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Abstract

Purpose: Several recent studies have utilized a 3-tissue constrained spherical deconvolution 

pipeline to obtain quantitative metrics of brain tissue microstructure from diffusion-weighted MRI 

data. The three tissue compartments, comprising white matter-, grey matter-, and CSF-like (free 

water) signals, are potentially useful in the evaluation of brain microstructure in a range of 

pathologies. However, the reliability and long-term stability of these metrics has not yet been 

evaluated.

Methods: This study examined estimates of whole brain microstructure for the three tissue 

compartments, in three separate test-retest cohorts. Each cohort has different lengths of time 

between baseline and retest, ranging from within the same scanning session in the shortest interval 

to three months in the longest interval. Each cohort was also collected with different acquisition 

parameters.

Results: The CSF-like compartment displayed the greatest reliability across all cohorts, with 

intraclass correlation coefficient (ICC) values being above 0.95 in each cohort. White matter-like 

and grey matter-like compartments both demonstrated very high reliability in the immediate 

cohort (both ICC>0.90), however this declined in the 3-month interval cohort to both 

compartments having ICC>0.80. Regional CSF-like signal fraction was examined in bilateral 

hippocampus and had an ICC>0.80 in each cohort.

Conclusion: The 3-tissue CSD techniques provide reliable and stable estimates of tissue 

microstructure composition, up to 3 months longitudinally in a control population. This forms an 

important basis for further investigations utilizing 3-tissue CSD techniques to track changes in 

microstructure across a variety of brain pathologies.

*Correspondence to: Benjamin T. Newman, Department of Radiology and Medical Imaging, MR4, 409 Lane Rd, Charlottesville, VA 
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Introduction

Diffusion-weighted Magnetic Resonance Imaging (dMRI) is a widely used, noninvasive, 

method for measuring the diffusion of water molecules in the brain. Within the 

microarchitectural environment of the brain, diffusion of water molecules is hindered by 

various cellular components, particularly the lipid bilayers that make up cell membranes. 

This principle has been applied to study white matter fiber bundles (“tracts”), as the myelin 

sheaths surrounding neuronal axons result in anisotropic diffusion(1,2,3). dMRI has seen 

widespread use in studies of brain connectivity as well as in clinical populations and 

neurosurgery(4,5,6,7).

Initially, anisotropic diffusion was typically modelled using a tensor, which sought to 

quantify both the average orientation, anisotropy, and magnitude of diffusion within each 

voxel of the brain; this approach is known as Diffusion Tensor Imaging (DTI)(1). More 

recently, the dMRI modelling domain has seen a proliferation in novel, more advanced, 

mathematical methods for analyzing the diffusion-weighted signal. These methods aim to 

overcome several shortcomings of applying the relatively simplistic DTI model to the 

complex diffusion-weighted signals observed in the brain. This complexity primarily arises 

from two physiological qualities of the brain itself: the first being crossing fibers, where 

white matter (WM) tracts occupying the same voxel are oriented differently in space(8,9); 

and the second being the presence of other fluids and tissues, including cerebrospinal fluid 

(CSF) and grey matter (GM) and other cell bodies which “contaminate” the directional 

signal(10,11,12,13,14). These are major issues as it has been estimated that up to 90% of 

WM tissue voxels contain more than one WM fiber tract orientation(15), and partial 

voluming effects alone ensure that a substantial number of voxels contain proportions of 

multiple tissue and/or fluid compartments(12,13,16).

To address these issues, and with the advent of high angular resolution diffusion imaging 

(HARDI) acquisition protocols, more advanced methods for describing the observed dMRI 

data have been proposed by a number of researchers(17,18,19). One such method, 

Constrained Spherical Deconvolution (CSD), allows for the presence of multiple fibers 

along different orientations(20). CSD resolves these orientations by deconvolving the signal 

profile corresponding to a prototypical single fiber-like voxel (termed a response function) 

from the observed signal in each and every other voxel, resulting in the orientation of fibers 

as a continuous angular function termed the Fiber Orientation Distribution (FOD). 

Quantitative information can also be obtained from the FOD, as a measure of “Apparent 

Fiber Density” (AFD) for each fiber population(21).

