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Hereditary genetic disorders, cancer, and infectious diseases of the liver affectmillions of people around the globe
and are amajor public health burden. Most contemporary treatments offer limited relief as they generally aim to
alleviate disease symptoms. Targeting the root cause of diseases originating in the liver by regulating
malfunctioning genes with nucleic acid-based drugs holds great promise as a therapeutic approach. However,
employing nucleic acid therapeutics in vivo is challenging due to their unfavorable characteristics. Lipid nanopar-
ticle (LNP) delivery technology is a revolutionary development that has enabled clinical translation of gene ther-
apies. LNPs can deliver siRNA, mRNA, DNA, or gene-editing complexes, providing opportunities to treat hepatic
diseases by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Here we
discuss the state-of-the-art LNP technology for hepatic gene therapy including formulation design parameters,
production methods, preclinical development and clinical translation.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

“Survival rates have improved for almost every disease of every
organ in the last few decades, with one notable exception: liver disease”
[1]. This statement by The Lancet Commission clearly illustrates the
global burden of liver disorders and the need for more effective thera-
peutic strategies [2]. The most frequently occurring liver diseases in-
clude hepatitis, liver cancer, alcoholic liver disease, fatty liver disease,
and hereditary diseases. In addition to direct harmful effects, these dis-
eases can significantly affect the liver’s carbohydrate, fat, and protein
metabolism. The increase in lifestyle-related incidence rates and the
limited therapeutic efficacy of currently available treatments have re-
sulted in substantial drug development efforts targeting the liver [2].
Our ability to treat hepatic diseases by targeting their genetic back-
ground is increasingly becoming a clinical reality owing to the develop-
ment of nucleic acid-based therapeutics. In contrast to small molecule
drugs and biologics which target gene products (i.e. proteins), nucleic
acid therapeutics have the potential to therapeutically regulate essen-
tially any gene of interest at the DNA or RNA level. Their versatility in
treating inherited or acquired disorders originating in the liver stems
from the ability to induce efficient gene silencing (inhibiting pathologi-
cal/mutant protein production), gene expression (producing therapeu-
tic proteins) or gene editing (correcting dysfunctional/mutated genes).
Several nucleic acid therapeutics have been approved by the U.S. Food
and Drug Administration (FDA) and the European Medicines Agency
(EMA) with many more in various stages of clinical evaluation. These
therapeutics include antisense oligonucleotides (ASO) [3], small inter-
fering RNA (siRNA) [4,5], plasmid DNA (pDNA) [6,7], messenger RNA
(mRNA) [8,9], and complexes containing guide RNA (gRNA) as part of
gene editing approaches [10,11].

Using nucleic acids therapeutically in vivo is challenging because
of their unfavorable physicochemical characteristics, such as nega-
tive charge and relatively large size, which prevents their efficient
uptake into cells [12]. In addition, nucleic acids are susceptible to
degradation by nucleases in the circulation, suffer from rapid renal
clearance, and induce immunostimulatory effects via pattern recog-
nition receptors, resulting in adverse effects [13]. Therefore, the clin-
ical translation of nucleic acid therapeutics has been dependent on
chemical modifications and advanced delivery technologies to im-
prove nucleic acids’ stability, promote their target tissue accumula-
tion, enable their cellular internalization, and increase their target
affinity [14].

Lipid nanoparticle (LNP) systems are currently one of the most so-
phisticated non-viral gene delivery technologies enabling gene thera-
pies [15]. Decades of designing lipid-based delivery systems for small
molecule therapeutics [16] has driven efforts in adapting LNP technol-
ogy for nucleic acid delivery [17,18], particularly following thediscovery
of RNA interference (RNAi) [19,20]. These efforts included systemati-
cally optimizing all LNP components for efficient gene silencing and in-
corporating siRNA payload modification and chemistry [21,22],
polyethylene glycol (PEG) lipids [23–26], helper lipids [27,28], and, par-
ticularly, ionizable cationic lipids [29–31].
In 2018, these developments culminated in the approval of
Onpattro® (patisiran), the first RNAi drug, for treating hereditary
amyloidogenic transthyretin (ATTRv) amyloidosis [32,33]. This sys-
temic disease, which generally presents as progressive neuropathy, is
caused by mutations in the gene encoding the transthyretin (TTR) pro-
tein, resulting in amyloid fibril deposition in multiple organs [34].
Onpattro® relies on LNP technology for efficient TTR siRNA delivery to
hepatocytes following systemic infusion, inhibiting mutant TTR protein
production and subsequent fibril formation.

In this review, we provide an overview of the lipid nanotechnology-
mediated gene regulation approaches in the liver for treating various
diseases. First, we describe the liver’s microanatomy and how its cell
subtypes affect LNP accumulation and clearance. Second, we discuss
design criteria and production methods [35,36] for intravenously-
administered LNPs delivering nucleic acid therapeutics to the liver.
Finally, we highlight the (pre)clinical development of LNP-based ge-
netic drugs for treating genetic liver diseases, hepatocellular carcinoma
(HCC), and infections.

Of note, readers are referred to several excellent reviews covering
other clinically relevant liver-targeted nucleic acid therapeutics, such
as ASOs [3], N-acetylgalactosamine (GalNAc)-siRNA conjugates [4], or
adenovirus-associated vectors [6,7].

2. Liver microanatomy

With more than 500 functions ranging from metabolism (e.g. of
lipids, carbohydrates, or amino acids) and protein secretion (e.g. hemo-
stasis factors, plasma proteins, or hormones) to immune responses, the
liver is one of the most vital organs [37]. Hundreds of hepatic disorders
affectmillions of people globally, with significant personal and systemic
costs [2,38]. In order to treat such diseases and develop relevant thera-
peutics, it is crucial to understand the liver’s microanatomical and sub-
cellular features.

The liver is divided into functional subunits called hepatic lobules.
Nutrient and oxygen-rich blood from the portal vein and the hepatic ar-
tery traverse the lobules to the central vein (Fig. 1), resulting in LNP ex-
posure to scavenger cells within the liver. Liver sinusoidal endothelial
cells (LSECs) line the sinusoidal vessels, while liver-resident macro-
phages, i.e. Kupffer cells, are localized within the hepatic sinusoids. He-
patocytes, the most prominent cell type and a key cell type for many
diseases, are stationed behind the space of Disse [39,40].

2.1. Cell types within the liver microenvironment

The term “liver gene therapy” is often used to unilaterally describe all
gene therapy approaches for treating diseases originating in hepatocytes.
Although hepatocytes are the most prominent cell type within the liver,
several other cell types can interact with nanoparticles and affect their
performance [41–44]. It is therefore recommended that scientists ex-
pand their LNP studies to include single cell quantification rather than
the whole liver. Every liver lobule comprises parenchymal (i.e. hepato-
cytes) and non-parenchymal liver cells (i.e. LSECs and Kupffer cells). In



Fig. 1. Structure of liver lobules. The hepatic lobule is the liver’s functional unit. Blood from the portal vein and the hepatic artery traverse the lobules to the central vein. Bile canaculi
transport bile from the liver to the gut. Various metabolic pathways distribute along the porto-central axis of a liver lobule. GS, glutamine synthesis; Cho, cholesterol synthesis. Liver
sinusoidal endothelial cells (LSECs) line the hepatic blood vessels, while liver-resident macrophages, i.e. Kupffer cells, are localized within the hepatic sinusoids. Hepatocytes are
located behind the space of Disse with a sinusoidal (basolateral) membrane towards blood circulation. Figure adapted from Mosby et al. [48]
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addition to these threemajor cell types, the liver consists of several other
cell populations. A recent study revealed 20 discrete cell types ranging
from stellate cells (also known as Ito cells) and cholangiocytes to im-
mune cells such as B, T, or NK-like cells [45]. The human liver cell atlas
revealed additional subtypes within the liver microenvironment [46].
The most relevant cell types and their implications for LNP-based gene
therapy are discussed in the next sections, following the particle’s jour-
ney in the body after systemic administration [47].

Following intravenous injection, LNP-siRNA systems (composed of
CLinDMA:Cholesterol:PEG-DMG; 50:44:6 mol%) accumulate in all
major liver cell types (i.e. Kupffer cells, LSECs, and hepatocytes) in a
time- and dose-dependent manner, as demonstrated by Shi et al. [49].
When LNP-siRNA were administered at 0.3 mg siRNA/kg, similar
siRNA amounts were detected in Kupffer cells and hepatocytes. Doses
of 1 mg/kg to 9 mg/kg siRNA delivered 50% to 83%, respectively, to he-
patocytes. At 30 minutes post injection, LNPs were mainly localized in
the space of Disse, whereas 2 hours post injection LNPs accumulated
in hepatocytes. siRNAs delivered to Kupffer cells and LSECs were inac-
tive, but delivery to hepatocytes resulted in efficient gene silencing. A
similar intrahepatic distribution has recently been described for LNP-
DNA barcode systems (composed of MC3 or cKK-E12) by Sago et al.
[50]. However, direct comparison of datasets carried out with different
LNP systems, including variations in the lipid composition, ionizable
lipid, lipid-nucleic acid ratios, and nucleic acid type must be assessed
with caution. At a dose of 0.3 mg DNA /kg, LNPs accumulated in all
threemajor liver cell types, with higher doses in Kupffer cells and hepa-
tocytes than endothelial cells. In sharp contrast, gene expression follow-
ing LNP-mediated mRNA delivery demonstrated an inverse hierarchy
among hepatic cells: endothelial cells > Kupffer cells > hepatocytes.
Higher LNP doses corresponding to 1 mg/kg mRNA shifted expression
slightly towards hepatocytes while keeping the same pattern. Transfec-
tion of allmajor liver cell typeswith equal potencywas recently demon-
strated for LNP-mRNA systems (composed of branched-tail 306Oi10) at
a dose of 2 mg RNA/kg by Hajj et al. [51].
Indeed, targeting the right cell typewith the rightdose is crucial todevel-
oping effective therapeutics. It should be noted that the LNP compositions
described in these preclinical studies deviate from those used in the clinic
(except forMC3-basedLNPs). Systematic studiesare thereforeneeded to im-
prove our fundamental understanding of LNPs' in vivo behavior. Rigorous
control of physicochemical LNP characteristics such as size distribution,
zeta potential, and entrapment will be crucial to assess the intrahepatic dis-
tribution of a single LNP composition with different payloads.

