DESeq2 Wald statistics) to associate gene
coexpression networks with CUD. That is, we calculated the average abso-
lute value of Wald statistics for all genes/transcripts within each defined
gene coexpression network. The directions of associations were deter-
mined by assessing whether mean effect sizes for gene networks were posi-
tive or negative. We ascertained significant gene networks via 100,000
permutations. That is, our permutations resampled the absolute values of
Wald statistics from all WGCNA genes to approximate a null distribution.
We then derived p values by determining the probability that a gene coex-
pression network had an average absolute Wald statistic in relation to
what is expected under the null. We defined a significant association of a

gene network with CUD, if it survived a Bonferroni correction (p, 0.05/
number of WGCNA gene networks) and demonstrated enrichment for
differentially expressed genes (FDR, 0.05).

Functional annotation.We functionally annotated our RNA-seq results
via the Database for Annotation, Visualization, and Integrated Discovery
(DAVID version 6.8; Huang et al., 2009) and queried for enriched Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, biological processes
(BPs), and/or molecular functions (MFs). To control for false positive results,
we required significant enrichment to survive correction for multiple testing
(FDR, 0.05) and adjusted for the “background distribution” by incorporat-
ing a list of genes that were included for each analysis. We uploaded our
results to GeneWeaver (https://www.geneweaver.org/; Baker et al., 2012),
which can be found by searching the reported ID numbers (GS#).

Results
Genome-wide analyses
Gene-based associations
To identify specific genes underlying the predisposition to CD,
we conducted gene-based association tests. Figure 1 shows the
Miami plot visualizing the results of our gene-based associations

Figure 2. Miami plot showing the associations of 130 genes from candidate neurotransmitter systems. Each gene is color coded by neurotransmitter type, and the different shapes represent
the different parts of the system. The x-axis denotes chromosome number, and the y-axis shows the �log10 p value with African-Americans displayed on top and European-Americans shown
on bottom. The red dashed line represents the Bonferroni correction for multiple testing (p, 0.05/130), and the brown dashed line represents the unadjusted/nominal p value
threshold, 0.05.
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with CD for African-Americans and European-Americans.
Extending our previous gene-based associations with CD among
European-Americans (Huggett and Stallings, 2020), we identified
one novel genome-wide significant association with CD in
African-Americans (p=8.27e-07), the NADH:ubiquinone oxi-
doreductase subunit B9 gene (NDUFB9), but not in European-
Americans (p= 0.910). The NDUFB9 gene is part of the inner
mitochondrial membrane and plays a role in oxidative phospho-
rylation, but the relevance of this gene in the context of cocaine
addiction is not known, warranting further investigation. To
investigate specific loci underlying our genome-wide significant
associations, we reported the most significant SNP (lead SNP) of
each region and examined missense mutations for each gene
associated with CD. After correction for multiple testing, we
found significant associations between a missense mutation in
the NDUFB9 gene (rs34095749) with CD in African-Americans
and a missense mutation in the KCTD20 gene (rs2239808) with
CD in European-Americans (Table 1).

Using a nominally significant threshold (p, 0.05), our
gene-based test found 901 and 1008 genes associated with
CD in African-Americans (GeneWeaver ID# GS357670) and
European-Americans (GeneWeaver ID# GS357669), respectively.

We found a small, but significant, association between gene-based
associations (Z statistics) across European-Americans and
African-Americans (B=0.017, SE = 0.008, p=0.024; R2 = 0.0002)
and observed 59 genes (p, 0.05) that were nominally associated
with CD in both ancestries.

Next, we investigated gene-based associations with CD for
the 130 candidate neurotransmitter system genes commonly
studied with cocaine use/addiction. Of these genes, we found 10
nominally significant associations with CD from GABA, gluta-
mate, endocannabinoid, serotonin, norepinephrine, and acetyl-
choline genes (Fig. 2). The most significant candidate genetic
association with CD (in African-Americans) came from the
CHRNB4 gene (SNPs = 422, Z=4.00, p= 3.199e-05), which
resides in a validated gene cluster for CD (Grucza et al., 2008) as
well as nicotine dependence (Saccone et al., 2009). Despite the
prominence of dopamine in the candidate gene literature, we
found no dopamine genes to be associated with CD (all
p. 0.108). Candidate neurotransmitter genes were not enriched
to be (nominally) associated with CD [odds ratio (OR)= 0.73;
95% CI = 0.34, 1.40; p= 0.465]. In other words, candidate neuro-
transmitter genes were no more likely to be (nominally) associ-
ated with CD than we would expect by chance.