The original (“single-tissue”) CSD has been expanded into Multi-Shell Multi-Tissue CSD 

(MSMT-CSD) by performing a similar deconvolution with 3 separate WM, GM, and CSF-

like tissue response functions. The approach was initially aimed at separating signal 

originating from GM and CSF-like tissue compartments, in order to improve the accuracy of 
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the WM FOD itself, which otherwise appears very noisy (with many false positive “peaks” 

or lobes) when using single-tissue CSD in areas of partial voluming with other tissues and 

fluids(12,13,22). This subsequently benefits several other analysis and processing steps, 

such as streamline tractography, which heavily rely on a “clean” and accurate WM FOD. 

MSMT-CSD thus attempted to address the main shortcomings of the DTI model as well as 

additional remaining shortcomings of single-tissue CSD.

As its name hints at, MSMT-CSD requires a multi-shell diffusion acquisition scheme in 

order to successfully tease apart contributions from the 3 WM-, GM- and CSF-like 

compartments at once. However, to obtain the same benefits offered by MSMT-CSD, yet 

using only single-shell data, Dhollander & Connelly(23), have proposed a novel approach 

named Single-Shell 3-Tissue CSD (SS3T-CSD) that can resolve the WM-, GM- and CSF-

like compartments as well. By relying only on single-shell data, it allows for shorter 

acquisition times and is compatible with a wider range of data, both historical as well as 

clinical.

Resolving these different compartments using either 3-tissue CSD method (i.e., MSMT-CSD 

or SS3T-CSD) holds value beyond improving WM tractography: it can also serve as a proxy 

for the evaluation of brain microstructure and tissue composition(24,25,26). By interrogating 

brain voxels for diffusion signal patterns that look ‘like’ compositions of the diffusion 

signals represented by the WM/GM/CSF response functions, it might be possible to gain 

quantifiable information about microstructure (Figure 1). Using these basic compartments as 

a diffusion signal model focuses more on coarse properties of brain tissue microstructure 

rather than separating similar cell types (e.g. different populations of glial cells), or 

separating different types of pathology (e.g. edema, CSF-infiltration in neurodegeneration, 

and damage from ischemic stroke). Although, provided with a known context, reasonable 

inferences of such pathology might be possible to make nonetheless. Even for WM 

tractography in cases of infiltration by pathological tissues, the 3-tissue CSD approach can 

provide direct benefits in terms of recovering healthy WM structures, e.g. in infiltrating 

tumors(27).

3-tissue CSD derived compartments are a promising, non-invasive method for exploring 

tissue composition in the brain. The utilization of this approach toward analyzing tissue 

composition might hold advantages over tensor-based models such as Free Water 

Elimination (FWE)(28). The free water estimate from the FWE technique was shown to 

have limited reproducibility: errors ranged from 5.2–18.2% across ROIs in a test-retest 

cohort(29). The CSF-like compartment from 3-tissue CSD techniques might provide an 

alternative way to recover free water contribution to the signal, using a WM model that does 

take into account crossing fibres (as opposed to a tensor method). With the advances 

provided in SS3T-CSD, it is also able to provide signal contribution from the full 3 tissue 

compartments using single-shell data (i.e. equivalent to acquisition requirements for the 

FWE technique), allowing for a broader range of input data compared to other 3-tissue 

compartment models such as NODDI (30). In a recent review of microstructural diffusion 

imaging applied to psychiatric disorders, Pasternak et al.(31), illustrated the acquisition 

sequence complexity compared to the number of microstructure compartments evaluated for 

several common dMRI analysis techniques. Addition of MSMT-CSD and SS3T-CSD 

Newman et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



illustrate the range of data required for input to a range of models and the capabilities of 

resolving compartments compared to other techniques (Figure 2).

To date, there has not been a quantitative test-retest study examining the reliability and long-

term stability of 3-tissue CSD techniques. The purpose of this study is to provide evidence 

that 3-tissue CSD techniques are a reliable and stable approach for assessing brain 

microarchitecture, via analysis of the 3 resulting tissue signal fractions.

Methods

Cohorts:

Three test-retest cohorts were retrospectively evaluated in this study: two local datasets 

collected at the University of Virginia from ongoing research projects, and one publicly 

available dataset obtained from the Nathanial Kline Institute for Psychiatric Research: 

enhanced test-retest (eNKI-TRT) as part of the 1000 Functional Connectomes 

Project(32,33,34). Both studies collected at the University of Virginia received ethical 

approval from the University of Virginia Institutional Review Board for Health Sciences 

Research. Each cohort has different time intervals between baseline and retest scans, and 

was collected with different acquisition parameters. This approach allows reliability to be 

measured under conditions that represent a variety of different diffusion imaging parameters. 

