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Comparative RNA-Seq transcriptome
analyses reveal dynamic time-dependent
effects of 56Fe, 16O, and 28Si irradiation on
the induction of murine hepatocellular
carcinoma
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Abstract

Background: One of the health risks posed to astronauts during deep space flights is exposure to high charge,
high-energy (HZE) ions (Z > 13), which can lead to the induction of hepatocellular carcinoma (HCC). However, little
is known on the molecular mechanisms of HZE irradiation-induced HCC.

Results: We performed comparative RNA-Seq transcriptomic analyses to assess the carcinogenic effects of 600
MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), and 350 MeV/n 28Si (0.2 Gy) ions in a mouse model for irradiation-induced
HCC. C3H/HeNCrl mice were subjected to total body irradiation to simulate space environment HZE-irradiation, and
liver tissues were extracted at five different time points post-irradiation to investigate the time-dependent
carcinogenic response at the transcriptomic level. Our data demonstrated a clear difference in the biological effects
of these HZE ions, particularly immunological, such as Acute Phase Response Signaling, B Cell Receptor Signaling,
IL-8 Signaling, and ROS Production in Macrophages. Also seen in this study were novel unannotated transcripts that
were significantly affected by HZE. To investigate the biological functions of these novel transcripts, we used a
machine learning technique known as self-organizing maps (SOMs) to characterize the transcriptome expression
profiles of 60 samples (45 HZE-irradiated, 15 non-irradiated control) from liver tissues. A handful of localized
modules in the maps emerged as groups of co-regulated and co-expressed transcripts. The functional context of
these modules was discovered using overrepresentation analysis. We found that these spots typically contained
enriched populations of transcripts related to specific immunological molecular processes (e.g., Acute Phase
Response Signaling, B Cell Receptor Signaling, IL-3 Signaling), and RNA Transcription/Expression.
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Conclusions: A large number of transcripts were found differentially expressed post-HZE irradiation. These results
provide valuable information for uncovering the differences in molecular mechanisms underlying HZE specific
induced HCC carcinogenesis. Additionally, a handful of novel differentially expressed unannotated transcripts were
discovered for each HZE ion. Taken together, these findings may provide a better understanding of biological
mechanisms underlying risks for HCC after HZE irradiation and may also have important implications for the
discovery of potential countermeasures against and identification of biomarkers for HZE-induced HCC.

Keywords: RNA-Sequencing, Self-organizing maps, Novel transcripts, Carcinogenesis, Tumor microenvironment

Background
An important goal for the National Aeronautics and Space
Administration (NASA) is to identify the effects of
spaceflight-like conditions on irradiation-induced cancer.
However, understanding the mechanisms of irradiation-
induced cancer is impeded by the fact that there are no
quantitative data from human populations exposed to the
specific types of irradiation encountered during missions be-
yond low-earth orbit (LEO) or in deep space. During these
missions, astronauts will be continuously exposed to low
dose ionizing irradiation (LDR). In particular, high charge,
high-energy (HZE) ions such as 56Fe, 16O, and 28Si are the
major high linear energy transfer (LET) sources in deep
space [1–3]. Previous studies have indicated that irradiation
of mice with low dose HZE, specifically 56Fe ions, signifi-
cantly increases the incidences of HCC, but there is a limited
understanding of potential mechanisms [4]. Previous studies
by multiple investigators have shown that irradiation of mice
with HZE particles induces oxidative damage, and micro-
environmental changes that are thought to play a role in the
carcinogenic processes, yet a detailed analysis of these pro-
cesses has not been undertaken [2, 4–11]. The main goal of
these studies was to establish an association between HZE ir-
radiation and a specific response such as oxidative stress, mi-
croenvironmental changes, and/or apoptosis.
The pathogenic process involved in the development of

HCC and other cancers following irradiation exposure
likely begins with the induction of mutagenic, and/or epi-
genetic changes and production of oncometabolites that
further results in transcriptional alterations leading to a
premalignant state. Irradiation can activate and/or inhibit
a myriad of transcriptional pathways that are mainly in-
volved in inflammation and oxidative changes that may
play a role in the subsequent development of irradiation-
related cancers, which involves chronic oxidative stress
leading to irradiation-induced tissue injury, and the subse-
quent development of HCC [7, 11, 12]. The use of RNA-
Seq, an approach to transcriptome profiling, which utilizes
the deep-sequencing technologies, has become an increas-
ingly common technique to study biological phenomena
at the molecular level. This approach generates quantita-
tive data of thousands of different messenger RNAs
(mRNAs) with each experiment. To better understand the

molecular mechanisms of HZE induced hepatic carcino-
genesis, we performed RNA isolation and sequencing of
the livers of male C3H/HeNCrl mice. This strain has been
shown to be susceptible to the induction of low-dose
HZE-induced spontaneous HCC [4]. Low dose irradiation
induces micro-environmental changes that lead to car-
cinogenesis and potentially tumor development. We con-
ducted transcriptomic analyses to identify altered
transcript expression in response to different types of
HZE irradiation. The results of the present study confirm
previous observations of significant differences between
56Fe irradiation and non-irradiated control with respect to
the induction of HCC [4, 10].
Additionally, the alignment of RNA-Seq reads to the