Figure 3. The implicated tissue types based on genes nominally associated with cocaine dependence (CD) separately by ancestry are shown. The x-axis shows all tissue types (GTEx) sorted
alphabetically, and the y-axis represents the –log10 p value. Solid boxes denote results from the African-American analysis, and dashed boxes show European-American results from the study
by Huggett and Stallings (2020). Red bars show replicated tissue types that were significantly enriched (padj , 0.05) across both ancestries. The labels of replicated tissues are emphasized in
bold text on the x-axis.
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Tissue enrichment
To find tissues implicated in the genetic etiology of CD, we per-
formed tissue specificity/enrichment analyses of the genes nomi-
nally associated with CD. Genes nominally associated with CD
were enriched among numerous tissue types (Fig. 3). Despite
minimal overlap of individual genes associated with CD across
ancestries, 70.37% of significantly enriched tissues in African-
Americans were also significantly enriched in European-
Americans (padj , 0.05). Tissue overlap across ancestry exceeded
what we would expect by chance alone (OR=3.65; 95% CI =
1.05, 13.70; p= 0.029). The replicated tissue types across ances-
tries tag plausibly implicated tissues in the genetic etiology of
CD, including the heart, liver, blood, and most brain regions,
and highlight various tissues for follow-up investigation.

Neuron-specific RNA-seq analyses
Differential expression
To follow-up genome-wide associations with CD, we used publi-
cally available data from dlPFC neurons from individuals with
CUD (n= 19) and cocaine-free control subjects (n=17; Ribeiro
et al., 2017). After successful data normalization and adjustment
for covariates, we found 133 differentially expressed genes/tran-
scripts (all padj , 0.05; Fig. 4; GeneWeaver ID# GS357661).
Similar to Ribeiro et al. (2017), 42.86% of differentially expressed

genes/transcripts were noncoding, and, of these, pseudogenes
were the most abundant, including 15 pseudogenes derived from
inner mitochondrial membrane parent genes. Given that most
noncoding transcripts lack detailed functional characterization,
perhaps it is not surprising that differentially expressed genes/
transcripts were not enriched for any KEGG pathways, BPs, or
MFs (all padj. 0.089), although we did identify some typical candi-
dates for cocaine use/dependence. That is, consistent with previous
research, we found increased expression of FOSB (Larson et al.,
2010), JUNB (Guez-Barber et al., 2011), ARC (Zavala et al., 2008;
Salery et al., 2017), MECP2 (Im et al., 2010; Deng et al., 2014),
NR4A2 (López et al., 2019), KCNJ9/GIRK3 (Rifkin et al., 2018;
McCAll et al., 2019), MAPK1 (Cahill et al., 2016), and CAMK2N1
(Ribeiro et al., 2018). These genes represent various “immediate
early genes” whose expression is induced by cocaine, intracellular
signaling cascades that modulate neural responsiveness, and nu-
clear epigenetic transcripts that perturb the expression of numer-
ous genes. No genome-wide significant association with CD
(FAM53B, C1qL2, KCTD20, STK38, or NDUFB9) was significantly
differentially expressed in dlPFC neurons (all | log2 fold change |,
0.411, all p. 0.026, all padj. 0.341).

To complement our genome-wide analyses, we explored
whether neurotranscriptomic associations with CUD generalized
across European-Americans and African-Americans. After

Figure 4. Volcano plot showing genes/transcripts that are expressed differently in human PFC neurons between control subjects (n= 17) and individuals with CUD (n= 19). Each dot repre-
sents a gene/transcript. The x-axis denotes the log2 fold change with positive values corresponding to increased expression in those with CUD. The y-axis shows the –log10 FDR-adjusted
p value, and all genes above the red dashed line survive correction for multiple testing (133 gene/transcripts; padj , 0.05). We labeled all genes significantly associated with the genetic predis-
position to CD and highlighted significantly differentially expressed genes/transcripts previously implicated in cocaine use and the most abundant noncoding transcripts (pseudogenes).
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covariate adjustment, we found one gene that was significantly dif-
ferentially expressed in European-Americans (PAX8-AS1: log2 fold
change = �7.90, padj = 4.36e-5). In African-Americans, we found
37 significant differentially expressed genes; the most significant
was the CHRNG gene (log2 fold change=30.00, padj = 4.29e-30).
While the top associations were different across ancestry, we found
that the transcriptome-wide differential expression results signifi-
cantly correlated across ancestries (r=0.174, p , 2.e-16; Fig. 5).
This association persisted after selecting cocaine-related genes/tran-
scripts (r=0.332, p, 2.e-16; 705 genes/transcripts).