Examining stability across different time periods allows for insight into the potential for 

longitudinal studies tracking changes in 3-tissue signal fractions in individuals or between 

groups over time.

The first cohort (“immediate rescan” cohort) examined immediate test-retest reliability by 

performing identical dMRI acquisitions sequentially without table repositioning. This cohort 

consisted of individuals participating in a separate study at the University of Virginia that 

included multiple scanning sessions. The cohort consisted of 20 healthy control participants 

(all male, age at baseline 22.8±3.0 SD). Each participant was scanned twice at each of 3 

visits (with the exception of one participant who only attended 2 scans) for a total of 59 

baseline-rescan pairs collected for analysis.

The second cohort (“short timescale” cohort) is representative of the quality of diffusion 

imaging found in large-scale, open science cohorts. Subjects were selected from the original 

NKI Rockland community study, a group intentionally recruited for similarity to the 

demographics of the broader United States as a whole(34). 20 subjects (5 female, age at 

baseline: 34.4±12.9 SD) had diffusion MRI data available at both baseline and rescan. All 

participants were rescanned within a range of 7–60 days after baseline. Subjects were not 
excluded for any history of illness, and 2 participants had a diagnosed history of prior 

alcohol abuse while 2 other participants had a diagnosed history of a major depressive 

disorder. Both of these diagnoses are known to affect brain function and structure(35,36); 

but the nature of the within-subjects design did not necessitate removing any individuals 

from the study.

The third cohort (“long timescale” cohort) was collected as a healthy control group for a 

previously published study conducted at the University of Virginia examining college 
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athletes(37). 52 participants (all male, age at baseline: 21.9±3.3 SD) were re-scanned 3–4 

months after baseline (mean days between scans: 107.9±7.1 SD) and were screened for a 

history of neurologic disease or concussion.

Image Acquisition:

As discussed previously, data from the three cohorts were acquired using different protocols.

The immediate rescan cohort was scanned using a Siemens Prisma 3T scanner with an 

isotropic voxel size of 1.7×1.7×1.7mm3, TE=70ms and TR=2900ms; using a multi-shell 

protocol, 10 b=0 images and 64 gradient directions at both b=1500s/mm2 and b=3000s/mm2 

were acquired. This protocol was applied twice with one immediately following the other 

without actively repositioning the participant in the scanner.

The short timescale cohort was acquired externally and obtained through the Neuroimaging 

Tools and Resources Collaboratory at www.nitrc.org. Imaging data was collected using a 

Siemens Trio Tim with an isotropic voxel size of 2×2×2mm3, TE=85ms and TR=2400ms. 

Using a single-shell protocol, 9 b=0 images and 127 gradient directions at b=1500s/mm2 

were acquired.

The long timescale cohort was scanned using the same Siemens Prisma 3T scanner as the 

first (immediate rescan) cohort using a different protocol with an isotropic voxel size of 

2.7×2.7×2.7mm3, TE=100ms. Using a multi-shell protocol, 1 b=0 image and 30 gradient 

directions at both b=1000s/mm2 and b=2000s/mm2 were acquired.

Analysis:

Data preprocessing was largely identical across all images in all cohorts in the study. Images 

were first denoised via use of the “dwidenoise” command in Mrtrix3(38). Gibbs ringing was 

then corrected, also using MRtrix3(39). This was followed by utilizing the FSL package 

(“topup” and “eddy”) to correct for susceptibility induced (EPI) distortions, eddy currents, 

and subject motion including the –repol flag to perform a Gaussian replacement of outliers 

(40,41,42,43). Finally, using MRtrix3 we upsampled the preprocessed data to 

1.3×1.3×1.3mm3 isotropic voxels(44,45,46). These preprocessing steps are largely similar to 

those used in other recently published works(46,47,26,27). A description of a basic single 

subject pipeline for performing SS3T-CSD, including these preprocessing steps, is available 

at https://3tissue.github.io/doc/single-subject.html. Brain masks were obtained for all 

subjects by performing a recursive application of the Brain Extraction Tool(48).

