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Abstract
Main conclusion  Carbonylation-ROS-dependent posttranslational modification of proteins-may be regarded as one 
of the important events in the process of ageing or senescence in plants.

Abstract  Ageing is the progressive process starting from seed development (plants) and birth (animals). The life-span of 
living organisms depends on many factors and stresses, which influence reactive oxygen species (ROS) level. The imbalance 
of their production and scavenging causes pathophysiological conditions that accelerate ageing. ROS modify nucleic acids, 
lipids, sugars and proteins. The level of carbonylated proteins can serve as an indicator of an oxidative cellular status. Sev-
eral pathways of protein carbonylation, e.g. the conjugation with reactive carbonyl species, and/or a direct metal-catalysed 
oxidative attack on amino acids residues are known. Dysfunctional carbonylated proteins are more prone to degradation or 
form aggregates when the proteolytic machinery is inhibited, as observed in ageing. Protein carbonylation may contribute 
to formation of organelle-specific signal and to the control of protein quality. Carbonylated proteins are formed during the 
whole plant life; nevertheless, accelerated ageing stimulates the accumulation of carbonyl derivatives. In the medicine-related 
literature, concerned ageing and ROS-mediated protein modifications, this topic is extensively analysed, in comparison to 
the plant science. In plant science, ageing and senescence are considered to describe slightly different processes (physiologi-
cal events). However, senescence (Latin: senēscere) means “to grow old”. This review describes the correlation of protein 
carbonylation level to ageing or/and senescence in plants. Comparing data from the area of plant and animal research, it is 
assumed that some basic mechanism of time-dependent alterations in the cellular biochemical processes are common and 
the protein carbonylation is one of the important causes of ageing.
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Ageing: still unknown fate in plants versus 
animals

Increased levels of oxygen in the Earth’s atmosphere allowed 
the evolution of animals and plants. However, the other side 
of the oxygen molecule “face” is the ability to acceler-
ate oxidation reactions linked to ageing. The majority of 
ageing research concerns the eukaryotic cells, and some 
biochemical processes are common. Thus, the basic bio-
logical mechanisms of ageing at this level may be similar 
for plants and animals. Nevertheless, there is a discussion 
how to precisely define the term “ageing”. In animal sci-
ence, ageing is not so simple to define because of (among 
others) the diversity of life forms-there are short-lived and 
long-lived organisms (Cohen 2018 and citations therein). 
Long-lived individuals and clonal organisms exist in the 
plant kingdom. Asexual reproduction of some plant species 
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leads to formation of clones which may proliferate to form 
community-sized “individuals” of unusual longevity. As was 
demonstrated for Lomatia tasmanica (W.M. Curtis), longev-
ity can be extended even to 40,000 years (Lynch et al. 1998). 
Long-lived organisms can be found in Spermatophyta. The 
maximum observed life-span of bristlecone pine (Pinus 
longaeva D.K. Bailey) is estimated to 4,600 years, giant 
sequoia (Sequoiadendron giganteum (Lindl.) J. Buchh.) 
to 3200 years, common juniper (Juniperus communis L.) 
to 2000 years, scots pine (Pinus sylvestris L.) to 500 years 
and apple (Malus domestica Borkh.) or English ivy (Hedera 
helix L.) to 200 years (Thomas 2013 and citations therein).

The term “program” adopted from computer science is 
commonly used in expressions linked to the physiology 
of living organisms. Terminology: “senescence program”, 
“programmed ageing” and “programmed death” potentially 
explain life-span fate (Thomas 2013 and citations therein). 
Nevertheless, ageing of an individual organism (considered 
as a whole organism) is rather a side effect of biological 
processes than a “programmed” event, with some excep-
tions when “programmed ageing” and eventually death 
occur, e.g. in the modules of colonial marine invertebrate 
Botryllus schlosseri (Cohen 2018 and citations therein). On 
the other hand, as discussed below, in plants “programmed 
senescence” of special cells or whole organs is an important 
developmental phase.