Gene coexpression networks
Next, we modeled systems of coexpressed genes (gene networks)
using WGCNA. Similar to previous WGCNA results with these
data (Ribeiro et al., 2017), we constructed 12 gene coexpression
networks, each of which is arbitrarily assigned to a color. To eval-
uate the stability and validity of our gene coexpression networks,
we used a standard network preservation technique (Langfelder et
al., 2011) to assess within-sample and out-of-sample gene network
reproducibility. Our analyses suggest that our WGCNA networks
were highly reproducible/valid within sample (e.g., stable; all Z
summary. 16.19) and, except for the tan (Z summary=9.75) and
yellow (Z summary=0.47) gene networks, were valid in an

independent RNA-seq sample (e.g., robust;
all Z summary. 12.67) of hippocampal tis-
sue from human cocaine users and control
subjects (Huggett and Stallings, 2020).

After validating our WGCNA gene
coexpression networks, we associated these
networks with CUD. Using an effect size-
based approach and permuting p values, we
found six gene networks associated with
CUD (all padj , 0.049; Fig. 6A). We sub-
sequently tested significantly associated
WGCNA gene networks for the enrichment
of differentially expressed genes/transcripts
(133 genes). We found significant enrich-
ment of differentially expressed genes
among one WGCNA network, the blue
gene network (2735 genes; Fig. 6B; Gene-
Weaver ID# GS357662). Thus, the blue
gene network was robustly associated with
CUD and selected for follow-up investigation.

The blue gene network recapitulated
many molecular processes and was signifi-
cantly enriched for 31 KEGG pathways
(padj , 0.05; Fig. 6C). Similar to the study
by Ribeiro et al. (2017), our blue gene net-
work was enriched for neuroplasticity
processes and also overrepresented for var-
ious neurotransmitter signaling pathways,
morphine addiction, intracellular signal-
ing, and circadian entrainment. Note that
other KEGG drug addiction pathways
(nicotine addiction, alcoholism, and co-
caine addiction) approached significant
enrichment (all p values = 0.007–0.054; all
padj values = 0.051–0.201). Additionally,
the blue gene network was enriched for
the 130 candidate neurotransmitter system
genes (OR= 2.51; 95% CI = 1.61, 3.83;
p=3.175e-05).

We then assessed the overlap between
genetic predispositions to CD and the blue
gene network robustly associated with

CUD. Of the five genome-wide significant associations with CD,
our analyses identified the NDUFB9 and C1qL2 genes to be cen-
tral entities [.50th percentile of module membership (kME);
kME. 0.58] of the blue gene network. To better understand the
role of NDUFB9 and C1qL2 in the context of cocaine addiction,
we visualized their coexpression patterns with the blue network
genes annotated for neurotransmitter signaling and drug addic-
tions (Fig. 7). Of particular note, we found that our data-derived
blue gene network recapitulated previously established connec-
tions between FOSB and JUN genes, which are thought to per-
petuate chronic cocaine/drug-seeking behavior (Nestler et al.,
2001), and further highlights the validity of the coexpression pat-
terns from this gene network.

We used coexpression patterns in the blue gene network to
better understand biological functions of NDUFB9 and C1qL2
with cocaine use via a guilt-by-association approach (Oliver,
2000). Guilt-by-association analyses are commonly used to
unravel the biological role of new disease genes and are based on
the principle that if genes are highly associated with each other
(e.g., coexpressed), they are more likely to share a function (van
Dam et al., 2018). In our guilt-by-association technique, we
selected the most highly coexpressed genes (weighted r. 0.05 or

Figure 5. Heat scatter plot depicting the correlation of neuronal dlPFC gene expression associated with CUD from African-
Americans (n= 13) and European-Americans (n= 10). The x-axis shows the Wald statistics from the European-American dif-
ferential expression analysis, and the y-axis represents the Wald statistics from the African-American differential expression
analysis. Each dot represents a specific gene/transcript, and the bright red color shows the highest frequency, whereas the
light purple/pink indicates the lowest frequency of genes/transcripts. The dashed black line highlights the Pearson product
correlation of gene expression across ethnicities (r= 0.174, p, 2e-16).
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raw r. 0.78) separately for NDUFB9 and C1qL2 within the blue
gene network and then investigated enrichment for biological
processes, molecular functions, and KEGG pathways. Our guilt-
by-association analyses indicated that the NDUFB9 gene might
play a role in cell death, synaptic plasticity, and cell adhesion
(Table 2; all padj , 0.037). Highly coexpressed genes with C1qL2
were significantly enriched for neurotransmitter signaling, drug
response, synaptic plasticity, cell proliferation, and neurodevel-
opment (Table 2; all padj , 0.045).