For 3-tissue CSD processing, the 3-tissue response functions were obtained from the data 

themselves using an unsupervised method(49), resulting in the single-fiber WM response 

function as well as isotropic GM and CSF response functions for each subject. For each 

tissue type (WM, GM, CSF), the response function was averaged across all individuals in 

each cohort to obtain a single unique set of 3-tissue response functions per cohort. For the 

multi-shell data in the immediate rescan and long timescale cohorts, MSMT-CSD was 

performed(22). For the single-shell data in the short timescale cohort, SS3T-CSD was 

performed(23). For all subjects in all cohorts, this resulted in their WM-like compartment 

(represented by a complete WM FOD) as well as GM-like and CSF-like compartments. The 
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CSF-like compartment can in this context also be interpreted as a free-water (FW) 

compartment(24). Finally, each subject’s three tissue compartments were then normalised to 

sum to 1 on a voxel-wise basis, resulting in the final 3-tissue signal fraction maps(26); the 

metrics for which we performed the test-retest analyses in this work.

To measure the mean squared difference between baseline and rescan for each of the three 

tissue compartments, a cohort-specific template was first produced. This was achieved using 

an affine, followed by a non-linear registration guided by the WM FODs themselves in an 

unbiased manner (50). The warp that registered each subject’s WM FODs to the template 

was then also applied to the WM-like, GM-like, and CSF-like maps, allowing all three tissue 

maps to be registered to the same template space and the mean squared difference between 

baseline and rescan to be calculated. CSF-like (free water) signal fraction in the 

hippocampus of each subject was measured in each subject relying on these same cohort-

specific templates. A whole brain WM image from the LONI atlas(51) was registered along 

with each hippocampus map to the template using the ANTs image registration toolbox 

‘SyN’ algorithm (52) and then subsequently warped to each individual scan using the 

reverse transform from template creation. In native space an average was computed of the 

CSF-like (free water) signal fractions in the ROI, using only voxels with a CSF-like signal 

fraction smaller than 0.5, to mimic free water analysis (i.e., to avoid accidentally including 

voxels outside of the brain parenchyma, which might be entirely CSF-filled spaces).

All processing was performed using a combination of different software packages: 

MRtrix3(53), MRtrix3Tissue (https://3Tissue.github.io, a fork of MRtrix3), FSL(54), 

ANTs(52).

Results

The CSF-like (free water) tissue signal fraction map was restricted to voxels where the 

corresponding WM and GM signal maps summed to greater than 50%. This allowed for 

analysis of the CSF-like signal fraction in tissue without including the ventricles or 

subarachnoid space, the bulk size of which would otherwise bias a proper whole-brain free 

water measurement. Additionally, the CSF-like infiltration into brain tissue is a potentially 

more interesting measurement in the context of healthy functioning or pathology; and is 

indeed designed to be comparable to measurements of free water encountered in the 

literature(28). For all cohorts, results from the 3-tissue signal fractions were averaged across 

the brain parenchyma. Averages for baseline and retest values were compared by calculating 

the intraclass correlation coefficient (ICC) and Pearson’s correlations. The results for both of 

these measures are summarized in Table 1.

Specific test-retest correlations for each of the three tissue types derived from the 3-tissue 

CSD techniques are presented in Figures 3–5. All correlations between baseline and retest 

were significant in all cohorts; the highest whole brain ICC values were obtained from the 

immediate rescan cohort (Figure 3). In the short timescale cohort, similar to the immediate 

rescan cohort, all compartments had an ICC value above 0.95 and Pearson’s Rho above 0.90 

(Figure 4). The long timescale cohort had slightly declined performance, yet with the ICC 

value for all compartments still being larger than 0.80 (Figure 5). To test the potential 
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significance of this decline, bootstrapping of ICC values from each tissue type and cohort 

was performed to generate 95% confidence intervals after 100,000 bootstrap iterations. The 

95% confidence interval generated from the long-timescale GM-like and WM-like signal 

fractions did not overlap with the confidence interval from both the immediate-rescan and 

short-timescale GM-like and WM-like signal fraction ICCs. The 95% confidence intervals 

from the CSF-like signal fraction ICCs from each cohort did overlap (Figure 6).

Additionally the mean squared difference was calculated for each tissue signal fraction map 

between each subject’s baseline and rescan. This showed results largely consistent with 

overall whole brain averages of the signal fraction maps: each signal fraction map showed 

good reliability, with the CSF-like map having a mean squared difference less than 0.01 in 

each cohort, the GM-like map having a mean squared difference less than 0.025 in each 

cohort, and the WM-like map having a mean squared difference less than 0.035 in each 

cohort (Figure 7).