2.1.1. Kupffer cells – Main phagocytotic center within the body
Following intravenous injection, liver-resident macrophages, i.e.

Kupffer cells, are the first hepatic cells to interact with LNPs (Fig. 1).
These phagocytic cells are part of the mononuclear phagocyte system
(MPS), also known as the reticuloendothelial system (RES). They com-
prise 80% of the entire macrophage population within the body, illus-
trating their importance in host defense and LNP elimination [52].

Three major elimination pathways have been described [56]. First,
negatively charged LNP systems are recognized by class A scavenger re-
ceptors (SR-A) expressed primarily on Kupffer cells resulting in rapid
clearance [41,57,58]. Second, mannose- and fucose-type receptors can
be leveraged to selectively target LNP systems to Kupffer cells. Third,
LNP opsonization by serum proteins results inMPS sequestration. Com-
plement factors (e.g. C3b or C1q) and serumopsonins such asfibrinogen
can coat LNPs with unfavourable characteristics including large size,
high surface charge, or lack of PEGylation [59–61]. Several research
groups have explored strategies to prevent Kupffer cell clearance in
order to redirect LNPs to hepatocytes. Transient Kupffer cell depletion
using clodronate-loaded liposomes or by knocking out the endocytic
Caveolin1 gene are efficientmethods in a research setting [41,43]. How-
ever, the clinical utility of such approaches is limited.

2.1.2. Liver sinusoidal endothelial cells – Restricting hepatocyte access
LSECs are located in close proximity to Kupffer cells and play impor-

tant roles in sequestering LNPs and restricting access to hepatocytes



Table 1
Comparison of liver fenestrations. Different species and strains have differently sized
endothelial fenestrae in liver sinusoids. All studies used electron microscopy techniques
to determine fenestrae diameters.

Species Strains Average diameter [nm] Reference

Human 107 ± 1.5 [54]
Rat Sprague–Dawley 161 ± 2.7 [65]

Wistar 114 ± 4.7 [63,69]
Mouse C57BL/6

BALB/c
141 ± 5.4
103 ± 23

[70]
[42]

Rabbit New Zealand White 103 ± 1.3 [70]
Fauve de Bourgogne 108 ± 1.3 [70]
Dutch Belt 124 ± 3.4 [70]
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[62]. Many structural and functional features have been elucidated by
Braet and Wisse [54,63–67]. LSECs line the hepatic sinusoids and form
pores, so-called fenestrations, that are clustered in sieve plates (Fig. 2).
Endothelial fenestrae range from 50 to 200 nm in diameter and differ
between species (Table 1). Therefore, liver fenestrae physically restrict
circulating LNPs’ access to the perisinusoidal space and thus limit cellu-
lar interactions with hepatocytes according to size. Several research
groups have investigated using pore-opening substances to modulate
fenestrae size with limited success [64]. In addition to their structural
characteristics, LSECs have high endocytic activity. A number of scaven-
ger receptors, including stabilin-2, can efficiently sequester anionic
nanoparticles [68].

2.1.3. Stellate cells – Implications for LNP delivery
Hepatic stellate cells – also known as Ito cells, vitaminA or lipid stor-

age cells – are localized within the perisinusoidal space of Disse [71]. In
healthy human subjects, stellate cells are quiescent and function as vita-
min A storage. However, liver damage and inflammatory processes in-
duce stellate cell differentiation into a myofibroblast-like phenotype
resulting in connective scar tissue production within the space of
Disse [72,73]. This pathophysiological process dramatically impairs the
transendothelial transport of any substance from the systemic circula-
tion to hepatocytes with major implications for nanoparticle-based
nucleic acid therapeutics [74,75].

2.1.4. Hepatocyte – The key target for hepatic gene therapy
Hepatocytes, comprising 70-80% of the total liver cell population, are

the most relevant hepatic target cell type for nucleic acid therapeutics
(Fig. 1). Owing to their broad range of functions, hepatocytes play a
key pathogenic role inmany disorders (Table 2). Hepatocytes are highly
differentiated with a sinusoidal (basolateral) membrane towards the
blood circulation and an apical membrane towards bile canaliculi. The
sinusoidal membrane with its microvilli exhibits surface receptors im-
portant for LNP recognition. The most important receptors for LNP-
nucleic acid are the low-density lipoprotein receptor (LDLR) and
asialoglycoprotein receptor (ASGPR) [76]. Within a healthy liver, hepa-
tocytes are postmitotic (i.e. non-dividing cells) with an average life span
of up to 6 months.

2.2. (Patho)physiological factors affecting hepatic gene therapy

Many factors can alter LNP accumulation and clearance. The follow-
ing sections detail important (patho)physiological factors affecting
intrahepatic LNP distribution.

2.2.1. Metabolic and cellular liver zonation
An often-overlooked challenge in hepatic gene therapy is metabolic

and cellular liver zonation, a phenomenon that separates various
Fig. 2. Liver sinusoids. (A) Cross section of a hepatic sinusoid. Liver sinusoidal endothelial cells f
Copyright 2009 American Physiological Society (B) Distribution of sinusoidal fenestrae size in h
Wisse et al. [54]. (C) Kupffer cell (KC) located within the hepatic sinusoid in close proximity to
pathways along the porto-central axis of a liver lobule. First, some
genetic disorders manifest in periportal or perivenous hepatocytes
[110,111]. Second, metabolic zonation can vary among species and
during development (infant versus adult). Third, different non-
parenchymal cell subtypeswithin the livermicroenvironment can affect
LNP clearance [45]. All these factors impact LNP development and gene
therapy outcomes.

Fig. 1 details the liver microarchitecture and its major metabolic
pathways. Metabolic liver zonation for glucose homeostasis, urea syn-
thesis, carbohydrates, bile acids, or lipid metabolism has been discussed
in several excellent reviews [110–113]. Advancements in omics and
single-cell techniques are continuously elucidating new cell subtypes
and improving our understanding of liver zonation [45,110]. As illus-
trated, ureagenesis is restricted to periportal hepatocytes, while most
intravenously injected nucleic acid therapeutics predominantly target
perivenous cells. Bell et al. demonstrated a zonation bias for transducing
hepatocytes in different species and at different ages [114].While trans-
gene expression in adult mice and dogs was predominantly pericentral
following viral transduction, the expression pattern in cynomolgus and
rhesus macaques wasmainly periportal. In contrast, newborn mice and
infant rhesusmacaques showed equal distribution. This bias has impor-
tant implications for gene therapies, e.g. to correct ornithine
transcarbamylase (OTC) deficiency [115]. Further studies arewarranted
to investigate such phenomena for LNPs.

Improved LNP design might facilitate gene expression within the
target zone along the porto-central axis. A recent study by Sago et al. in-
vestigated whether non-parenchymal cell subtypes differentially inter-
actwith LNPs and thereby affect their clearance [50]. Interestingly, LNPs’
intra-hepatic and sub-cellular distribution varies with lipid composi-
tion. Periportal endothelial cells (CD32Low) sequestered cKK-E12-
based LNPs more efficiently than central venous endothelial cells
(CD32High), most likely due to the blood flow direction and the order
of exposure. LNPs composed of MC3 had similar levels of delivery to
orm clustered fenestrations also known as sieve plates [53]. Reproduced with permission.
ealthy humans. Average diameter of endothelial fenestrae is 107 ± 1.5 nm. Adapted from
endothelial cells. Adapted with permission from UCSF Office of Medical Education [55].



Table 2
Highlighted diseases originating in hepatocytes. Hepatocytes play major roles in various liver diseases including genetic disorders, infections, and cancer. Selected diseases are listed in
order of their prevalence (from high to low), along with their pathophysiology, symptoms, current symptomatic treatments, and prevalence. Adapted with permission fromWitzigmann
et al. [77]

Disease Pathophysiology Typical symptoms Symptomatic
treatment

Prevalence [78] Ref.