The term “mortality” refers to a chance of death at a 
given age, while the term “life-span” describes a maximal 
life expectancy at birth (Thomas 2013). Senescence as a 
significant process is under the control of internal agents: 
hormones, signalling molecules and transcription factors. 
Their action depends on the stage of ontogeny or/and is stim-
ulated by environmental factors (Lim et al. 2007; Thomas 
2013). Plant scientists define the senescence as an evolu-
tionary adaptation and highlight its physiological role in 
plant growth, development, reproduction and survival (Lim 
et al. 2007). Thus, senescence by definition is a phase of 
development that is a transdifferentiation event following 
the completion of growth, that may or may not be com-
pleted with death, and that is categorically dependent on 
cell viability and the expression of specific genes (Fig. 1) 
(Thomas 2013 and citations therein). Plant adaptation to the 
environment is accompanied by alterations of tissue struc-
ture and function. Senescence (e.g. programmed cell death) 
takes part in these modifications specifying cell fate (Guna-
wardena 2008). Therefore, senescence is believed to be a 
"programmed suicide" which allows plants to control their 
viability and integrity during the life cycle, the phenom-
enon also called Samurai Law of Biology (“it is better to die 
than to be wrong”) (Thomas 2013). In turn, the term “age-
ing” per se refers to the time-dependent changes of a living 
organism from birth through maturity, senescence and death. 
Both, senescence and ageing are linked to the deterioration 

processes. Additionally it has been proposed that senescence 
is a process of accelerated ageing (Thomas 2013).

Plant life strategy comprises the controlled death and the 
disposal of cells. Contrary to animals ageing of plants dif-
fers due to the seasonal cycle (Fig. 1) and persistence of 
autotrophs (Thomas 2002, 2013). Furthermore, in plants 
senescence and organ/tissue elimination are imprinted 
into programmed ontogeny phases and related to the inner 
reallocation of resources. These changes are the part of 
developmental processes and are not linked to ageing per 
se (Thomas 2002). Due to specific anatomical features 
and performance of undisturbed transport of water and/or 

Fig. 1   Changes in the level of carbonylated proteins during the life 
of a tree. a The progression of plant ageing. The highest level of the 
proteins marked with CO groups is achieved at last part of life-span 
(internal and external symptoms of tissues senescence). b Seasonal, 
environmental-dependent changes. Leaf senescence is not linked to 
ageing of the whole plant organism (the leafless tree) and is accompa-
nied by an increase of carbonylated proteins level. The lowest content 
of oxidized proteins is achieved before the production of the offspring 
(the blooming tree)
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metabolites, perforations in some tissues of plants are neces-
sary. The selective cell death is the important physiological 
mechanism for the creation of structures with holes (e.g. 
xylem or aerenchyma), therefore plants evolved controlled 
autolysis (Moriyasu 1995; Thomas 2002). A self-destructive 
(monocarpic) senescence is a part of the life cycle of annual 
plants (e.g. sunflower (Helianthus annuus L.) or pea (Pisum 
sativum L.)). In this case only the seeds survive as viable 
structures (Sadras et al. 2000). Removing flower buds is a 
method to extend longevity of monocarpic plants. Neverthe-
less, this is not the rule. In most cereals the prevention of 
seed formation can even accelerate the senescence of the 
plant (Thomas 2002). Thus, plant life-forms which deter-
mine life-span (therefore ageing) distinguish plants from 
animals.

Mortality means that what begins comes to the end, and 
ageing is the process leading eventually to cell or organ 
death. Mechanisms of ageing are still not fully known and 
understood, therefore extensively studied, especially in 
modern societies dealing with an ageing population. The 
same trend is observed for plants (Thomas 2002; Höhn et al. 
2017). Slower ageing (longer life-span) is exhibited for those 
species that produce greater seed mass, long-lived leaves or 
dense wood, which is related to higher survival elasticity 
(Adler et al. 2014; Munné-Bosch 2015).