In each cohort, the hippocampi were also analyzed separately in order to demonstrate the 

utility of a 3-tissue CSD approach in a specific region of interest. Bilateral hippocampus was 

selected for this demonstration as a commonly studied brain ROI with representation from 

each of the three tissue compartments examined. Comparison of average CSF-like (free 

water) signal fraction in this ROI between baseline and retest resulted in an ICC value above 

0.90 in both left and right hippocampus, as well as a significant Pearson’s correlation 

(Figure 8A). In the short timescale cohort both left and right hippocampus similarly had an 

ICC value above 0.90 and a significant Pearson’s correlation (Figure 8B). In the long 
timescale cohort both hippocampus had an ICC value above 0.80 and a significant Pearson’s 

correlation (Figure 8C).

There was a consistent asymmetrical effect observed between the CSF-like signal fraction in 

right and left hippocampus across all cohorts. The CSF-like signal fraction in each subject’s 

right and left hippocampus were averaged between baseline and rescan and a paired t-test 

performed for each cohort. This showed that there was a significantly greater CSF-like 

signal fraction in the right versus the left hippocampus (T58 = −10.022, p<0.001; T19 = 

−6.002, p<0.001; and T51 = −23.486, p<0.001; for the immediate rescan, short timescale, 

and long timescale cohorts, respectively).

Discussion

Each of the 3-tissue signal fractions demonstrated good reliability across all of the measured 

timescales we assessed in this work. ICC values were above 0.95 for each of the tissue 

compartments included in the immediate rescan and short timescale cohorts. This occurred 

despite the short timescale cohort being single-shell data, a b-value of 1500, and a lower 

voxel size compared to the other two cohorts (both of which were multi-shell and had 

highest b-value of b=3000s/mm2 and b=2000 s/mm2 for the immediate timescale and long 
timescale cohorts, respectively). This result suggests that 3-tissue CSD techniques can 

reliably obtain quantitative measurements across a range of diffusion imaging protocols, 

including from openly available datasets. This performance, however, declined slightly in 

the long timescale cohort: the CSF-like (free water) signal fraction within tissue still had an 
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ICC value above 0.95 while the WM-like and GM-like signal fractions had a slightly lower 

ICC value, which bootstrapping indicated did not overlap with the 95% confidence intervals 

from the immediate or short-timescale cohorts. Regardless, all Pearson’s correlations were 

highly significant, indicating that 3-tissue CSD techniques are still able to obtain reliable 

measurements of brain tissue microstructure, stable up to 3 months from baseline.

In our study it was observed that the reliability of the WM-like signal fraction maps declined 

in the long timescale cohort compared to the immediate and short-term rescan cohorts as 

measured by both bootstrapping of ICCs and by analysis of the mean squared difference. It 

is also possible that the lower number of gradient directions at each non-zero b-value in the 

long timescale cohort, compared to the other cohorts, caused the estimation of WM FODs to 

be more variable between rescans. Given the methodology employed for generating response 

functions and FODs, it would be expected that the ability to distinguish between WM and 

GM would be more dependent on angular resolution and contrast, while CSF would be more 

dependent on contrast between b-value shells. This may be supported by the observation that 

the CSF-like signal fraction map still had a high ICC which bootstrapping indicated was 

within the 95% confidence interval of both other cohorts. Given the nature of our datasets 

and the differences in site, acquisition, and subject cohorts, it is not possible to precisely 

disentangle each of these contributing factors.

The free water signal fraction additionally demonstrated good reliability in both hippocampi 

at each of the examined timescales. ICC values were above 0.80 and a significant effect of 

laterality was observed consistently across each cohort, with the right hippocampus having a 

significantly higher free water signal fraction than the left hippocampus. Though this study 

does not suggest any hypothesis for why this laterality was observed, it is consistent with 

volumetric MRI findings that demonstrate hippocampal asymmetry(55), as well as a recent 

study that reported asymmetry in hippocampal free water content(56). That study reported a 

1% higher free water content in the right hippocampus compared to the left hippocampus of 

healthy controls, remarkably similar to the significantly different average observed in this 

study (0.9% in the immediate timescale cohort, 0.7% in the short timescale cohort, and 1.5% 

in the long timescale cohort, with higher free water signal fraction in the right hippocampus 

in each cohort). This suggests that free water signal fraction is both a reliable quantitative 

measurement for subcortical ROIs, and that it may be able to detect meaningful 

microstructural properties of such regions.