Genetic Disease
(without
parenchymal damage)

Hemophilia disorders
(e.g., Hemophilia B)

Factor IX deficiency
[other coagulation factor mutations A and C]

Blood clotting
disorder, hemorrhage

i.v. infusion of
coagulation factor

1:20,000 [79,80]

Urea cycle disorders
(e.g., OTC deficiency)

Ornithine transcarbamylase (OTC) deficiency
[many other deficiencies such as Argininosuccinate synthetase
(ASS; Citrullin-aemia), N-acetyl glutamate synthetase (NAGS),
Carba-moylphosphate synthetase (CPS), Arginase (ARG)]

Hyperammo-nemia;
neuro-logical damage

Nitrogen scavenger
therapy,
hemodialysis

OTC: 1:80,000 [81,82]

Familial Hyperchol-
esterolemia
(e.g., LDL receptor
related)

LDL receptor protein mutation [also ApoB or PCSK9 mutations] Coronary artery
disease

Statins, LDL
apheresis

Homozygous
<1:100,000
Hetero: 1:500

[83,84]

TTR Familial amyloid
polyneuropathy (FAP)

Transthyretin mutation - deposition of insoluble protein Neurodegene-ration,
poly-neuropathy

Small molecule
drugs (tafamidis)

< 1:100,000, > in
some countries

[85,86]

Thrombotic disorders
(e.g., Protein C
deficiency type 1)

Thrombotic disease caused by PROC gene mutation [also other
inherited thrombophilias]

Risk of thrombosis Thrombo-embolism,
protein C
substitution

1:500,000–750,000 [87,88]

Primary hyperoxaluria
type 1

Alanine glyoxylate aminotransferase mutation Calcium oxalate
accumulation, kidney
damage

High fluid intake,
kidney
trans-plantation

1:333,000–1,000,000 [81,89]

Bilirubin metabolism
disorders (e.g.,
Crigler-Najjar
syndrome 1)

Uridine diphosphate glucuronosyltransferase (UGT1A1)
deficiency - impairment of bilirubin conjugation

Neurological damage;
kern-icterus (bilirubin
encephalopathy)

Phototherapy
(10–12h per day);
Plasma exchange

< 1:1,000,000 [90,91]

Genetic Disease (with
parenchymal damage)

α1-antitrypsin deficiency Mutations in the SERPINA1 gene; deficiency in protease
inhibitor for neutrophil elastase

Lung and liver damage Augmentation;
replacement therapy

1–5:10,000 [92,93]

Wilson´s disease Copper-transport P-type ATPase deficiency, Copper
accumulation

Liver and
neuro-logical damage

Copper
complexation

1:30,000– 100,000
individuals

[94,95]

Tyrosinemia disorders
(e.g., Tyrosinemia type
1)

Fumarylacetoacetate hydrolase (FAH) deficiency - lack of
tyrosine degra-dation [other types with enzyme deficiency in
tyrosine metabolism]

Hepatomegaly, liver
and kidney
dysfunction

Nitisinone
(inhibition of
tyrosine
degradation)

1:100,000 [96,97]

Iron overload disorder
(e.g., Hereditary
hemo-chromatosis
type 1)

HFE enzyme deficiency
[other iron dysregulation; Type 2: HFE2 or HAMP (hepcidin);
Type 3: TFR2 (transferrin receptor 2); Type 4: SLC40A1
(ferroportin)]

Liver cirrhosis, insulin
resistance

Phlebotomy,
iron-chelating

Type 1: >1:1,000
Type 2/3/4:
< 1 : 1,000,000

[98,99]

Glycogen storage
diseases (GSD) (e.g.,
Pompe´s disease)

Various types of enzyme deficiencies in glycogen synthesis Hepatomegaly,
hypoglycemia

Treatments depend
on type

1:50,000–1,000,000 [100,101]

Cancer
Hepatocellular
Carcinoma (HCC)

Chronic liver inflammation - cirrhosis - HCC Liver damage, liver
cancer

Curative or palliative
treatment

16:100,000 and
> 700,000 new cases
per year

[102–104]

Viral Infections
Hepatitis B Hepatitis B Virus (HBV) infection Liver damage,

cirrhosis, HCC
Interferon α, nucleos
(t)ide

350 million chronic
carriers

[105–108]

Hepatitis C Hepatitis C Virus (HCV) infection Liver damage,
cirrhosis, HCC

Interferon α,
protease inhibitors

180 million chronic
carriers

[105,109]
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both periportal and central venous endothelial cells. In contrast, clear-
ance of MC3-based LNPs was significantly higher in tolerogenic, M2-
like Kupffer cells (CD74Low) as compared to inflammatory, M1-like
Kupffer cells (CD74High). Recent findings emphasize this preferential
nanoparticle uptake by M2-type macrophages, with a clear hierarchy
among the different phenotypes (M2c > M2 > M2a > M2b > M1)
[116]. It is tempting to speculate that differences in apparent pKa values
and structural LNP characteristics resulted in distinct biomolecular co-
ronas preferentially redirecting LNPs to different cell subtypes. How-
ever, precise mechanistic studies are needed to elucidate underlying
phenomena and clearance by all intermediate phenotypes [117].

Sleyster et al. demonstrated that periportal Kupffer cells are more
abundant and have higher endocytic and lysosomal activity than
perivenous Kupffer cells [118]. These results demonstrate that whole-
tissue (entire liver) analysis should be replaced by dissociated single
cell-based techniques.
2.2.2. Pathophysiological remodelling
Liver disease progression results in pathological remodelling includ-

ing microanatomical or target receptor alterations that could affect
nanoparticle delivery and sequestration. Firstly, liver infections or met-
abolic disorders can lead to chronic cell damage and cell activation. This
can result in liver fenestrae re-arrangement or fibrotic material deposi-
tion by activated stellate cells within the perisinusoidal space. Thus, LNP
transport to hepatocytes is inhibited, as is access to the key target cell for
most gene therapies [119]. Hepatic inflammatory processes can also en-
hance hepatic nanoparticle sequestration by Kupffer cell activation
[116]. Secondly, downregulation of surface receptors crucial for LNP
binding decreases gene delivery efficiency. For example, two indepen-
dent studies have demonstrated lowering of ASGPR expression during
HCC progression (according to the Barcelona Clinic Liver Cancer stag-
ing) [120,121]. This has serious implications for liver cancer interven-
tions using ASGPR-targeting approaches. Thirdly, variations in serum
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proteins, such as apolipoprotein E (ApoE), are known to mediate spe-
cific LNP binding and might affect efficacy. A recent study investigated
the effect of ApoE polymorphisms in patients with ATTRv amyloidosis
treatedwith Onpattro® [122]. Niemietz et al. revealed that efficacy is in-
dependent of theApoE genotype but that ApoE downregulation reduces
efficacy. All the aforementioned pathophysiological alterations affect
specific cell binding and could potentially limit therapeutic outcomes.
Therefore, diagnostic tools to stratify patients for LNP-based gene ther-
apy offer interesting possibilities [123].

3. Designing LNPs for gene regulation in the liver

The fundamental LNP design parameters for nucleic acid delivery are
based on those established for small molecule liposomal formulations.
These parameters include appropriate particle size (for efficient terminal
sterile filtration and hepatic delivery), long-term stability in storage, op-
timized payload release rates to produce a therapeutic effect, robust and
scalable manufacturing processes, and efficient entrapment. In applying
these requisites to nucleic acid delivery systems, it became obvious that
additional lipid components and functionalities were required beyond
those used to compose small-molecule carriers. The very first nucleic
acid formulations, containing only phosphatidylcholine and cholesterol,
demonstrated that nucleic acid entrapment within a particle was
feasible, but the entrapment efficiency was poor [124,125]. Subsequent
development of the cationic lipid 1,2-dioleoyl-3-trimethylammonium-
propane (DOTAP) showed that ionic interactions between the lipids
and payload can dramatically increase entrapment efficiencies and intra-
cellular delivery. Toxicity issues, resulting from the cationic lipids’
permanent positive charge and non-biodegradable nature, plagued
these initial lipoplex-like formulations [126]. Through additional
Fig. 3. Ionizable cationic lipids or lipid-like materials (lipidoids) enabling gene therapy in th
headgroups contain tertiary amines which become protonated under acidic pH and have
sufficiently hydrophobic to promote incorporation into LNPs while endowing either stabilizin
(i) ionizable cationic lipids such as DLinDMA [133], DLin-KC2-DMA [30], and DLin-MC3-DMA
including the biodegradable molecules L319 [130], TT3 [135], and ssPalmE [136] as well as lipi
formulation development, and manufacturing process optimization, it
was determined that LNP systems required four components: ionizable
cationic lipids, phospholipids (typically phosphatidylcholine), choles-
terol, and PEG-lipids. The role of each component, the evolution of the
composition, and the manufacturing processes are discussed in the
following sections.

3.1. Ionizable cationic lipids

To date, a vast number of ionizable cationic lipids covering a wide
range of structures have been developed (Fig. 3), yet they all share a
few aspects: (1) The headgroups contain tertiary amines that become
protonated under acidic pH and typically are uncharged (or zwitter-
ionic) at neutral pH; (2) The lipid tails contribute to making the mole-
cule sufficiently hydrophobic to promote incorporation into a
nanoparticle during formation; and (3) The protonated lipids generate
structures that help elevate propensity formembrane fusion in acidified
endosomes following internalization by the target cell. In addition to
these similarities, the various lipids’ performed functions are essentially
identical. As the pH of the environment dictates the headgroup proton-
ation, LNP are prepared in an acidic aqueous buffer (e.g. pH 4) that pro-
motes the charge interaction between the ionizable cationic lipid and
the anionic nucleic acid. Subsequent buffer exchange into isotonic and
pH-neutral buffer generates the final LNP suspension with a near
net-neutral surface charge. This uncharged state is critical to preventing
immune responses upon intravenous administration and facilitates
delivery to hepatocytes [126]. The next function is tomaintain a positive
charge in the acidified endosome and promote membrane fusion to
allow cytosolic delivery of the nucleic acid. This fine balance of positive
charge at acidic pH andneutral charge at physiological pH is the result of
e liver. Various lipid-like materials have been developed for nucleic acid delivery. The
typically no charge at neutral pH. The lipid tails contribute to making the molecule
g or destabilizing properties. The above lipids are classified into three broad categories:
[31]; (ii) lipidoids like cKK-E12 [134] and C12-200 [29]; and (iii) next- generation lipids
ds from proprietary libraries belonging to Acuitas (A9) [137] and Moderna (L5) [138].
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substantial efforts towards optimizing the ionizable lipid for in vivo
nucleic acid delivery.