reference set of transcripts usually highlights a small but
significant fraction of novel transcripts. Such transcripts
are usually unexplored due to their unmappability to the
genome sequence and/or the fact that they are missing
gene annotations. In recent years, there has been in-
creased attention paid to the unannotated transcript ex-
pression data as a potentially valuable resource to
identify novel transcripts missing from the existing tran-
scriptome annotations [13–18]. The unannotated tran-
scripts from RNA-Seq in our experiments offered us an
opportunity to find novel transcripts that are signifi-
cantly affected by HZE and potentially associated with
irradiation-induced HCC.
To gain biological knowledge about the scope of the

cellular processes involved in the irradiation-induced
HCC, we analyzed quantitative transcriptional changes
in the livers of C3H/HeNCrl mice after irradiation with
56Fe, 16O, and 28Si compared with those from non-
irradiated control. These analyses helped us define key
molecular components that are driving the HZE induced
transcriptional changes leading to HCC as well as func-
tional roles of unannotated transcripts.

Results
Differential expression analysis of 56Fe reveals dynamic
time-dependent changes in inflammatory response at the
whole transcriptome level
Transcriptional changes and altered pathways associated
with 56Fe induced hepatic carcinogenesis were evaluated
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using differential expression analysis of RNA-Seq data in
56Fe irradiated compared to non-irradiated control mice at
five different time points (1mo, 2mo, 4mo, 9mo, and 12mo).
Table 1 shows the total number of differentially expressed
transcripts at each time point. IPA was used to functionally
annotate and map the biological processes involving these
differentially expressed transcripts (Fig. 1). Inflammatory
pathways and their temporal importance in irradiation-
induced tissue injury are poorly understood. In this regard,
the analyses revealed significant activation of acute-phase re-
sponse signaling at 1month, followed by significant inhib-
ition of this pathway at 2, 4, 9, and 12months. The
microenvironment present early after 56Fe irradiation is pro-
inflammatory and results in the activation of inflammatory
pathways, such as acute phase response signaling. This is a
rapid inflammatory response that provides protection against
noxious stimuli using non-specific defense mechanisms [19–
21]. Tissue inflammation can naturally subside over time,
but a significant suppression of inflammatory genes, which
we see in our data, is characteristic of induced capillary re-
modeling and angiogenesis [22]. The prominent inhibition of
acute phase response signaling at later time points compared
to non-irradiated animals suggests that impaired immune re-
sponse and regulation are involved in accelerated hepatic
carcinogenesis in these mice. Similarly, the peroxisome
proliferator-activated receptor α (PPARα), a ligand-activated
transcription factor that belongs to the family of nuclear re-
ceptors, is significantly affected at 1month (activated), 2
months (inhibited), 4months (inhibited), 9months (inhib-
ited), and 12months (activated). PPARα has a prominent
role in fatty acid oxidation, where it can exert an anti-

inflammatory and anti-oxidative effect. Its activation at 1 and
12months suggest that there is an early inflammatory re-
sponse that recurs later due to the progression of carcino-
genic processes [23–25].
B cell receptor signaling (BCR) is significantly affected

at months 2 (directionality unknown), 4 (inhibited), 9
(inhibited), and 12 (activated). Activation of BCR signal-
ing inhibits apoptosis in B cells [26]. This observation is
supported in a previous study, which demonstrated that
56Fe irradiation increased the incidence of murine acute
myeloid leukemia (AML) and HCC [4]. Furthermore,
PI3K/AKT signaling is significantly affected at 2 months
(inhibited), 4 months (directionality unknown), 9 months
(activated), and 12 months (inhibited). AKT has two dis-
tinct mechanisms of action. First, it can have an inhibi-
tory role, such as inhibiting apoptosis and allowing for
cell survival. Second, it can have an activating role by ac-
tivating IKK, which in turn leads to NF-κB activation
and cell survival [27–29]. The analysis also revealed sig-
nificant activation of the Liver X receptor (LXR)/Retin-
oid X Receptor (RXR) pathway at 1 and 9months
accompanied by inhibition at 2- and 4-months post 56Fe
irradiation. Previous studies have shown LXRs to be key
modulators of both lipid metabolism and inflammatory
signaling [30], as well as inducers of genes involved in
the inhibition of inflammatory pathways [31]. The pres-
ence of this complex and coordinated time-dependent
interplay between pro- and anti-inflammatory signaling
pathways post 56Fe irradiation could play a significant
role in 56Fe irradiated induced hepatic carcinogenesis. A
complete list of significant pathways (−log10(p-value) ≥
1.3) is provided in Supplemental Tables 1, 2, 3, 4, and 5.