Given the nature of the datasets and cohorts used in our study, we did not address the topic 

of reproducibility of tissue signal fractions between different diffusion acquisition methods, 

subject cohorts, especially cohorts of different age ranges and demographic compositions, 

and analysis protocols. Three different acquisition protocols were used in this study, each 

with different angular resolutions, b-value shells, and sequences. Also, two different 3-tissue 

CSD analysis methods were employed. Given the nature of our datasets and the intrinsic 

differences in site, acquisition, timescale, and subject cohorts, it is not possible to precisely 

disentangle each of these contributing factors retrospectively using the data available for this 

study nor do we believe that attempting to do so would provide robust estimates of variation. 

Prospectively designing a study to control for these factors would allow for these dimensions 
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to be properly disentangled and the contributions to data variability from each to be 

determined.

More traditional neuroimaging techniques do not provide quantifiable data on tissue 

microstructure, however this study has demonstrated a reproducible and reliable method for 

obtaining whole brain maps with quantifiable estimates of tissue microstructure. We 

observed these measures to be stable enough to be used in longitudinal studies lasting at 

least up to three months. They provide information on a voxel- or region-wise basis for 

analysis of subcortical structures, lesions, or developing brains(24,25,26,46). Related 

microstructural analysis of free water signal fractions has been performed in the context of 

Parkinson’s disease(57,58), Schizophrenia(59,60), and concussion(61). 3-tissue CSD 

techniques may thus have the potential to be applied to a variety of these and other 

neurological conditions.

3-tissue CSD derived tissue fractions provide a flexible framework for analyzing diffusion 

images in ways not addressed in this paper. While we examined the reliability of WM/GM/

CSF-like tissue signal fractions here, other researchers have used response functions 

representing different tissue compartments when contextually appropriate. Pietsch et al.(47), 

applied two different WM response functions representing mature and immature WM in a 

developing adolescent cohort to observe WM maturation. Mito et al.(26), proposed to apply 

a statistical framework of compositional data analysis to analyze the full 3-tissue 

composition of WM-, GM- and CSF-like signal fractions directly to study microstructure in 

white matter lesions, following the initial suggestion of moving towards such WM/GM/

CSF-like diffusion signal fraction interpretation by Dhollander et al.(24). In Aerts et al.(27), 

this idea was furthermore used for the purpose of disentangling WM FODs representing 

infiltrated WM tracts, in the presence of gliomas, so as to enable more reliable within-tumor 

tractography. Similar work has also recently been done by Chamberland et al.(62), who 

illustrated the use of 3-tissue signal fractions in the presence of cerebral metastases, both to 

assess their microstructure as well as to enable tractography through nearby edematous 

regions.

The relatively recent use of CSD to describe the diffusion signal(20) has led to some 

measure of controversy when compared to other established analysis techniques such as 

those based in multi-tensor models. One particular area of concern has been noted as the 

generation of ‘false-fibers’ on tracking algorithms due to spurious fODF peaks(63,64). Some 

studies using recent methodological improvements have suggested that the prevalence of 

false-fibers in CSD is oversold compared to other methods(65,66). In this study 3-tissue 

CSD demonstrated good reliability across all compartments. However as recent work has 

shown, false-fibers have been found to be reproducible between acquisitions (67,68). As this 

study has not explored the presence of false-fibers, it is unknown to what degree they 

contributed to the WM-like signal fraction.

An additional benefit provided by 3-tissue CSD methods is in the potential for tissue type 

specific masking. The CSF-like compartment presented in this paper is calculated as CSF-

like diffusion in tissue by relying on the other compartments to identify which voxels were 

‘tissue’. Unlike a binary tissue segmentation based on T1 intensity, calculations of WM- and 
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GM-like signal fraction compartments together were used to define voxels where ‘tissue’ 

composed a majority of signal from each voxel. This process relied exclusively on the 

single, native space diffusion image instead of reslicing and warping a separate structural 

image or atlas. Future studies might be able to take advantage of this approach by examining 

tissue compartment magnitudes inside voxels defined by the behavior of other tissue 

compartments. For example, tracking CSF-like (free water) tissue infiltration into voxels 

defined by the high proportion of WM-like tissue during aging or in certain pathological 

contexts.