Discussion
We extend previous genome-wide research (Gelernter et al.,
2014; Huggett and Stallings, 2020) that identified four genes

significantly associated with CD (C1qL2, FAM53B, KCTD20,
STK38) by discovering one novel gene (NDUFB9) implicated in
the genetic liability to CD for African-Americans. Our study
highlights associations between two missense mutations and CD
that may interfere with the product of the NDUFB9 and
KCTD20 genes. Similar to other psychiatric genetic research
(Johnson et al., 2017; Border et al., 2019), we found minimal
evidence indicating that genes from candidate neurotransmitter
systems contribute to the genetic predisposition of CD. Genome-
wide significant genes associated with CD were not differentially
expressed in dlPFC neurons between individuals with CUD and
cocaine-free control subjects. However, NDUFB9 and C1qL2
were central parts of a gene coexpression network associated

Figure 6. A, The x-axis shows the twelve WGCNA gene coexpression networks. The y-axis shows the absolute value of Wald statistics (from whole-sample differential expression analysis) of
all genes within a defined/discrete WGCNA network. The directions of associations were determined by assessing whether mean effect sizes for gene networks were positive or negative. All
WGCNA gene networks to the right of the dashed red line are significantly associated with cocaine use disorder (*padj , 0.05; **padj , 0.01; ***padj , 0.001; ****padj , 0.0001). B, The six
associated WGCNA gene networks were subsequently tested for the enrichment of the 133 differentially expressed genes in dlPFC neurons. The y-axis represents the odds ratio calculated by a
two-sided Fisher’s exact test. Only the blue gene network demonstrated significant enrichment and was selected for follow-up investigation. ****p , 0.0001. C, Potential functions of blue
gene network via functional annotation analysis of pathways from KEGG. We picked 30 representative functions/pathways and grouped them into five domains, which are labeled by colors.
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with CUD and exhibited coexpression with relevant drug addic-
tion genes. So, while most GWAS findings tend not correspond
with prehypothesized targets, they may still play a broader role
in biologically relevant systems. Similarly, genome-wide associa-
tions with psychiatric traits (including alcohol dependence) dem-
onstrated appreciable overlap with PFC gene coexpression
networks associated with these traits and corresponded to neuro-
nal, synaptic, and mitochondrial functions (Gandal et al., 2018;
Kapoor et al., 2019).

Our study suggests common biological contributions to cocaine
addiction across ancestries. Similar to other substance dependence
research (Brick et al., 2019), we found that the individual genetic
predispositions to CD demonstrated (modest) genetic overlap across
African-Americans and European-Americans. Robust across ance-

stries, we discovered that the genetic liability of CD manifested as a
multiorgan phenomenon involving the heart, liver, blood, and
brain. Using RNA-seq from PFC neurons, we identified conver-
gence of cocaine-related gene expression across African-Americans
and European-Americans, albeit with small to moderate effect sizes.
One potential reason for the modest magnitudes of these associa-
tions is that rates of psychiatric comorbidities between cocaine-
abusing European-Americans and African-Americans seem to dif-
fer (Petry, 2003), but many other factors could be at play. To our
knowledge, this is the first study to assess the cross-ancestry tran-
scriptome-wide neurodiversity/similarity for a psychiatric trait,
making interpretations difficult.

We found evidence of disrupted GABA, but not glutamate,
neurotransmitter signaling in dlPFC neurons of human cocaine

Figure 7. The genes from the blue gene network significantly enriched for drug addiction and neurotransmission from KEGG (2019) and their relation to the genes associated with the pre-
disposition to CD (in triangles) are shown. Coexpression patterns with NDUFB9 and C1qL2 are highlighted in red. Only coexpression patterns above a weighted r. 0.05 are shown. Genes
shown in cyan represent increased expression in dlPFC neurons for those with CUD, and those in magenta represent decreased expression.
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addicts (blue gene network; Fig. 6). PFC GABAergic signaling is
sparsely studied in rodent models of cocaine use, but some evi-
dence suggests that GABA regulates prefrontal disinhibition (Cass
et al., 2013). We discovered that various GABA genes (GABBR2,
GABRA1, GABRA4, GABRB2, GABARAPL1, GABARAPL2) were
core elements (“hub genes”; top 10% of gene network connectivity)
of PFC network function for individuals with CUD. That is,
GABAergic genes demonstrated very high coexpression/connectiv-
ity patterns with other genes in the blue gene network, suggesting
that GABAergic transmission plays a critical, yet unappreciated,
modulatory role of PFC neurons in disordered cocaine users.