Identification of dysregulated molecular pathways
corresponding to unannotated transcripts associated with
56Fe irradiation, using SOM
The above IPA analysis (Fig. 1) resulted in a collection
of 67 statistically significant-high-quality unannotated
transcripts across all time points from 56Fe irradiated
mice (Table 2). To characterize the unannotated tran-
scripts, we obtained the log2 (fold change) expression
values of significantly differentially expressed transcripts
from 56Fe irradiation compared to non-irradiated control
across 5 time points and applied the SOM machine
learning algorithm. Next, we identified the modules from
SOMs, which contained the majority of unannotated
transcripts and combined them to form larger clusters
of similar transcription patterns for functional analysis
using IPA. We compared the identified 11 clusters
across 5 time points and selected the most significant
pathways across all clusters (Fig. 2f). The activation z-
scores were predicted for some of the clusters based on
our observed data and the available literature. The Fe 1-
month Clusters have an activated positive z-score for

Table 1 Differentially Expressed Transcripts. Total DE shows the
total number of differentially expressed transcripts (FDR ≤ 0.05 &
fold change ≥2) for each HZE ion at 5 different time points

Ion Time Total DE Upregulated Downregulated
56Fe 1 mo 695 304 391
56Fe 2 mo 662 300 362
56Fe 4 mo 679 325 354
56Fe 9 mo 718 374 344
56Fe 12 mo 564 304 260
16O 1 mo 710 384 326
16O 2 mo 615 298 317
16O 4 mo 588 328 260
16O 9 mo 602 332 270
16O 12 mo 796 504 292
28Si 1 mo 849 407 442
28Si 2 mo 699 319 380
28Si 4 mo 902 400 502
28Si 9 mo 679 381 298
28Si 12 mo 628 328 300
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organismal death and an inhibited negative z-score for
RNA transcription and cell neoplasia. These observa-
tions are in line with our current understanding of early
cellular response to irradiation and production of react-
ive oxygen species at earlier time points and activation
of neoplasia at later time points. Clusters of unannotated

transcripts show inhibition of pathways involved in RNA
expression and transcription at 1 month, and activation
of these pathways at 9 and 12months. A complete list of
unannotated transcript ENSMBL IDs with their corre-
sponding module numbers is provided in Supplemental
Table 6.

Differential expression analysis of 16O reveals dynamic
time-dependent changes in inflammatory response at the
whole transcriptome level
Transcriptional changes and altered pathways associated
with proposed 16O induced hepatic carcinogenesis were
evaluated using differential expression analysis of RNA-

Fig. 1 IPA of differentially expressed transcripts in 56Fe. a Top pathways enrichment analysis at 1 month. b Top pathways enrichment analysis at
2 months. c Top pathways enrichment analysis at 4 months. d Top pathways enrichment analysis at 9 months. eTop pathways enrichment
analysis at 12 months. f The Venn Diagram shows shared and unique differentially expressed transcripts for all time points, in 56Fe irradiation
compared to control

Table 2 Number of unannotated transcripts analyzed by IPA

Ion 1month 2 months 4 months 9 months 12 months Total
56Fe 16 16 13 8 14 67
16O 24 23 13 13 22 95
28Si 19 14 17 12 19 81
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Fig. 2 (See legend on next page.)
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Seq data in 16O irradiated compared to non-irradiated
control mice at 5 different time points (1mo, 2mo, 4mo,
9mo, and 12mo). Table 1 shows the total number of dif-
ferentially expressed transcripts at each time point. IPA
was used to functionally annotate and map the biological
processes involving these differentially expressed tran-
scripts (Fig. 3). The analyses revealed that the LXR/RXR
pathway is significantly affected at all time points; specif-
ically, at 1 month (activated), 2 months (directionality
unknown), 4 months (activated), 9 months (activated),
and 12 months (inhibited). These results indicate that
16O irradiation shows a time-dependent inflammatory
response, similar to that of 56Fe. Similarly, PPARα is sig-
nificantly affected at 1 month (activated), 4 months (dir-
ectionality unknown), 9 months (activated), and 12
months (activated). This suggests that, even with a time-
dependent inflammatory response, 16O tend to exert a
more potent activation of inflammatory pathways as
compared to 56Fe. Furthermore, Interleukin 8 (IL-8) sig-
naling is significantly activated at 12 months but inhib-
ited at 2 months. IL-8 is a member of the C-X-C family
of chemokines and plays a central role in angiogenesis,
tumor growth, and inflammation. IL-8 upregulates the
expression of genes involved in tumor growth, angiogen-
esis, and tumor invasion. IL-8 also enhances cell prolif-
eration by activating cyclin D via a protein kinase B
(PKB/Akt) mediated mechanism [32–34].
Our results show activation of LPS/IL-1 mediated in-

hibition of RXR function pathway at 1, 9, and 12 months.
The RXR plays a role in the following cascade of bio-
logical events. Binding of the CD14/TRL4/MD2 receptor
complex to toxins promotes the secretion of proinflam-
matory cytokines (IL-1, TNFα) in different cell types,
but especially in macrophages. Liver tissue injury down-
regulates the expression of hepatic specific genes, known
as negative hepatic acute phase response (APR). Most of
these repressed genes are regulated by retinoid X recep-
tors (RXRs), which dimerizes with LXR. RXRs undergo
nuclear export and therefore inhibited in response to
proinflammatory cytokines (i.e., IL-1) initiated by the
stimuli, and this export leads to impaired lipid

metabolism and signaling [19, 35, 36]. The impaired
lipid metabolism induced by 16O irradiation is furthered
demonstrated by the adipogenesis pathway, which was
significantly affected at 1, 2, 9, and 12months (direction-
ality/z-score unknown). Adipogenesis, adipocyte differ-
entiation, is a complicated cellular process that is tightly
regulated by a number of transcription factors, lipids,
hormones, and signaling pathway molecules [37–39]. In
addition, similar to the case with 56Fe, BCR is affected at
1 month (directionality unknown), 2 months (inhibited),
4 months (activated), 9 months (inhibited), and 12
months (activated). Activation of BCR at 12 months re-
duces apoptosis, which could further play a role in hep-
atic carcinogenesis. This is bolstered by the significant
activation of the chronic myeloid leukemia signaling
(CML) pathway at all time points, triggered by expres-
sion of the BCR gene product. The transcriptional
changes in CML involve genes that result in cell prolifer-
ation [40–42]. A complete list of statistically significant
altered pathways (−log10(p-value) ≥ 1.3) is provided in
Supplemental Tables 7, 8, 9, 10, and 11.