One of the first tested ionizable lipids, known as dioleyl-
dimethylaminopropane (DODMA), contained oleyl lipid tails (C18:1)
conjugated to the dimethylamino-propyl headgroup through ether
linkers. Using the molecular shape hypothesis as a guiding principle
[127], the three components of these lipids (headgroup, linker, and
tails) were systematically studied to determine optimal characteristics
for each. The molecular shape hypothesis describes the macrostructure
obtained upon hydration of a lipid with specific geometries. More spe-
cifically, lipids containing tails with larger cross-sectional areas than
the lipid headgroups result in HII phases or inverted micelles; compara-
tively, when the cross-sectional area of the tails is similar to that of the
head group (resulting in a cylindrical geometry), the lipids tend to from
bilayers. Comparing different lipid tail-unsaturation suggested that the
linoleyl chains (DLinDMA) provide optimal particle internalization
and potential to generate membrane-destabilizing HII phases [128].
Subsequent studies focused on improving the headgroup and linkers.
Replacing the ether linkers in DLinDMA with esters resulted in a lipid,
DLin-DAP, with substantially reduced potency [30]. Further studies sug-
gested that ester bond degradation within the acidified endosome con-
tributed to efficacy loss [129]. Simultaneously, a series of headgroup
modified lipids were tested, and DLin-KC2-DMA was designed with
vastly higher potency than DLinDAP and DLinDMA (Fig. 3) [30]. Further
modifications and screening led to the development of DLin-MC3-DMA
(Fig. 3) [31], used in the clinical formulation, Onpattro®, and now con-
sidered the gold-standard for ionizable cationic lipids.

Although several screening methods for ionizable lipids have been
devised, the critical potency test for hepatic targets was the in vivo
model for hepatic gene silencing; the Factor VII (FVII) model provided
a modestly high-throughput approach [29]. FVII is a serum protein pro-
duced by hepatocytes in the liver and secreted into the circulation. Its
short half-life enables gene silencing assessment on the protein level
within a short timeframe. It is important to stress that FVII-
knockdown screens specifically identify LNPs that target hepatocytes
and ignore all other hepatic cell types. LNP containing siRNA against
murine FVII were intravenously administered over a dose range of
0.001-10 mg siRNA per kg body weight and circulating FVII levels
were determined by chromogenic assay 24 hours later. The metric
used to compare formulations was the effective dose required to
achieve 50% gene silencing (ED50), and DLin-MC3-DMA (MC3) was de-
termined to be the most potent ionizable cationic lipid for LNP-based
gene silencing. The potency improvements cover the range of DLinDAP
with an ED50 of ~20mg/kg, while that for MC3was 0.005mg/kg inmice
[30,31].

Further developments focused on lipid biodegradability to reduce
potential toxicity, immunogenicity, and other adverse effects [130].
The design parameters for these lipids included high in vivo transfec-
tion efficiency, increased ability to be metabolized, and no genera-
tion or accumulation of toxic metabolites. One approach
incorporates an ester linkage, which can be easily hydrolyzed by in-
tracellular esterases or lipases, into the lipid tail. For example,
Maier et al. demonstrated that including ester bonds between car-
bons 9 and 10 in the linoleyl chain (named L319) resulted in similar
potency as the MC3-lipid but almost complete elimination over 24
hours [130]. The ester bond position was critical to the function
and elimination rate. When positioned closer to the head group,
these bonds affected the lipid pKa, and thus its gene silencing
potency. When positioned further away from the head group, the
lipids persisted in the liver for extended periods of time. In another
example, Shirazi et al. detailed the synthesis of degradable multiva-
lent cationic lipids containing a disulfide bond between the head
and tail groups, resulting in improved cell viability in vitro [131].
Akita et al. also synthesized a series of disulfide bond containing
lipid-like materials incorporating alpha tocopherol as the lipid tails
(ssPalmE) [132].
3.2. Helper lipids - phospholipid and cholesterol

Two LNP components – phospholipids and cholesterol – have gener-
ally been seen to promote formulation stability [139]. Although that ev-
idence is largely anecdotal in the LNP context, phospholipids such as
DSPC, with strong bilayer-forming properties and high phase transition
temperatures, help increase membrane rigidity and reduce membrane
permeability. While the role of cholesterol remains largely unclear in
the context of nucleic acid delivery systems, cholesterol-deficient parti-
cles can sequester cholesterol while in circulation, leading to potentially
destabilizing effects [140]. This sequestration process is largely driven
by the exchange of cholesterol away from the plasmamembrane of pe-
ripheral tissues into lipoproteins in circulation followed by equilibration
into circulating liposomes. Recently, Harashima and colleagues studied
cholesterol-free LNP-siRNA systems (only composed of the ionizable
cationic lipid CL15H6, phospholipid, and PEG-lipid) and they observed
decreased potencies in the presence of serum likely due to particle in-
stability as a result of cholesterol accumulation [141].

Two studies suggested that the amount of cholesterol typically for-
mulated into an LNP is larger than what can be stably retained in
LNPs. More recently, it was determined that ~30-40 mol% helper lipid
is required to efficiently entrap siRNAwithin LNPs, providing additional
insight into the role of these helper lipids [27]. The helper lipids serve to
space-out ionizable lipids to achieve a membrane surface charge of ap-
proximately +1 per nm2 (siRNA has a surface charge of approximately
-1 per nm2).

Limited information is available on the role of helper lipids for LNP
activity. However, some evidence has suggested that the replacement
of DSPC with DOPE in lipidoid-based LNPs improves mRNA delivery
in vivo [142]. For LNP-pDNA formulations, certain unsaturated phospha-
tidylcholines (i.e., SOPC andDOPC) improved the LNP activity over DSPC
in the presence of FBS in vitro [28]. DOPE-containing LNP-pDNA systems
showed best activity in murine serum suggesting a potential role of
helper lipids in modifying the LNP surface affinity to distinct apolipo-
protein subtypes. An additional role of cholesterol in LNP systems was
recently investigated [143]. Incorporating oxidized cholesterols such
as 20α-OH redirected LNP-mRNA systems from hepatocytes to hepatic
endothelial cells and Kupffer cells. Although the mechanism of modify-
ing LNP tropism remained elusive, formation of different protein co-
ronas and/or recognition by scavenger receptors expressed on hepatic
RES (such as scavenger receptor class B type I as binding site for oxi-
dized LDL) might have resulted in redirection of LNPs [144,145].

3.3. PEG-lipid

The final LNP component, the PEG-lipid, is engineered to perform
two specific functions. First, PEG-lipids incorporate into the emerging
nanoparticle during LNP formation. As LNP systems do not contain an
aqueous core, PEG-lipids reside almost exclusively on the LNP surface,
and their concentrations control particle size [146]. Both the PEG
molecular weight as well as the molar percentage of PEG-lipid affect
the characteristics of lipid-based particles [147–149]. Specifically, as
the PEG-lipid is increased from 0.25 mol% to 5 mol%, a reduction in
LNP size is observed from ~120 nm to 25 nm, but further increases to
PEG-content do not modify particle size [24,147]. Second, they improve
the shelf-stability by creating a steric barrier that extends away from the
surface of the LNP, thereby preventing particle aggregation and improv-
ing in vivo circulation lifetimes. However, for transfection purposes,
PEG-lipids have an established inhibitory effect [150,151]. Based on
the hypothesizedmechanism of LNP function, the nanoparticle requires
an intricate balance between stability in storage and circulation, and
instability within the cell to support intracellular delivery [152]. Diffus-
ible PEG-lipids helped stabilize particles while enabling intracellular
delivery [25,151]. These lipids are composed of acyl chains that are
14-carbons in length and can dissociate rapidly from the LNP in the
circulation [153]. Two hours post administration, only 20% of the
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injected PEG-lipid is associated with the LNP. In contrast, PEG-lipids
with 18-carbon acyl chains, incorporate into the LNP and do not dissoci-
ate from the particle in the circulation. At high concentrations, these
PEG-lipids can contribute to extending circulation half-life (from < 30
minutes for diffusible PEG-lipid to > 2 hours) [23,153]. However, LNPs
designed to target hepatic disorders do not require a prolonged circula-
tion lifetime due to the liver’s natural ability to sequester nanoparticles.
Therefore, diffusible PEG-lipids are ideal for such applications.

3.4. Manufacturing

LNP production methods have evolved over time with certain pro-
cesses gaining prominence. Rapid-mixing methods have gained favor
for their decreased labour requirements as they combine nanoparticle
formation and nucleic acid entrapment into a single step [154], and pro-
vide more homogenous nanoparticles. The first report of rapid-mixing
was by Batzri and Korn, where an ethanolic lipid solution was rapidly
injected into an aqueous solution to form liposomes [155]. Applying
this method to nucleic acids involved combining pre-formed cationic li-
posomes with nucleic acids to produce lipoplexes [156]. More recently,
a T-junction mixing chamber was used for two separate mixing steps
[154]. The first mixing step brought together an ethanolic lipid stream
with an acidic aqueous buffer containing nucleic acid at an equal flow
rate (1:1 v/v mixing). This created metastable particles that were com-
bined with aqueous buffer in a second mixing step (through the T-
mixer) to dilute the ethanol content and stabilize the nanoparticles. To
simplify this process into a single step, the mixing ratio was modified
to 1 part ethanol and 3 parts aqueous. These rapid-mixingmethods pro-
duce homogenous nanoparticles with entrapment efficiencies > 90%
and, importantly, have been proven to be fully scalable
[33,146,157,158].