The basic causes of ageing in animals are linked not only 
to oxidative stress, inflammation, mitochondrial dysfunction 
and accumulation of misfolded proteins (loss of proteostasis) 
but also to genomic instability, telomere shortening or/and 
attrition, epigenetic alterations, and modified intercellular 
communication (Cohen 2018 and citations therein). These 
processes lead to the impairment of cellular homeostasis and 
are characterized by the time-dependent persistent alteration 
of the functionality of cells and organs. An accumulation of 
cellular damage, in turn, enhances susceptibility to negative 
factors (Höhn et al. 2017). It is also accompanied by pro-
tein functional malformations linked to DNA damage. The 
results of many experiments conducted mainly on animal tis-
sues discovered special markers related to the morphologi-
cal and physiological alterations: development of enlarged 
nuclei or/and an elevated ageing-associated β-galactosidase 
activity (SA-β-Gal). Moreover, it has been demonstrated 
that time-dependent cellular disintegration is linked to the 
increase of reactive oxygen species (ROS) content (Ben-
Porath and Weinberg 2005; Höhn et al. 2017 and citations 
therein).

Plants as less mobile organisms than animals are more 
prone to different environmental factors that are potentially 
mutagenic. Despite the rather high frequency of DNA dam-
age under standard conditions, the mutation rate in plant 
cells is very low (Nisa et al. 2019 and citations therein). 
It means that, plants have to develop many protective sys-
tems. As they possess chloroplasts, it also seems that they 

have more complex DNA repair mechanisms compared to 
mammals (Ferrando et al. 2019 and citations therein). Like 
in animal cells, in plants the activity of enzymes of base 
excision repair pathway (BER) was identified. In mitochon-
dria of potato (Solanum tuberosum L.) tubers under hypoxia 
conditions, the activities of apurinic/apyrimidinic endonu-
clease and uracil DNA glycosylase (the enzymes of BER) 
were significantly increased. However, under optimal assay 
conditions, the mechanism of DNA repair in mitochondria in 
potato tuber was not so efficient as in mouse liver (Ferrando 
et al. 2019). It can be assumed that the accumulation of DNA 
mutation is not the main cause of ageing in plants as very 
old bristlecone pine trees produce seeds with undiminished 
vitality, which germinate as well as seeds from younger trees 
(Lanner and Connor 2001).

In plants, senescence is defined as a complex deteriora-
tion process which can finally end in death of the whole 
organism or a single organ (Fig. 1). Factors that regulate this 
process are divided into internal (age, reproductive stage, a 
level of regulators of growth and development) and exter-
nal (environmental signals and stressors) (Gan and Amasino 
1997). In some cases, senescence can be reversible, e.g. the 
gerontoplast redifferentiation during strong tobacco (Nico-
tiana rustica L.) regreening (Zavaleta-Mancera et al. 1999).

Senescence of a leaf is accompanied by an intensive pro-
tein degradation to remobilize nitrogen to other parts (the 
sinks) of the plant. This proteolysis is highly regulated, and 
it has been proposed that proteins which are subjected to 
degradation are specifically marked by posttranslational 
modification, e.g. by carbonylation, depending on ROS 
reactivity.

“The Free Radical Theory of Ageing” was proposed by 
Denham Harman in 1956. Since that time, it is obvious that 
oxidative stress is an intrinsic element of ageing in animals 
and humans. The reactive oxygen-based cell death theory 
is commonly accepted also among plant scientists (Van 
Breusegem and Dat 2006).

ROS participation in ageing

The permanent presence of oxygen in Earth’s atmosphere 
and its incomplete reduction or excitation is the main rea-
son for ROS formation in cells (Mittler 2017). As was 
demonstrated for human fibroblasts the growth under high 
(40–50%) ambient oxygen concentration resulted in prema-
ture ageing. Contrary, an extended life-span of the same-type 
cells was observed under low (2–3%) oxygen content (Ben-
Porath and Weinberg 2005 and citations therein). As for 
plants, the exposure of apple fruits to high oxygen (100%) 
level resulted in accelerated senescence (Qin et al. 2009).