Identification of dysregulated molecular pathways
corresponding to unannotated transcripts associated with
16O irradiation, using SOM
The above IPA analyses (Fig. 3) resulted in a collection
of 95 statistically significant-high-quality unannotated
transcripts across all time points from 16O irradiated
mice (Table 2). To characterize the unannotated tran-
scripts, we obtained the log2(fold change) expression
values of differentially expressed transcripts from 16O ir-
radiation compared to non-irradiated control across 5
time points and applied the SOM machine learning algo-
rithm. We next identified the modules from SOMs,
which contained the majority of unannotated transcripts
and combined them to form larger clusters of similar
transcription patterns for functional analysis using IPA.
We compared the identified 13 clusters across 5 time
points using IPA (Fig. 4f). Figure 4f shows the most sig-
nificant pathways across all clusters. The activation z-
scores were predicted for some of the clusters based on

(See figure on previous page.)
Fig. 2 56Fe analysis of self-organizing maps for each time point. a,b,c,d,e Kohonen Self-Organizing Map (SOM) was applied to the differentially
expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns of transcript expression at each time point, as well as
patterns within the unannotated transcripts. The SOM clusters transcripts in each module according to log2(fold change) of the expression values.
SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising
transcripts with similar log2(fold change) expression patterns. The numbers of transcripts in each module are provided in Supplemental Fig. 1.
Neighboring modules are connected with a red line. The colors of the lines connecting the modules indicate the similarity between modules:
Lighter colors represent higher similarity, and darker colors represent lower similarity. f Expression patterns of unannotated transcripts were
identified, and the corresponding modules (represented in circled numbers) were further analyzed by IPA. Only the most significant pathways
across all clusters are shown with available color-coded activation z-scores. Inhibitory, activation, or unknown directionality z-scores correspond to
green, red, and white, respectively. The entries with white color indicate the directionality could not be predicted based on the available data, yet
the pathway is significantly identified by pathway analysis. The goal of the IPA downstream effects analysis is to identify functional pathways
whose activity is expected to be increased or decreased, given the observed expression changes in a user’s dataset (see Methods)
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our observed data and the available literature. The clus-
ters of unannotated transcripts tended to show inhibi-
tory responses with negative z-scores at 1 and 2months,
and activation at later time points. Even though the dir-
ectionality could not be determined for some of these
pathways, some of the identified significant pathways are
similar to those previously observed in Fig. 3 and are in-
volved in immune response (B cell receptor signaling
and acute phase response signaling), cholesterol biosyn-
thesis, and the hepatic fibrosis signaling pathway. A
complete list of unannotated transcript ENSMBL IDs
with their corresponding module numbers is provided in
the Supplemental Table 12.

Differential expression analysis of 28Si reveals dynamic
time-dependent changes in inflammatory response at the
whole transcriptome level
Transcriptional changes and altered pathways associated
with proposed 28Si induced hepatic carcinogenesis were
evaluated using differential expression analysis of RNA-
Seq data in 28Si irradiated compared to non-irradiated
control mice at 5 different time points (1mo, 2mo, 4mo,
9mo, and 12mo). Table 1 shows the total number of dif-
ferentially expressed transcripts at each time point. IPA
was used to functionally annotate and map the biological
processes involving these differentially expressed tran-
scripts (Fig. 5). The analyses revealed that LXR/RXR is

Fig. 3 IPA of differentially expressed transcripts in 16O. a Top pathways enrichment analysis at 1 month. b Top pathways enrichment analysis at 2
months. c Top pathways enrichment analysis at 4 months. d Top pathways enrichment analysis at 9 months. eTop pathways enrichment analysis
at 12 months. f The Venn Diagram shows shared and unique differentially expressed transcripts for all time points, in 16O irradiation compared
to control
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Fig. 4 (See legend on next page.)
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significantly affected at 1 month (activated), 2 months
(directionality unknown), 4 months (inhibited), 9 months
(activated), and 12 months (activated). The acute phase
response signaling pathway demonstrated a different dy-
namic post 28Si irradiation as compared to 56Fe. In par-
ticular, it was significantly inhibited at 1, 4, and 12
months and activated at 9 months. In addition, IL-8 sig-
naling shows a pattern opposite to that of 16O irradi-
ation. An IL-8 signaling pathway is significantly
activated at 4 months, while unlike 16O irradiation, it is
inhibited at 12 months. Furthermore, PI3K/AKT signal-
ing was significantly activated at 1, 4, and 9 months post
28Si irradiation. This might suggest that 28Si has an earl-
ier cellular survival response compared to 56Fe and 16O.
Additionally, the results show that aryl hydrocarbon recep-
tor signaling is significantly inhibited at 2, 4, 9, and 12
months post 28Si irradiation. Aryl hydrocarbon receptor
(AHR) is a cytosolic protein associated with chaperone and
immunophilin-like protein. Upon ligand activation, AHR
dissociates from the complex, translocates into the nucleus
and induces transcriptional activation of genes in various
signaling pathways involved in cell cycle progression,
tumorigenesis, apoptosis, and cell proliferation [43–45].
The analyses revealed that BCR signaling was sig-