3.5. Optimizing LNP characteristics

A number of recent studies have demonstrated that LNP systems ac-
cumulate in various cell types within the liver [49,50,143,159]. Impor-
tant physicochemical characteristics that modulate intrahepatic LNP
distribution and activity are particle size, apparent pKa value (and
resulting surface charge), and lipase sensitivity [159]. For clinical utility,
it is also expected that these formulations display high entrapment
efficiencies.

A recent study by Chen et al. investigated how LNP size (30 nm – 120
nm) influences gene silencing in hepatocytes [153]. A clear hierarchy in
gene silencing potency was observed with LNP-siRNA systems around
80 nm exhibiting maximum activity (78 nm > 42 nm > 38 nm >>
27 nm > 117 nm). This LNP size optimum results from a combination
of two factors: 1) smaller particles being less active (less stable and
less fusogenic); and 2) larger particles (>100 nm), not being able to ac-
cess hepatocytes (limited by fenestrations). Sato et al. verified these re-
sults demonstrating significant reduction in hepatocyte gene silencing
for LNP-siRNA sizes above the average liver fenestrae diameters [159].
Interestingly, similar gene silencing activity in LSECs was observed for
LNP-siRNA sizes up to 200 nm. This suggests that LNP sizes between
120 nm to 200 nm could be used for LSEC targeting.

A key advance during the development of Onpattro® for hepatocyte
gene silencingwas identifying an optimized ionizable cationic lipidwith
an apparent pKa between6.2 and 6.5 [17,31]. Further increasing the pKa
value to 7.15 resulted in improved gene silencing in LSECs [159,160].
Incorporating ionizable cationic lipids exhibiting higher pKa values in-
creased accumulation in theMPS, most likely due to scavenger receptor
recognition [159].

The lipid sensitivity to phospholipase is another important factor
modulating intrahepatic LNP distribution and activity. Three different li-
pases have been described including the lipoprotein and endothelial li-
pase in LSECs and the hepatic lipase in hepatocytes [161]. LNP-siRNA
systems that incorporate ionizable cationic lipids that are sensitive to
endothelial lipase (e.g. ester linkages between head and tail functions)
have enhanced gene silencing in hepatocytes but exhibit significantly
reduced activity in LSECs [159]. Co-treatment with lipase inhibitors or
incorporating lipase-resistant ionizable cationic lipids can recover
gene silencing in LSECs [159].

Based on microanatomical, subcellular, and (patho)physiological
considerations, an ideal LNP for gene regulation in hepatocytes must
satisfy the following design criteria: nanoparticle size < 80 nm to effi-
ciently pass through liver fenestrae and improve LNP stability, apparent
ionizable cationic lipid pKa value around 6.4, near neutral surface
charge to prevent sequestration by theMPS, and lack of immune stimu-
lation and toxic effects. Achieving these and other criteria facilitating ef-
ficient nucleic acid entrapment and LNP formulation are detailed in the
following section.

It is important to mention that upon intravenous administration
LNPs adsorb serum proteins on their surface. Many, if not all, of the
abovementioned physiochemical characteristics impart distinct proper-
ties to the LNPs which ultimately influence protein adsorption. This
“biomolecular corona” covering nanoparticles significantly impacts sys-
temic circulation and nano-bio interactions [162–164]. Efficient
targeting and gene regulation in hepatocytes stems from the presence
of ApoE in the corona of LNPs and enabled the success of Onpattro®
[33,76]. A recent publication suggested that the ionizable lipid composi-
tion plays a major role in the corona formed [165]. How the biomolecu-
lar corona can be leveraged to optimize targeting of different cell types
within the liver microenvironment needs to be investigated.

4. Preclinical development and rationale for lipid nanotechnology

Research in the late 1980s focusing on in vivopDNAdelivery showed
that in the absence of a delivery system, naked nucleic acid injected into
the circulation rapidly broke down and the products accumulated in he-
patic tissue [166]. As interest towards ASOs and siRNA grew, LNP com-
positions and production methods simply translated from plasmids to
these shorter nucleic acids [167]. More recently, formulations have be-
come sufficiently potent to support discovery and translation of mRNA
therapeutics [168]. Fig. 4 illustrates the different LNP-based treatments
for hepatic diseases by silencing pathogenic genes, expressing thera-
peutic proteins, or correcting genetic defects. Table 3 highlights preclin-
ical LNP-based hepatic gene therapy approaches.

4.1. DNA delivery for long-term gene therapy and barcoding technologies

Refining lipid-DNA complexes to more advanced formulations re-
quired additional lipids, and such nanoparticles were termed stabilized
plasmid lipid particles (SPLP) [169,170]. The composition of these for-
mulations largely drew from those used for small molecule therapeutics
and included about 6-8mol% ionizable lipid at the expense of the phos-
phatidylcholine (i.e. DSPC). Delivery with SPLP systems showed no evi-
dence of hepatic toxicities compared to the lipoplex-equivalent, which
resulted in a 100-fold increase in serumALT/AST levels [171]. These for-
mulations were designed in a manner to promote accumulation at dis-
seminated diseased sites (infection, inflammation, and solid tumors),
requiring extended circulation residence times. With circulation half-
lives nearing 7-8 hours, they induced reporter gene expression in
tumor tissue, and substantially lower levels in the liver. However, as for-
mulation development proceeded, it became clear that a limitation of
non-viral technology was the inability to deliver nucleic acid into the
nucleus of a target cell.

To address this issue, efforts have been made to increase nuclear
targeting by including cell penetrating or nuclear localization sequence
(NLS) peptides in the lipid formulations. These short, cationic peptides
are thought to interact with the anionic DNA and enable nuclear trans-
location through nuclear core complexes. Initial studies using the Sim-
ian virus SV40 T antigen NLS peptide in a DOTAP/DOPE (50:50)
liposome demonstrated improved nuclear targeting in vitro and up to



Fig. 4. Therapeutic applications of LNPs enabling genetic drugdelivery. LNPs can deliver siRNA,mRNA,DNA, or gene editing complexes, providing opportunities to treat hepatic diseases by
silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Following LNP internalization, nucleic acid therapeutics are released into the cytoplasm. DNA
vectors require nuclear translocation to be active. Adapted with permission from Buck et al. [169]. Copyright 2019 American Chemical Society.

Table 3
Selected LNP-based nucleic acid therapeutics in preclinical development. LNPs can deliver siRNA,mRNA, DNA, or gene editing complexes, providing opportunities to treat hepatic diseases
by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects.

Payload Gene target/product LNP composition Cellular target / indication Administration
route

Model Reference

Gene silencing
siRNA FVII DMAP-BLP / DSPC / cholesterol / PEG-DMG (50:10:

(39.75 – x):(0.25+x))
Hepatocytes / Screening Subcutaneous C57Bl/6 mice [147]

siRNA FVII Ionizable cationic lipid / DSPC / cholesterol /
PEG-DMG
40:10:40:10

Hepatocytes / Screening Intravenous C57BL/6 mice [31]

siRNA TTR DLin-MC3-DMA / DSPC / cholesterol / PEG-DMG
50:10:38.5:1.5

Hepatocytes / ATTRv amyloidosis Intravenous Cynomolgus
monkeys

[31]

siRNA ApoB DLinDMA / DSPC / cholesterol / PEG-C-DMA
40:10:48:2

Hepatocytes / Hypercholesterolemia Intravenous Cynomolgus
monkeys

[133]

Gene expression
mRNA anti-HIV-1 antibody

VRC01
Ionizable cationic lipid / PC / cholesterol / PEG-lipid
(50:10:38.5:1.5)

Hepatocytes / Passive
immunotherapy against HIV-1

Intravenous BALB/C mice [201]

mRNA Luciferase /
Cre-recombinase

DOTMA/DOPE
DOTMA/Chol

Screening Retro-orbital NMRI mice /
Reporter mice

[209]

pDNA Luciferase Cationic lipid/Chol-GALA/Malto-PEG6-C11
30:40:30

Screening Intravenous ICR mice [174]

Gene editing
sgRNA
mRNA

TTR
Cas9

LP01 / DSPC / cholesterol / PEG-DMG
45:9:44:2

Hepatocytes / ATTRv amyloidosis CD-1 mice
Sprague Dawley
rats

[206]

sgRNA
mRNA

PCSK9
Cas9

BAMEAO16B / cholesterol / DOPE / DSPE-PEG2000
16:8:4:1

Hepatocytes / Hypercholesterolemia Intravenous C57BL/6 [210]
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a threefold increase in the plasmid-encoded luciferase signal [172]. For-
mulations utilizing the cell-penetrating peptide, octaarginine [173], or
the recently identified non-peptide NLS [174], maltotriose, also demon-
strated an increase in both nuclear targeting and gene expression
in vitro. Maltotriose-incorporated liposomes also demonstrated higher
hepatic luciferase expression levels in vivo compared to conventional
DOTAP lipoplexes. Nevertheless, non-viral technology (without DNA
modifications or specific nuclear targeting moieties) has generally
been unsuccessful in transfecting non-dividing cells and in liver-
specific applications but finds use in robust and safe transfection of neo-
plasms or developing tissues.