The blue gene network associated with CUD in the PFC suggests
that catecholamine, acetylcholine and endocannabanoid signaling
play an important role in the neuropathology of cocaine addiction.
Specifically, PFC DRD5 activity may mediate executive functioning
(Carr et al., 2017) and impulsive decision-making (Loos et al., 2010)
and HTR1A as well as ADRA1A might regulate PFC glutamate and
GABA transmission and various cocaine-related behaviors (Mitrano
et al., 2012; Howell and Cunningham, 2015). Particular nicotinic
(CHRNA6, CHRNB2) and muscarinic acetylcholine subunit genes
(CHRM1, CHRM4) we found to be associated with CUD have previ-
ously been implicated in rodent cocaine research (Carrigan and
Dykstra, 2007; Dencker et al., 2012; Sanjakdar et al., 2015) and might
govern selective attention and promote incentive salience to drugs/
drug-related cues (Williams and Adinoff, 2008). Cocaine has also
been found to alter the expression of endocannabanoid genes/recep-
tors in the mouse PFC (Bystrowska et al., 2019), which could facili-
tate the strength of connections between PFC neurons (Kasanetz et
al., 2013). Overall our study utilized human brain data that corrobo-
rated specific genes and pathways studied in animal models of co-
caine use and other relevant molecular endophenotypes.

The combination of genomic and bioinformatics techniques
may help to contextualize and interpret nebulous genetic associa-
tions with human traits. NDUFB9 is a subunit of the inner mito-
chondrial complex I. Evidence indicates that cocaine inhibits
complex I of the inner mitochondrial membrane (Cunha-
Oliveira et al., 2013), which is similar to other genetic associa-
tions with substance use/dependence that implicate binding
targets of specific drugs. Mitochondrial complex I is thought to
mediate altered energy metabolism and cocaine-induced neuro-
toxicity (Dey and Snow, 2007; Pereira and Cunha-Oliveira, 2017)

and is consistent with our guilt-by-association results, suggesting
that NDUFB9 may be involved in neurodegeneration and ATP
production (oxidative phosphorylation). Additionally, analogous
to research highlighting the role of mitochondria in drug addic-
tion (Sadakierska-Chudy et al., 2014), our guilt-by-association
analyses suggest that NDUFB9 could be involved in cell death,
synaptic plasticity, and calcium signaling. NDUFB9 is not the
only mitochondrial gene implicated in cocaine addiction. We
found 26 different mitochondrial inner membrane genes within
the blue gene network associated with CUD, including 12 NDUF
subunits, suggesting links between cocaine use and broad mito-
chondrial functioning. Accordingly, various mitochondrial genes
have demonstrated associations with human cocaine abuse/de-
pendence in the dlPFC (Lehrmann et al., 2003), hippocampus
(Zhou et al., 2011), and midbrain (Bannon et al., 2014). Despite
the mounting evidence, very little is known regarding the rela-
tion between mitochondrial genes and cocaine or drug use
behavior. One study indicates that mitochondrial genes may con-
tribute to cocaine withdrawal, as they observed differential
expression of 40 mitochondrial genes in the PFCs of mice experi-
encing protracted abstinence after chronic high doses of cocaine
use (Li et al., 2017).

The C1qL2 gene is secreted from the innate immune system
and is thought to modulate trans-synaptic glutamatergic connec-
tions (Evans et al., 2019). Similar to previous work (Matsuda,
2017), we identified C1qL2 to be coexpressed with C1qL3 and
found that C1qL2 may regulate glutamate receptor signaling
(Table 2). Extending this research, we hypothesize and provide
novel evidence that C1qL2 may be involved in broader neuro-
transmitter signaling (GABA, acetylcholine, and serotonin), ion
transport (K1/Na1), neurodevelopment, and various drug
addiction pathways. C1qL2may be a particularly tantalizing can-
didate for follow-up, as it is implicated in typical biological proc-
esses underlying cocaine use, is highly conserved across species,
and is differentially expressed in mouse models of cocaine use
(Walker et al., 2018). Overall, we prioritize a specific cell-type for
follow-up investigation (neurons) and propose specific biological
roles/hypotheses for otherwise obscure genomic associations
with cocaine addiction.