nificantly affected at 1 month (inhibited), 2 months
(activated), 4 months (inhibited), 9 months (activated),
and 12 months (activated). This is also indicative of a
stronger inhibitory apoptosis response later in time
after 28Si irradiation. In addition, the production of
nitric oxide and reactive oxygen species in macro-
phages were significantly affected at all time points,
specifically, at 1 month (activated), 2 months (acti-
vated), 9 months (activated), and 12 months (inhib-
ited). The tumoricidal properties of macrophages are
dependent on the production of reactive oxygen spe-
cies (ROS). Production of ROS happens through the
activation of the nicotinamide adenine diphosphate
oxidase (NADPH oxidase), which is part of the elec-
tron transport chain. Factors such as bacterial prod-
ucts and metabolites can activate NADPH oxidase,
which will lead to ROS production in macrophages

and help defend against noxious stimuli [46–48]. The
inhibition of ROS production at 12 months contrib-
utes to the carcinogenic process triggered by 28Si ir-
radiation. This process is especially pronounced
during later time points when the immune response
cannot properly regulate apoptosis or control tissue
damage. Moreover, Insulin-like growth factor-1 (IGF-
1) signaling, which promotes cell proliferation,
growth, and survival, is significantly activated at 4,
and 9 months. IGF-1 receptor is a transmembrane
tyrosine kinase protein that activates many down-
stream pathways, which in turn induce genes that
promote cell growth and differentiation, as well as
pathways for cell survival [49–51]. IGF-1 targeted
antibodies are currently under phase I clinical investi-
gation as anticancer therapeutic drugs for advanced
or refractory solid tumors (NCT03746431). These
pathways demonstrate a complex dynamic interplay
with different immunological pathways after 28Si ir-
radiation, which could contribute to hepatic carcino-
genic processes. A complete list of significantly
impacted pathways (−log10(p-value) ≥ 1.3) is provided
in Supplemental Tables 13, 14, 15, 16, and 17.

Identification of dysregulated molecular pathways
corresponding to unannotated transcripts associated with
28Si irradiation, using SOM
The above IPA analysis (Fig. 5) resulted in a collection of
81 statistically significant-high-quality unannotated tran-
scripts across all time points from 28Si irradiated mice
(Table 2). To characterize the unannotated transcripts, we
obtained the log2 (fold change) expression values of signifi-
cantly differentially expressed transcripts from 28Si irradi-
ation compared to non-irradiated control across 5 time
points and applied the SOM machine learning algorithm.
We next identified the modules from SOMs, which con-
tained the majority of unannotated transcripts and com-
bined them to form larger clusters of similar transcription
patterns for functional analysis using IPA. We compared
the identified 12 clusters across 5 time points using IPA
(Fig. 6f). Figure 6f shows the most significant pathways

(See figure on previous page.)
Fig. 4 16O analysis of self-organizing maps for each time point. a,b,c,d,e Kohonen Self-Organizing Map (SOM) was applied to the differentially
expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns of transcript expression at each time point, as well as
patterns within the unannotated transcripts. The SOM clusters transcripts in each module according to log2(fold change) of the expression values.
SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising
transcripts with similar log2(fold change) expression patterns. The numbers of transcripts in each module are provided in Supplemental Fig. 2.
Neighboring modules are connected with a red line. The colors of the lines connecting the modules indicate the similarity between modules:
Lighter colors represent higher similarity, and darker colors represent lower similarity. f Expression patterns of unannotated transcripts were
identified, and the corresponding modules (represented in circled numbers) were further analyzed by IPA. Only the most significant pathways
across all clusters are shown with available color-coded activation z-scores. Inhibitory, activation, or unknown directionality z-scores corresponds
to green, red, and white respectively. The entries with white color indicate the directionality could not be predicted based on the available data,
yet the pathway is significantly identified by pathway analysis. The goal of the IPA downstream effects analysis is to identify functional pathways
whose activity is expected to be increased or decreased, given the observed expression changes in a user’s dataset (see Methods)
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across all clusters. The activation z-scores were pre-
dicted for some of the clusters based on our observed
data and the available literature. Even though the dir-
ectionality could not be determined for some of these
pathways, the significant pathways included B cell sig-
naling, hepatic fibrosis signaling, tec kinase signaling,
neuroinflammation signaling, LXR/RXR activation,
phospholipase C signaling, and the senescence path-
way. A complete list of unannotated transcript
ENSMBL IDs with their corresponding module num-
bers is provided in the Supplemental Table 18.