The ability to transfect dividing (liver cancer) cellswasmost recently
highlighted in a study where LNP systems optimized for pDNA were
found to yield potent transfection [28]. Starting with the formulation
optimized for siRNA delivery containing MC3 and DSPC, Kulkarni et al.
found that replacing the helper lipid and ionizable lipid with unsatu-
rated lipids such as SOPC or DOPE and DLin-KC2-DMA, respectively,
lead tomuch higher in vitro transfection ofmultiple liver cancer derived
cell lines with little toxicity. This suggests that LNP systems, once
optimized for DNA vector delivery, can not only find utility for protein
expression, but potentially also in gene editing with CRISPR/
Cas9-encoded plasmids for treating hepatic diseases.

While most DNA delivery applications have focused on gene ther-
apy, a highly interesting application is employing DNA as barcodes for
diagnostic and screening purposes [148]. Utilized as short fragments
and each with a unique sequence, DNA barcodes allow for high-
throughput, multiplexed in vivo screening to determine the
biodistribution, uptake, and functional activitywithin the livermicroen-
vironment (as outlined in section 2.2. and 3.5) [50,143]. Notably, as a di-
agnostic tool, DNA barcodes have also been used for developing
personalized cancer nanomedicines by co-loading them together with
anticancer drugs into lipid nanocarriers. Utilizing this strategy, multiple
anticancer medicines can be administered at sub-therapeutic doses and
the most effective drug can subsequently be identified in the biopsies
according to their barcode [175]. As only limited therapies are available
for liver cancer, this methodology could well be used towards identify-
ing effective and novel treatments for liver cancer. Although lipid cal-
cium phosphate nanoparticles (LCPs) are beyond the scope of this
review, in the context of liver cancer, it is relevant to note the work by
Leaf Huang and colleagues demonstrating that LCP-based DNA delivery
enables mitigation of liver metastasis [176–178].

4.2. siRNA for transient gene silencing

All procedures and compositions developed for DNAdelivery readily
translated into effective delivery systems for other nucleic acids [167].
siRNA only requires cytoplasmic delivery as all RNA-induced silencing
complex (RISC)-related machinery is located in the cytosol. This quick
translation resulted in demonstrating the first robust gene silencing in
non-human primates (NHP) using nanoparticles known as stable
nucleic-acid lipid particles (SNALPs) containing siRNA against apolipo-
protein B (ApoB) [133]. Only twelve years later, Onpattro® was ap-
proved by the FDA for treating ATTRv [179].

In the early 2000s, the concept ofmodifying nucleic acidswas largely
applied to improving their cytoplasmic persistence to enable long-term
knockdown (decreased siRNA turnover). As such,modified siRNAswere
entrapped into LNP systems with the rationale that a delivery system
was specifically required to increase siRNA’s liver accumulation and in-
tracellular quantity. This had to be achieved in a manner where the cost
of rawmaterials and processingwas offset by a potent formulation, i.e. a
drastic reduction in material requirement made the formulation com-
mercially viable. With LNP formulations containing DLin-MC3-DMA,
murine data suggested that as little as 0.005 mg siRNA/kg body weight
was required to achieve 50% gene silencing, with no observable toxic-
ities. While alternative technologies such as siRNA-conjugates are also
gaining prominence [4], the applicability of LNP technology for hepatic
targets is quite clear. It should be noted that siRNA-conjugates require
substantially higher doses (~1mg/kg, weekly subcutaneous administra-
tion) in order to achieve gene knockdown [180]. LNP-siRNA systems
have shownutility in decreasing viral loads and virulence, various appli-
cations in hepatic oncology, and in metabolic liver disease treatment.

RNAi finds strong support in anti-viral applications where strict
adherence to treatment regimens is critical to success. LNP-siRNA treat-
ments can provide sustained knockdown for months leading to
long-term viral gene suppression with a potential to eliminate certain
viruses. One example is using LNP-siRNA as a therapeutic intervention
for the Ebola outbreak in 2013, which resulted in almost 28,000 cases
and 11,300 deaths [181]. LNP-siRNA formulations could be rapidly
adapted to provide siRNA complementarity to the specific strain and
showed that a combination of three siRNAs against the viral RNA synthe-
sis genes suppressed the infection in non-human primates (NHP) [181].
Similarly, LNP-siRNA modification with GalNAc-conjugated PEG-lipids
to specifically accumulate in hepatocytes (of chimeric mice with human-
ized livers) reduced Hepatitis B Virus (HBV) genomic DNA and antigens
[182]. Other anti-viral LNP examples include those for hepatitis delta
virus (co-infected with HBV) and hepatitis C virus [183,184].

LNP-mediated siRNA delivery for hepatic oncology applications has
largely focused on downregulating genes critical for cell cycle regula-
tion, thereby inducing apoptosis. One example is LNP-siRNA against
polo-like-kinase 1 (PLK1), which regulates multiple cell cycle progres-
sion stages. PLK1 is over expressed in multiple tumors including liver
cancer and down-regulation has been successful as an intervention
[185]. Similarly, simultaneous vascular endothelial growth factor
(VEGF) and kinesin spindle protein (KSP) knockdown has been shown
to inhibit proliferation in hepatocellular carcinoma and induce apopto-
sis [186]. Zhou et al. demonstrated that delivery of the small RNA let-7g
inhibited tumor growth and dramatically extended survival in a MYC-
driven genetic liver cancer tumor model [187].

Examples of LNP-siRNA delivery for liver-relatedmetabolic disorders
are plentiful. An interesting clinical observationwas that loss-of-function
mutations in proprotein convertase subtilisin/kexin type 9 (PCSK9) re-
sulted in low cholesterol levels in circulation. This finding prompted
the investigation into using siRNA to downregulate PCSK9 as a treatment
for hypercholesterolemia. Murine and NHP studies showed that specific
PCSK9 transcript lowering resulted in reversible and durable knockdown
of PCSK9, apolipoprotein B (ApoB), and low-density lipoprotein associ-
ated cholesterol [188]. Similarly, in the first demonstration of RNAi in
higher-order mammals, ApoB knockdown resulted in reduction of
ApoB levels, serum cholesterol content, and LDL particle concentration
in NHPs [133]. Other lipid-trafficking related targets include apolipopro-
tein C3 knockdown for hyperlipidemia [189], and angiopoietin-like 3
protein inhibition for hypertriglyceridemia [190].

Lastly, we discuss the specific case of Onpattro® (patisiran), an LNP-
siRNA formulation targeting the ttr gene. TTR is a homotetrameric serum
protein that is synthesized in hepatocytes and secreted into the systemic cir-
culation (note similarity to FVII) [191]. Whenmutated, TTR deposits as am-
yloid fibrils in cardiac or peripheral nervous tissue resulting inmulti-system
failure including ocular, cardiovascular, nephropathy, gastrointestinal, and
neuropathy (autonomic and peripheral sensorimotor) manifestations. TTR
downregulationwith LNP-siRNA is a powerful approach to treat this disease.
Murine data suggested that at doses of 0.1 mg/kg siRNA, > 85% liver ttr
mRNAknockdownandTTRprotein serumconcentrations couldbeachieved
[192]. Further testing inNHPs showed that an intravenous dose of 0.3mg/kg
every 4weeks resulted in rapid and reversible knockdown, although serum
levels increased two weeks after each administration. Increasing the dosing
frequency toonceevery threeweeks resulted in sustainedandrobust knock-
down (> 90%) following the third dose.

4.3. mRNA for gene expression and genome editing

Introducing exogenous mRNA to induce a therapeutic effect has
great potential for a variety of applications. The true benefits of LNP
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technology for gene regulation in the liver are best highlighted with
mRNA. Specifically, mRNA requires a delivery system as modifications
to the nucleotides alone have not proven successful in meeting the po-
tency requirements for clinical translation. In addition to this, the exor-
bitant costs of mRNA production imply that lower doses and less
frequent dosing regimens are more likely to gain favourable reception.
As such, dramatic advances are seen formRNA formulations as vaccines,
in protein replacement therapies, and gene editing.

LNP formulations containingmRNA are ideal vaccines. The develop-
ment is conceptually straightforward and potentially very rapid. Pre-
clinical evidence of using LNP-mRNA as vaccines against infectious
diseases or cancer is extensive and several clinical trials have been initi-
ated, including vaccines to combat the current COVID-19 pandemic.
Since most vaccine applications rely on intramuscular or intradermal
administration and the focus of this review is gene regulation in the
liver, the reader is referred to several recent articles [193–200]. How-
ever, several recent studies have used the “liver as a bioreactor” to pro-
duce relevant neutralizing antibodies.

Pardi et al. showed that intravenous delivery of LNP-mRNAencoding
a broadly neutralizing antibody against HIV-1 resulted in sufficient ex-
pression to protect from HIV-1 challenge [201]. Similarly, another
study showed that an LNP-mRNA system as prophylactic and therapeu-
tic anti-rabies intervention protectedmice fromaRabies virus challenge
[202]. The prophylactic treatment involved a single dose 40 μg LNP-
mRNA encoding an anti-rabies antibody intravenously administered
one day prior to a 5-fold LD50 insult of Rabies virus (i.m.). The therapeu-
tic intervention (at the same mRNA dose) was given 2 h post-Rabies
virus challenge. In the same study, LNP-mRNA encoding a neutralizing
antibody afforded complete protection to mice six hours following a
botulinum neurotoxin challenge (4x LD50). Finally, this study also
showed that LNP-mRNA encoding rituximab administered intrave-
nously (at 10 or 50 μg mRNA) following a lethal challenge of Raji cells,
resulted in either tumor growth deceleration or almost completely
abolished tumor development.