This study should be interpreted with the following limita-
tions. While we used the largest GWAS of cocaine addiction to

Table 2. Guilt-by-association analyses: inferring function of NDUFB9 and C1qL2 with CUD

Potential functions of NDUFB9 and C1qL2

NDUFB9 C1qL2
Biological processes, molecular function or KEGG pathways padj Biological processes, molecular function or KEGG pathways padj
Neurodegeneration/cell death Neurotransmitter signaling

Phagosome acidification 0.0056 GABAergic synapse 2.4e-7
Parkinson’s disease 0.0156 Serotonergic synapse 4.5e-4
Alzheimer’s disease 0.0299 Cholinergic synapse 6.2e-4
Huntington’s disease 0.0320 Glutamatergic synapse 0.0441

Synaptic plasticity Ion channels and drug addiction
Synaptic vesicle cycle 6.3e-4 Aldosterone-regulated sodium reabsorption 0.0013
Cadherin binding involved in cell-cell adhesion 0.0010 Alcoholism 0.0032
GTPase activity 0.0016 Response to drug 0.0041
GTP binding 0.0067 Nicotine addiction 0.0265
Cell-to-cell adhesion 0.0170 Potassium ion import 0.0428

Other processes Neurodevelopment and synaptic plasticity
Oxidative phosphorylation 2.6e-5 Small GTPase mediated signal transduction 2.2e-5
Protein binding 7.9e-4 Positive regulation of cell proliferation 0.0177
Endocrine-regulated calcium reabsorption 0.0367 Nervous system development 0.0416

Our guilt-by-association approach assesses the function of genes/transcripts that are highly coexpressed with NDUFB9 and C1qL2 in the blue gene network associated with CUD and assesses their enrichment for biological proc-
esses, molecular functions, and KEGG pathways using DAVID (Huang et al., 2009). We selected the most highly coexpressed genes with NDUFB9 (300 genes/transcripts) and C1qL2 (694 genes/transcripts) in the blue gene net-
work by using an arbitrary coexpression threshold (weighted r. 0.05; raw r. 0.78).
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date, our (highly) selected sample had uneven case/control ratios
and was not large by contemporary standards; thus, the estimates
from this study were approximate. The gene-based associations
we observed with CD barely surpassed genome-wide signifi-
cance, warranting larger studies to replicate these findings.
Although only analyzing individuals who have used cocaine may
have enhanced the power to identify genes underlying the pre-
disposition to CD (Cabana-Domínguez et al., 2019; Polimanti et
al., 2020). Our tissue enrichment findings indicated plausible tis-
sue types for cocaine addiction, suggesting the importance of fol-
low-up among multiple tissue types; however, not all tissues
seemed directly relevant for CD (e.g., muscle/skeletal) and cer-
tain genes may exert tissue-specific functions. Tissue-enrichment
analyses used GTEx samples, which included mostly Caucasians
and may complicate our cross-ancestry comparisons. Our RNA-
seq design cannot disentangle whether findings are attributed to
chronic cocaine use, acute cocaine toxicity, or psychiatric comor-
bidities; but it is reassuring to detect some usual suspects in the
realm of cocaine addiction. While our RNA-seq results are theo-
retically specific to neurons, they do not distinguish between
types of neurons and also included various genes/transcripts that
are non-neuronal (e.g., glial genes).

In conclusion, our study translates genetic findings across
methods and ancestries using independent samples. We identified
significant convergence across ancestries for the genome-wide
and transcriptome-wide associations with cocaine addiction.
Neurotransmitter genes generally demonstrated little contribution
to the genetic architecture of CD, but were prominent features
underlying the neuropathology of CUD. Significant genome-wide
associations with CD were linked to broad systems of genes asso-
ciated with CUD in PFC neurons. Ultimately, our study repre-
sents a proof-of-principle that uses hypothesis-free methods for
generating testable hypotheses regarding the role of genes detected
by GWASs. We believe that this line of research provides an im-
portant alternative approach for validating genetic associations
especially when no genomic replication data exist. Our study may
also serve a supplemental purpose for experimental researchers to
help distill lists of genes from GWASs in the context of particular
tissues and cell types, while also providing molecular interpreta-
tions for otherwise obscure genetic associations.
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