Discussion
Despite the knowledge that deep spaceflight is associated
with multiple carcinogenic processes, the different re-
sponses to HZE irradiation are still relatively unexplored.
This study was designed to help identify the molecular
mechanisms of HZE induced HCC focusing on tran-
scription expression patterns at different time points
after irradiation and to elucidate novel unannotated
transcripts that are significantly affected by HZE-
irradiation. It has been hypothesized that a major driver
of HZE induced carcinogenesis occurs through

Fig. 5 IPA of differentially expressed transcripts in 28Si. a Top pathways enrichment analysis at 1 month. b Top pathways enrichment analysis at 2
months. c Top pathways enrichment analysis at 4 months. d Top pathways enrichment analysis at 9 months. eTop pathways enrichment analysis
at 12 months. f The Venn Diagram shows shared and unique differentially expressed transcripts for all time points, in 28Si irradiation compared
to control
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Fig. 6 (See legend on next page.)
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inflammatory responses, reactive oxygen species, and
DNA damage [52]. Our results support an association
between early proinflammatory response, downstream
biomarkers of cytokine activity, and downregulation of
such responses at later time points. The exact molecular
factors that regulate these responses are not well de-
fined, but HZE-irradiation engenders a complex immune
response where directionality (activation/inhibition) can-
not be predicted for some pathways.
We observed some significant commonly dysregulated

immunological pathways in the HZE-irradiated mice, in-
cluding PI3K signaling in B lymphocytes, acute phase re-
sponse signaling, IL-8 signaling, IL-7 signaling, IL-3
signaling, B cell receptor signaling, and PPARα signaling.
PI3K was mainly activated at later time points across all
HZE ions. PI3K regulates numerous biological functions
such as survival, differentiation, proliferation, migration,
and metabolism. In the immune system, inhibited PI3K
leads to immunodeficiency, whereas activation of this
signaling cascade leads to leukemia and autoimmune re-
sponses [50, 53, 54]. The acute phase response signaling
was activated at 1 month in 56Fe but inhibited at this
time point for both 16O and 28Si. This response is trig-
gered by the initiation of irradiation-induced tissue in-
jury, which leads to changes in the concentration of
several plasma proteins as a result of significantly altered
hepatic metabolism [19–21]. It has been previously
shown that 16O total body irradiation significantly de-
creases peripheral blood cell counts in mice as early as
2 weeks post-irradiation, particularly white blood cells
(WBC) and platelets (PLT) [5]. This rapid depletion of
peripheral WBC can be a potential contributor to an im-
paired acute phase response in 16O and 28Si irradiated
mice through a similar mechanism. Additionally, IL-8
signaling was activated at 12 months post 56Fe and 16O
irradiation, while it was inhibited in 28Si. Given that IL-8
upregulates the expression of genes involved in tumor
growth (EGFR, MMP2, MMP9), angiogenesis (VEGF),
and cell proliferation through a metalloproteinase
dependent pathway [32–34, 55, 56], its activation at 12
months post 56Fe and16O irradiation is in line with the

tumor growth and spontaneous incidences of HCC seen
previously [4, 32–34, 56]. It has been previously shown
that 28Si increases the levels of apoptotic cell death in
the heart and bone marrow up to 6 months post-
irradiation [8]. This chronic apoptotic response might be
associated with the observed IL-8 suppression. More-
over, hepatic nuclear receptor PPARα affects various as-
pects of energy homeostasis, including cholesterol and
fatty acid metabolism [57]. It has been previously re-
ported that mice lacking PPARα accumulate hepatic tri-
glycerides resembling that of nonalcoholic fatty liver
disease (NAFLD) [58–61]. On the one hand, significant
inhibition of this pathway, as seen in 56Fe, 16O, and 28Si
post-irradiation at some of the time points, might indi-
cate that other liver injuries and the consequent liver
diseases such as NAFLD can arise as a result of HZE ion
exposure. On the other hand, this might indicate that
HCC pathogenesis involves some similar/common key
players as other liver diseases such as NAFLD.
Nonetheless, as mentioned earlier, the focus of this

study was limited to transcriptional changes induced
in the liver by 56Fe,16O, and 28Si irradiation at 5 dif-
ferent time points. Hence, it remains unclear how the
detected changes reflect the magnitude of carcino-
genic processes in the liver. In future studies, it is
therefore important to investigate these differences by
conducting a comparison between both histologically
and quantitively, in addition to measuring the differ-
ent levels of enzymes/proteins responsible for the in-
dicated pathways. A complete list of comparison
analyses with predicted z-scores for significant path-
ways comparing between all HZE types of irradiated
mice across all time points is provided in the Supple-
mental Table 19.
Moreover, to assess the transcriptional pathways of

our novel unannotated transcripts, we examined their
activity patterns across five time points utilizing SOMs.
To elucidate the biological functions associated with
these transcript clusters, we then performed functional
pathway analyses (Figs. 2, 4, and 6). The deep mining of
biological knowledge from these unannotated transcripts