LNP-based mRNA formulations have shown strong promise as
therapeutics in disease states where genetic mutations result in a
non-functional protein. Delivering exogenous (and functional) mRNA
to generate a functional protein can alleviate stress from certain dis-
eases. Initial studies that showed clear clinical utility are briefly
highlighted here: Intravenous administration of LNP-mRNA encoding
erythropoietin (EPO) resulted in increased EPO serum levels corre-
sponding to increased reticulocyte, and elevated hematocrit in porcine
and non-human primate (NHP) models [203]. Similarly, delivering
mRNA encoding human clotting factor IX (FIX) to FIX-knockout mice
displayed a reduction in hematocrit loss following injury, indicating
FIX expression can rescue hemophilia B phenotypes [204].

Gene editing is the next major application of mRNA therapeutics.
Various approaches have been explored including CRISPR/Cas9 and
zinc-finger nucleases (ZFN). An initial gene editing demonstration
used a combination of viral delivery (sgRNA and repair template) com-
bined with LNP-mRNA encoding Cas9 to correct a mutation in the
fumarylacetoacetate hydrolase gene [205]. The study showed approxi-
mately 6% of hepatocytes were edited and it is assumed that the limita-
tion was the viral delivery. Comparatively, Finn et al. used LNP-mRNA
formulations encoding for Cas9 protein, co-delivered with sgRNA
targeting ttr. They showed sustained 12-month circulating TTR knock-
down (97%) following a single administration of 3 mg/kg RNA body
weight in a murine model with ~70% editing in the liver (~70% liver
cells are hepatocytes) [206]. Similarly, LNP-mediated delivery of
mRNA encoding ZFN targeting ttr and pcsk9 resulted in > 90% knockout
at mRNA doses 10-fold lower than reported previously [137]. In the
same study, co-delivery of LNP-mRNA encoding ZFN targeting the albu-
min gene and a viral vector for templates of promotor-less human IDSor
FIX resulted in integration of those templates at the albumin locus and
generated therapeutically relevant levels of those proteins in murine
models. In addition to continuous efforts in optimizing ionizable
cationic lipids for enhanced genome editing in the liver, a recent study
by Cheng et al. demonstrated that bioengineering LNP formulations
with additional lipids, so-called selective organ targeting (SORT) mole-
cules, can tune the LNP's efficiency and biodistribution. Adding 20mol%
of an ionizable cationic lipid such as DODAP significantly enhanced the
genome editing in the liver, while addition of cationic or anionic SORT
molecules enabled specific gene regulation in the lung or spleen
[207,208].

5. Clinical translation of lipid nanotechnology

The rapid translation from lab bench to patients was primarily
driven by a holistic design of LNP composition and processes to support
scalability while maintaining potency. Onpattro® paved theway for the
next generation of lipid-based therapeutics and its success in phase 2
trials spurred development of mRNA therapeutics. Gene therapies en-
abled by LNPs are under clinical development for a broad range of appli-
cations (Table 4) [211]. In this section we discuss the clinical data for
Onpattro® and somemRNA therapeutics currently under development.

The Onpattro® story, while heavily reviewed in literature, makes for
a compelling case to support the development of other LNP nucleic acid
formulations [33]. Initial efforts laid the foundations to support further
clinical development, although it was clear that improved potency
was required. DLinDMA-based LNP-siRNA against ttr (ALN-TTR01)
was administered once to 24 healthy subjects at doses ranging from
0.01 to 1.0mg siRNAper kg bodyweight, with another eight subjects re-
ceiving placebo [212,213]. Over the period of 30 days, 38% serum TTR
reduction was observed with persistent reduction for approximately
one week. While the knockdown was arguably insufficient for thera-
peutic efficacy at the highest dose, the study validated the RNAi ap-
proach in humans. Subsequent clinical development used MC3-based
LNP, named ALN-TTR02 or Onpattro® (patisiran). Another phase 1
study included 13 healthy subjects receiving Onpattro®, four subjects
receiving placebo, and another six receiving a control siRNA [214]. The
Onpattro® doses ranged from 0.01 to 0.5 mg/kg siRNA and TTR serum
levels were measured over 70 days. At siRNA doses of 0.3 mg/kg, rapid
and robust ttr knockdown was observed; this was sustained over two
weeks for a period of 21 days following administration. At these doses
and with promising results, further development was warranted.

In a subsequent phase 2 study, the dosing regimen for Onpattro®
was established [86]. ATTRv patients received two Onpattro® infusions
at doses 0.01-0.3 mg/kg every four weeks or 0.3 mg/kg every three
weeks. The Q3W dosing regimen resulted in a mean 85% knockdown
after the second dose. Only few mild-to-moderate infusion-related re-
actions were observed and one patient reported three serious adverse
events. The similarity to preclinical data is quite astonishing; in NHP
studies, increasing dosing frequency to Q3W (from Q4W) resulted in
96% maximal knockdown, and ~85% mean knockdown following the
initial dose [192].

In the phase 3 APOLLO study, 148 patients received Onpattro® at a
dose of 0.3 mg/kg once every three weeks, with 77 patients receiving
placebo [32]. The primary endpoint was the modified neuropathy im-
pairment score + 7 (mNIS + 7), which is used to measure the level
polyneuropathy in ATTRv patients. The test uses highly standardized,
quantitative methods to measure muscle weakness, muscle stretch re-
flexes, sensory loss, and autonomic impairment with higher scores cor-
responding to disease worsening [215]. Over a period of 18 months,
ATTRv patients on placebo showed a linear increase in their mNIS+7
from 0 to 28.0. Onpattro®, with an mNIS+7 of -6.0, is the only ATTRv
treatment that has been able to halt and even reverse disease progres-
sion in patients [32]. In addition to this, Onpattro® also met all second-
ary endpoints. This led to EMA and FDA approval in August 2018 [33].

With LNP technology validated as a safe approach for gene modula-
tion in the liver, a wide range of applications have emerged. A substan-
tial effort is focusing on vaccine applications without necessarily
transfecting the liver. However, the potential for treating liver diseases



Table 4
Highlighted LNP-based nucleic acid therapeutics in the clinic. Drug products in clinical development or approved by the U.S. Food and Drug Administration (FDA) and the EuropeanMed-
icines Agency (EMA). Company code names, generic (non-proprietary) names and company names for the products are given in brackets. Table adapted from Kulkarni et al. [18]

Product Nucleic acid / transgene Indication Administration
route

Clinical stage Ref.

Gene silencing
Onpattro®, patisiran (Alnylam Pharmaceuticals) siRNA-TTR ATTRv amyloidosis Intravenous Approved

(2018)
[223]

ALN-VSP02 (Alnylam/Ascletis) siRNA-VSP/VEGF-A Solid tumors (liver
involvement)

Intravenous Phase I
(completed)
NCT01158079

[224]

ARB-001467 (Arbutus Biopharma) Three siRNAs against four HBV transcripts Hepatitis B Intravenous Phase 2
(completed)
NCT02631096

[225]

TKM-080301, TKM-PLK1 (Arbutus Biopharma) siRNA-PLK1 Solid tumors (NET, ACC) Intravenous Phase 1/2
(completed)
NCT01262235

[226]

Atu027 (Silence Therapeutics) siRNA-PKN3 (+gemcitabine) Advanced / metastatic
pancreatic cancer

Intravenous Phase 1/2
(completed)
NCT01808638

[227]

ND-L02-s0201, BMS-986263 (Nitto Denko
Corporation / Bristol-Myers Squibb)

siRNA-HSP47 Idiopathic pulmonary
fibrosis

Intravenous Phase 2
(recruiting)
NCT03538301

[228]

EPHARNA (M.D. Anderson Cancer Center) siRNA-EphA2 Advanced or recurrent
solid tumors

Intravenous Phase 1
(recruiting)
NCT01591356

[229]

Gene expression
Lipo-MERIT (Biontech RNA Pharmaceuticals) Four mRNAs encoding melanoma-associated

antigens
Melanoma Intravenous Phase 1

(recruiting)
NCT02410733

[230]

IVAC_W_bre1_uID and IVAC_M_uID (Biontech RNA
Pharmaceuticals)

mRNAs encoding tumor-associated antigens
and/or personalized neoantigens

Triple negative breast
cancer

Phase 1
(recruiting)
NCT02316457

SGT-53 (SynerGene Therapeutics) pDNA encoding wild-type p53 (+nab-paclitaxel
/ gemcitabine)

Metastatic pancreatic
cancer

Intravenous Phase 2
(recruiting)
NCT02340117

[231]

MTL-CEBPA (Mina Alpha) saRNA-CEBPα Advanced liver cancer Intravenous Phase 1
(recruiting)
NCT02716012

[232]

Gene editing
NTLA-2001 (Intellia Therapeutics / Regeneron) sgRNA-TTR

mRNA-Cas9
ATTRv amyloidosis Intravenous Phase 1

planned
[233]
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is also clear. Translate Biowas developing a formulation for treatingOTC
deficiency, however disappointing preclinical toxicology data resulted
in the termination of the program [216]. Moving forward, they chose
to focus on developing their cystic fibrosis mRNA therapeutic. Moderna
Therapeutics is advancing an LNP candidate formulation for treating
methylmalonic acidemia [217]. The focus of this review is on the hepatic
applications of LNP formulations, and indications for extrahepatic tar-
gets have been summarized elsewhere [218]. Highlighted LNP-based
nucleic acid therapeutics in the clinic are summarized in Table 4.

5.1. Overcoming the barriers to successful clinical translation

Therapeutic development, and gene therapy in particular, requires
concerted efforts from formulation developers, process developers,
and clinical sponsors to allow for successful clinical translation. Specifi-
cally, the therapeutic has to be safe and effective, be producible at a large
scale, and meet all regulatory requirements for the corresponding drug
class. Onpattro®has shown that this is possible for systemic nucleic acid
therapeutics, as it overcame barriers that typically halt the clinical trans-
lation of such nanocarrier-based therapeutics.