Conclusion

In this study, we performed a test-retest reliability and longer term stability analysis of the 3-

tissue signal fractions as obtained from 3-tissue CSD techniques. We found that 3-tissue 

CSD technique provide reliable and stable estimates of tissue microstructure composition, 

up to 3 months longitudinally in a control population. This forms an important basis for 

further investigations utilizing 3-tissue CSD techniques to track changes in microstructure 

across a variety of conditions.
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Figure 1: 
Axial slices showing a T1-weighted MPRAGE and the GM-, CSF-, and WM-like tissue 

compartments derived from the dMRI data using 3-tissue CSD.
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Figure 2: 
Chart adapted from Pasternak et al.(31); comparison of common DTI and other model 

metrics to CSD derived tissue signal fractions by requirements of acquisition (rows) and 

number of output compartments (columns). Methods derived from CSD have been added in 

red.
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Figure 3: 
Immediate rescan baseline and re-scan values for CSF- (left), WM- (center), and GM-like 

(right) signal fractions obtained from a cohort scanned with a duplicate sequence 

immediately following baseline. Includes ICC and Pearson’s correlation values.
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Figure 4: 
Short timescale baseline and re-scan values from CSF- (left), WM- (center), and GM-like 

(right) signal fractions obtained from a cohort with 7–60 days between baseline and re-scan. 

Subjects were taken from the eNKI group and their single-shell dMRI data analyzed with 

SS3T-CSD. Includes ICC and Pearson’s correlation values.
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Figure 5: 
Long timescale baseline and re-scan values from CSF- (left), WM- (center), and GM-like 

(right) signal fractions obtained from a cohort with 3 months between baseline and re-scan. 

Includes ICC and Pearson’s correlation values.
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Figure 6: 
Results from parametric ICC bootstrapping with ICC calculated from subject data (Table 1) 

and 95% confidence intervals displayed. There was overlap between the 95% confidence 

intervals from each cohort’s CSF-like ICC but in the long-timescale group the WM-like and 

GM-like signal fraction ICC did not overlap with either other cohort.
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Figure 7: 
Bar plot (±SE) displaying the mean squared difference between scan and rescan, averaged 

across individuals for each tissue map and in each cohort. Comparison between different 
tissues’ mean squared differences is discouraged however, as the average absolute value of 

each voxel and the distribution of values across the brain is highly different for different 

tissue types.
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Figure 8: 
(A) CSF-like signal fraction for the left and right hippocampus in the 59 pairs of baseline-

retest scans in the immediate rescan cohort. Values for the right hippocampus of each 

individual are shown in red and values for the left hippocampus are shown in blue. (B) CSF-

like signal fraction for the left and right hippocampus in the 20 pairs of baseline-retest scans 

in the short timescale cohort. Values for the right hippocampus of each individual are shown 

in red and values for the left hippocampus are shown in blue. (C) CSF-like signal fraction 

for the left and right hippocampus in the 52 pairs of baseline-retest scans in the long 
timescale cohort. Values for the right hippocampus of each individual are shown in red and 

values for the left hippocampus are shown in blue.
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Table 1:

Statistical analysis of the 3 test-retest cohorts in the experiment; p-values are calculated based on the Pearson’s 

correlation. For each cohort the left hippocampus (LH) and right hippocampus (RH) were selected as ROIs 

and the CSF-like (free water) signal-fraction was measured to examine the reliability of 3-tissue CSD derived 

free water estimates in subcortical structures specifically as well.

Dataset Tissue Subjects ICC Pearson’s Rho p-value

Immediate rescan CSF-like 59 0.9731 0.9636 <0.001

WM-like 59 0.9929 0.9868 <0.001

GM-like 59 0.9868 0.9748 <0.001

LH CSF-like 59 0.9578 0.9181 <0.001

RH CSF-like 59 0.9376 0.8915 <0.001

Short timescale (7–60 days) CSF-like 20 0.9546 0.9281 <0.001

WM-like 20 0.9692 0.9423 <0.001

GM-like 20 0.9852 0.9700 <0.001

LH CSF-like 20 0.9332 0.9169 <0.001

RH CSF-like 20 0.9094 0.8469 <0.001

Long timescale (3–4 months) CSF-like 52 0.9564 0.9364 <0.001

WM-like 52 0.8157 0.7200 <0.001

GM-like 52 0.8746 0.8024 <0.001

LH CSF-like 52 0.8516 0.7421 <0.001

RH CSF-like 52 0.8217 0.7118 <0.001
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