(See figure on previous page.)
Fig. 6 28Si analysis of self-organizing maps for each time point. a,b,c,d,e Kohonen Self-Organizing Map (SOM) was applied to the differentially
expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns of transcript expression at each time point, as well as
patterns within the unannotated transcripts. The SOM clusters transcripts in each module according to log2(fold change) of the expression values.
SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising
transcripts with similar log2(fold change) expression patterns. The numbers of transcripts in each module are provided in Supplemental Fig. 3.
Neighboring modules are connected with a red line. The colors of the lines connecting the modules indicate the similarity between modules:
Lighter colors represent higher similarity, and darker colors represent lower similarity. f Expression patterns of unannotated transcripts were
identified, and the corresponding modules (represented in circled numbers) were further analyzed by IPA. Only the most significant pathways
across all clusters are shown with available color-coded activation z-scores. Inhibitory, activation, or unknown directionality z-scores corresponds
to green, red, and white respectively. The entries with white color indicate the directionality could not be predicted based on the available data,
yet the pathway is significantly identified by pathway analysis. The goal of the IPA downstream effects analysis is to identify functional pathways
whose activity is expected to be increased or decreased, given the observed expression changes in a user’s dataset (see Methods)
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remains challenging due to the incompleteness of gen-
ome functional annotation. The SOM machine learn-
ing methodology takes advantage of already annotated
and studied transcripts and pathways to infer the bio-
logical functions of the unannotated transcripts. Fu-
ture studies should assess the transcriptional and
regulatory activity of these unannotated transcripts
using different techniques such as histone modifica-
tions (H3K4me3 and H3K27ac), which have been as-
sociated with activation of transcription and enhancer
activity, respectively [62, 63]. Some of these unanno-
tated transcripts may originate from enhancer regions
or promotor upstream transcripts and thus play key
regulatory roles in controlling gene expression follow-
ing HZE irradiation since they are significantly af-
fected by irradiation. Additionally, aligning these
significant unannotated transcripts to the human gen-
ome will help identify those that are conserved in
humans. Even though the precise functions of our un-
annotated transcripts remain to be elucidated, their
significant changes post-HZE-irradiation, their similar
expression patterns with the annotated genes in speci-
fied modules and neighboring modules in the de-
scribed SOMs, and their functional roles in
transcription activity, organismal death, hepatic fibro-
sis signaling, and LXR/RXR signaling pathways, all
provide compelling evidence to support further stud-
ies of the roles of these transcripts in the carcino-
genic processes of HCC following low-dose HZE
irradiation.

Conclusions
56Fe,16O, and 28Si are all major HZE contributors in the
space radiation environment, yet the differences in bio-
logical effects (both acute and chronic) of these HZE
ions after total body irradiation in mice remain largely
unexplored. To understand the molecular mechanisms
of HZE-induced HCC, we investigated the effects of
56Fe,16O, and 28Si ions irradiation on transcript expres-
sion utilizing RNA-Seq data collected from the livers of
mice at five different time points post-irradiation. Our
findings revealed an early activation of proinflammatory
response along with various cytokine activities, and in-
hibition of these responses at later time points post-
irradiation. Additionally, our results revealed a number
of unannotated transcripts that were significantly af-
fected post-low-dose HZE irradiation, and their associa-
tions with specific functional pathways. Taken together,
these findings provide leads regarding potentially im-
portant new transcripts and transcriptional products,
which could lead to the identification of novel counter-
measures and therapeutic targets. Identification of novel
transcriptional products may be accomplished by in
silico translation of unannotated transcripts into amino

acid sequences, which can be used to search Data Inde-
pendent Acquisition (DIA) proteomics datasets from
similar studies. This will enable the identification of
novel transcriptional products.

Methods
Animal experiments and sample preparation
C3H/HeNCrl mice purchased from Charles River (Wil-
mington, MA) were used in this experiment since they
have been shown to be a suitable experimental model
for liver carcinogenesis. The C3H/HeNCrl strain was
used based on previous studies demonstrating that these
mice are sensitive to the induction of HCC after expos-
ure to a dose of 0.2 Gy of 600MeV/n 56Fe [4]. It is im-
perative to conduct tumor induction studies in whole
animals to study the microenvironmental effects of HZE
exposure and characterize the molecular changes in the
irradiated tissues because computer models or cell cul-
ture are inadequate based on extensive literature
searches. Conducted studies were approved by the insti-
tutional animal care and use committees (IACUCs). The
power for this study was set at 80%, which determined
the number of animals used based on the chi-square test
for comparing two proportions, with a two-sided signifi-
cance level set at 0.05.
A total of 60 8 to 10-week-old male mice were used

for this study. The serial sacrifice study consisted of 15
male mice with 3 mice per time point. In particular, five
times points which included 30, 60, 120, 270, and 360
days post-exposure. The four groups included three
treatments (600MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2
Gy), and 350MeV/n 28Si (0.2 Gy)) and one control (non-
irradiated/sham irradiated). The mice were housed at
the Brookhaven National Laboratories (BNL) animal fa-
cility until irradiation treatment at the NASA Space Ra-
diation Laboratory. Following irradiation, the animals
were shipped to the Animal Resources Center at UTMB,
quarantined for 1 month, and maintained for the re-
mainder of the experiment. The mice were housed in
sterile cages and had free access to food and water. Fa-
cilities at both BNL and UTMB used for animal housing
are fully AAALAC accredited. Selection of animals for
sacrifice at each of the 5 time points and preparation of
the left love of livers were performed as previously de-
scribed [64].