Intravenous administration of nanoparticulate formulations can po-
tentially result in infusion-related reactions such as hypersensitivity
manifesting as mild flu-like symptoms, or more severe cardiac anaphy-
laxis [219]. Both complement activation as well as complement-
independent phagocytosis are involved in such reactions. The reader is
referred to excellent articles on complement activation-related
pseudoallergy (CARPA) and complement independent pseudoallergy
(CIPA) [219,220]. Several physiochemical properties such as lamellarity,
surface charge, and cholesterol content may influence hypersensitivity
reactions [221]. Infusion-related reactions can be managed by pre-
dosing patients with a combination of anti-histamines (H1/H2
blockers), corticosteroid immunosuppressants (e.g., dexamethasone),
and oral acetaminophen in addition to reducing the rate of infusion
[222]. Onpattro®’s phase 3 trial suggested that the most frequent reac-
tions included flushing, backpain, abdominal pain, and nausea de-
scribed as mild-to-moderate. The severity and frequency of these
reactions decreased with repeated administration and exposure of
Onpattro®. It should be noted that ASOs and GalNAc-siRNA conjugates
do not require pre-medication and can be administered subcutaneously
(by healthcare professionals), but the doses required to achieve equiva-
lent gene silencing are a few orders of magnitude higher than required
for LNPs and can only be limited to gene silencing applications [192].

Another substantial barrier to clinical translation is producing for-
mulations at commercial scales. As described previously, LNP
manufacturing methods rely on rapid-mixing technologies and there-
fore, the type and capabilities of the mixer become very important.
For example, a production of 10 mL LNP-siRNA at a flow rate of 20
mL/min requires a mixing time of 30 seconds [157]. However, produc-
tion of 1 L of material with the same mixer requires 50 minutes of
mixing time. With an inherently unstable LNP suspension and in 25%
(v/v) ethanol, this time could result in substantial changes in LNP prop-
erties negating the value of rapid-mixing technologies (homogeneity).
High-throughput mixers (> 1 L/min) are required to mitigate such ef-
fects. In addition to this, the in-process volumes generated by rapid-
mixing are much larger than by extrusion and can be limiting to
manufacturing scales. Typical processes use low concentrations of
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material (0.2 mg/mL siRNA after mixing), and therefore the intermedi-
ate volumes are substantial. For example, 1 g siRNA (only 100 vials of
Onpattro®) would generate 5 L of material post-mixing and would in-
clude a post-mixing dilution step to stabilize the intermediate material.
This could result in up to 15-20 L of intermediatematerial depending on
the required dilution (composition-dependent). For larger batches,
even the ethanol amount handled at a facility can become limiting. Fol-
lowing this, the next processing steps introduce shear as buffer ex-
change is not done by dialysis, but rather by tangential flow filtration.
Given the inherent instability of these formulations, particle size in-
creases are observed during this step. These processes use terminal, re-
dundant sterile filtration rather than complete aseptic processing. The
impact that buffer exchange has on particle size also affects the ability
to sterile filter the formulation and the yield of material. Robust process
design is critical for successful and timely clinical translation of such
formulations.

6. Future perspectives

Developing LNP delivery technology has enabled the clinical transla-
tion and approval of the first siRNA drug for inhibiting pathogenic pro-
tein production in hepatocytes [32,33]. Importantly, Onpattro®
provides a valuable treatment for ATTRv amyloidosis patients, whose
options were previously limited to TTR stabilizers or a liver transplant
[34]. At the same time, LNP-siRNA development has yielded fundamen-
tal insights into optimally designing formulations for hepatocyte gene
silencing, (large scale) production methods, in vivo behaviour,
immunostimulatory effects, and cost-effectiveness. As these criteria
and parameters are now firmly established, it is anticipated that other
hepatocyte-targeted LNP-siRNA treatments will be developed, such as
to knockdown proprotein convertase subtilisin/kexin type 9 for hyper-
cholesteremia treatment [234].

While these advances in LNP development are ground-breaking,
other liver-targeted nucleic acid therapeutics, such as ASOs [3] and
GalNAc-siRNA conjugates [4], are also gainingmomentum. For example,
the ASO Tegsedi® (inotersen) was recently approved for the same indi-
cation as Onpattro® [235]. With both Onpattro® and Tegsedi® set at
the same list price ($450,000 per year), it remains to be seen which
treatmentwill prove to bemost beneficial and cost-effective. Tegsedi’s®
major advantage is its subcutaneous administration (versus
Onpattro’s® intravenous infusion), although this advantage could be
outweighed by its less favorable toxicity profile; patients require moni-
toring of platelet count, renal and hepatic impairment. Subcutaneous
administration (and a less complex production process) is also the
main advantage of GalNAc-siRNA conjugates although currently ap-
proved conjugates have to be administered by healthcare professionals.
Most recently, the GalNAc-siRNA conjugate Givlaari™ (givosiran,
$575,000 per year) was approved for treating acute hepatic porphyria
[236,237], while New Drug Applications were filed for lumasiran for
treating primary hyperoxaluria type 1, [238,239] and inclisiran for
treating hypercholesteremia [240–242]. Vutrisiran, a GalNAc-siRNA
conjugate for treating ATTRv amyloidosis, is currently undergoing
phase 3 trials and has been granted Orphan Drug designation in the
U.S. and the European Union [243]. Although there is preclinical evi-
dence that LNP-siRNA can induce hepatic gene silencing following sub-
cutaneous administration, the dose needed for effective gene silencing
is considerably higher than for intravenously administered formula-
tions [147]. Of note, while LNP-siRNA systems have been optimized
for hepatic gene silencing, preclinical studies have also demonstrated
their ability to induce effective gene silencing in extrahepatic target
sites including the bone [244] and tumors [245,246]. Amajor area of in-
terest is applying LNP-siRNA for immunotherapy, by silencing target
genes in lymphocytes following intravenous administration for immu-
notherapy [247–251] (covered by Peer et al. in this issue [252]).

As mentioned before, LNP technology’s true benefits are currently
proving to be of significant value for gene regulation approaches using
large nucleic acid-based therapeutics, such as mRNA and gene editing
complexes, which cannot be accomplished by nucleic acid modification
or GalNAc conjugation. Intravenously administered LNP-mRNA
effectively transfect hepatocytes and induce protein expression in the
liver, providing opportunities for protein replacement therapy without
affecting the genome. For example, An et al. demonstrated that treat-
ment with LNP containing mRNA encoding human methylmalonyl-
CoAmutase (hMUT) had sustained functional benefits inmousemodels
of methylmalonic acidemia, a rare, inherited, pediatric metabolic disor-
der [217]. Other examples include using the liver to produce coagula-
tion factors [253], or therapeutic antibodies against HIV [201] and
chikungunya virus [254]. Although this review focuses on gene therapy
for diseases originating in the liver, it is worth mentioning that as with
LNP-siRNA, intravenously injecting LNP-mRNA to induce protein
expression in immune cells is gaining considerable traction [255,256],
especially for developing (personalized) cancer immunotherapies
[257,258]. In addition, LNP-mRNA systems have revealed their potential
for ex vivo CAR T cell engineering [259].

Moreover, LNP-mRNA-based vaccinations following subcutaneous,
intradermal, or intramuscular administration have demonstrated to ef-
fectively protect from viral challenge [260–265]. Given mRNA’s rela-
tively short optimization time from target identification to
therapeutic, several companies including Moderna, BioNTech, and
CureVac as well as universities around the globe have initiated LNP-
mRNA vaccine programs to combat the recent SARS-CoV-2 pandemic
[266–269]. Typical vaccine production relies on isolation and large-
scale virus propagation with subsequent processing to purify material
(e.g. inactive virus or specific surface protein) that raises a response
against a specific viral antigen. With mRNA delivery, these timelines
can be dramatically reduced, and the breadth of immune coverage ex-
panded. Additionally, mRNA vaccines leverage several aspects of LNP
technology: (1) LNP systems are not completely immune-silent and
can act as adjuvants [270,271], (2) few doses are required (i.e. prime
and booster), and (3) the mRNA dosage is relatively low (compared to
protein replacement therapies).

LNP technology, and ionizable cationic lipid development in par-
ticular, have been instrumental for translating therapeutic gene reg-
ulation in hepatocytes from bench to bedside. As LNPs are a
multicomponent and modular platform, they represent a versatile
toolbox with many opportunities to develop future gene therapies
with more potent therapeutic effects and improved toxicity profiles.
For example, incorporating lipophilic prodrugs in LNP systems has
shown to be an attractive approach for reducing nucleic acid thera-
peutics’ immunostimulatory effects [272] or for designing combina-
tion therapies with additive therapeutic effects [273]. Generating
more potent (ionizable cationic) lipids and improved understanding
of nano-bio interactions in vivo are continuously fueling the optimi-
zation of LNP systems for delivering nucleic acid therapeutics.
Deciphering intracellular trafficking pathways and mechanism
(s) of endosomal escape will facilitate efforts to boost LNP potency
[274–277]. Elucidating the nature and dynamic of the biomolecular
corona formed on LNPs (following intravenous injection) and under-
standing its implications for biodistribution will be crucial to develop
gene therapies beyond the liver [162–164,278,279]. Therefore, we
expect that LNP-based gene therapies will be developed for indica-
tions beyond (ultra) rare diseases in the near future and increasingly
become integrated in mainstream medicine.
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