Acquisition of RNA-Seq data
Total RNA was isolated from the liver slices using RNA-
queous™ Total RNA Isolation Kit (ThermoFisher Scien-
tific, Waltham, MA), and rRNA was removed using the
Ribo-Zero™ rRNA Removal Kit (Illumina, San Diego,
CA). Library preparation and sequencing were per-
formed, as previously described [64]. CLC Genomics
Workbench v12.0.3 was used for bioinformatical quality
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control and mapping of the RNA-Seq data. Sequencing
data was initially trimmed using the CLC’s “Trim Reads”
module. Reads containing nucleotides below the quality
threshold of 0.05 (using the modified Richard Mott algo-
rithm), those with two or more unknown nucleotides or
sequencing adapters were trimmed out. Additionally, all
reads have been trimmed by 14 bases from the 5′ end of
each read. The total number of reads used in analysis
varied between 33 and 114 million. A complete list of
sample reads information is available in the Supplemen-
tal Table 20. Filtered sequencing reads were then proc-
essed using the “RNA-Seq Analysis” module. Reads were
mapped using a global alignment strategy against the
mouse GRCm38 reference genome with 95% length frac-
tion and similarity fraction scores with annotation ver-
sion GRCm38.97.

Differential transcript expression analysis
Raw abundance counts of 107,319 mRNAs from 15
non-irradiated control, 15 56Fe irradiated, 15 16O irra-
diated, and 15 28Si irradiated C3H/HeNCrl male mice
liver tissue samples were subjected to differential
transcript expression analysis. Differential transcript
expression analysis was performed as previously de-
scribed using edgeR [64–66]. Statistical tests were
then conducted at every time point, to compare be-
tween 56Fe irradiated and non-irradiated control, 16O
irradiated and non-irradiated control, and 28Si irradi-
ated and non-irradiated control samples using a
quasi-likelihood negative binomial generalized log-
linear model for count data [67–69]. The Benjamini-
Hochberg correction was applied, and transcripts with
FDR ≤ 0.05 & fold change≥2 (both up and down-
regulated) were extracted and utilized in further
analyses.

Functional enrichment analysis
To determine the biological functions of significantly
differentially expressed (DE) transcripts, functional en-
richment analysis was performed separately for the DE
transcripts at each time point using Ingenuity Pathway
Analysis (IPA) (QIAGEN Inc., Hilden, Germany) [70].
The most significant functional pathways (−log10(p-
value) ≥ 1.3) at each time point were then evaluated and
reported. A complete list of all identified statistically
significant pathways is provided in the Supplemental
Tables 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, and 13, 14, 15, 16, 17.
In order to investigate any internal biases associated

with specific pathway prediction tools, we ran the
same analysis using DAVID (https://david.ncifcrf.gov/)
[71, 72]. DAVID provides pathways from KEGG and
BIOCARTA databases. The majority of the transcripts
for each treatment remained unannotated/unrelated
to a pathway. In general, other pathway prediction

tools were unable to annotate the transcript expres-
sion data as well as that done by IPA, although when
annotated, the results obtained by DAVID were con-
tained within the IPA analysis as well. A complete list
of DAVID analyses is provided in the Supplemental
Tables 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36 and 37.

SOM analysis
Self-Organizing Map (SOM) analysis was performed
to identify clusters of transcripts with similar expres-
sion patterns and was conducted for every time point
analyzing pairwise comparisons of 56Fe irradiated and
non-irradiated control, 16O irradiated and non-
irradiated control, and 28Si irradiated and non-
irradiated control samples. SOMs were created using
the algorithm implemented in the MATLAB software
Neural Networking Toolbox [www.mathworks.com]
version R2018b based on inputs of Log2(Fold Change)
from the differential transcript expression analyses
data. In order to scale network inputs and outputs,
we normalized our input matrix so that they had zero
mean and unity standard deviation. We then proc-
essed the input matrix using principal component
analysis (PCA) to reduce dimensionality. The SOM al-
gorithm was then used to cluster the data based on
similarity and topology using 100,000 training epochs.
The SOM translates the differentially expressed tran-
scriptome profile into a two-dimensional quadratic
7 × 7 pixel map and a color code for similarity values.
Next, we performed functional pathway analysis using

IPA (QIAGEN Inc., Hilden, Germany) [70], on selected
adjacent modules (clusters selected for IPA analysis are
numbered and shown in circles on SOM maps) that
contained the reported unannotated transcripts to ex-
plore their functionality based on the annotated tran-
scripts contained within those modules (available
activation z-scores, shared enriched functions of interest,
and similar transcript expression patterns). We identified
neighboring modules with high similarity and the most
unannotated transcripts. Clusters of modules were
grouped visually based on the similarity calculated from
the SOM analysis (yellow being the most similar). No
specific threshold was applied in the determination of
the clusters of modules. The activation z-score is statisti-
cally computed by IPA for each functional pathway and
is used to infer biological functions and predict impli-
cated functional pathways. The activation z-score is pre-
dicted by assessing the consistency of the pattern
between the observed gene-regulation pattern and the
activation/inhibition pattern given by the network rela-
tive to a random pattern. Activation z-score calculations
are accomplished independently from associated p-
values and are based upon the match results from up/
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down-regulation. Given the observed differential regula-
tion of a transcript in the dataset, the activation state is
determined for each specific functional pathway, and the
directionality effect is then assigned. If an activation z-
score can’t be predicted for a significant pathway based
on the available data, and after bias correction, NA
(white color) is assigned for that specific pathway [70].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06869-4.
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