The physiological function of ROS depends on the con-
centration. High content of these molecules leads to oxida-
tive stress and eventually ends in death. By contrast, ROS at 
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lower levels are key elements of signalling cascades, which 
are known to modulate the activity of mitogen activated pro-
tein (MAP) kinases (Rentel et al. 2004). Extended periods 
of oxidative stress linked to elevated ROS concentration 
are commonly accepted as significant stimulators of senes-
cence progression (Colavitti and Finkel 2005). Furthermore, 
hydrogen peroxide (H2O2) is thought as the main ageing 
inducer. This consideration comes from data indicating that 
H2O2 treatment or inhibition of ROS-scavenging enzymes 
leads to premature senescence of cells (Ben-Porath and 
Weinberg 2005 and citations therein).

The ROS family include superoxide anion (O2
·−), 

hydroxyl radical (·OH), H2O2, as well as peroxyl (ROO·), 
alkoxyl (RO·) and hydroperoxyl (HO2

·) radicals (Demidchik 
2015). ROS toxicity is derived from the ability to react with 
the important, cellular molecules: nucleic acids, proteins, 
lipids and sugars (Møller et al. 2007; Møller and Sweetlove 
2010; Demidchik 2015). Highly reactive species (radicals) 
react with amino acids, peptides and proteins via various 
reactions: hydrogen abstraction, electron transfer (oxidation 
or reduction), addition, fragmentation and rearrangement, 
dimerization, disproportionation and substitution. ROO· are 
involved in multiple reactions leading to formation of protein 
carbonyls (Davies 2016). Direct reactivity with cellular mac-
romolecules was confirmed for both singlet oxygen (1O2) 
and ·OH. ROS overproduction together with dysfunctional 
antioxidant machinery is one of the main reasons for patho-
physiological state of an organism resulting in death.

In plants, ROS are generated in mitochondria, peroxi-
somes, plastids (mostly chloroplasts) and in the apoplastic 
space (Corpas et al. 2015). In animals, including humans, 
it was demonstrated that the mitochondrial dysfunction was 
linked to high ROS production, and thus, it is suggested 
to be the main cause of ageing (Passos et al. 2007; Barja 
2014). Mitochondrial damage or disorder is connected to 
electron leakage and generation of O2

·− as by-products, 
observed mainly on the complex I (NADH dehydrogenase) 
and complex III (cytochrome bc1 complex) (Fisher-Wellman 
and Neufer 2012). It has been demonstrated that cellular rest 
stage or ageing is linked to the increased macromolecules 
oxidation. In yeast that undergo cells growth arrest, mito-
chondria generate more ROS, which is accompanied by the 
enhanced protein carbonylation. Moreover, oxidative dam-
age in the cell is directly related to the redox status of the 
quinone pool (Aguilaniu et al. 2001). Carbonylated proteins 
of mitochondrial origin were also detected in aged WI-38 
human embryonic fibroblasts (Ahmed et al. 2010). The pres-
ence of proteins with carbonyl groups was also confirmed 
in mitochondria of senescent apple fruits. In addition, after 
accelerated ageing, fruit exposure to high oxygen concentra-
tion the level of such modified proteins increased (Qin et al. 
2009). The proper cell metabolism is correlated with stand-
ard activity of Krebs’ cycle enzymes, which also undergo 

carbonylation (Kristensen et al. 2004; Meany et al. 2007). 
It can be supposed that carbonylation of mitochondrial 
proteins may interrupt the whole cell physiology and may 
be linked to a progressive ageing (Stadtman 2006). These 
findings indicate the strong implication of mitochondria in 
senescence accelerated especially under the conditions of 
oxidative imbalance.

Huge amounts of ROS are generated during oxidative 
reaction carried out in peroxisomes (del Río and López-
Huertas 2016), which may lead to protein carbonylation. As 
it was demonstrated for proteins isolated from peroxisomes 
of castor bean (Ricinus communis L.), endosperm subjected 
to metal-catalysed oxidation (MCO) with CuCl2/ascorbate 
carbonyl groups were detected in malate synthase, isocitrate 
lyase and catalase (Nguyen and Donaldson 2005). Moreo-
ver, carbonylation of these proteins was linked to activity 
loss pointing on the vulnerability of peroxisomal proteins to 
oxidative damage (Nguyen and Donaldson 2005).

Fenton and Haber–Weiss reactions are tightly related to 
ROS production. The Fenton reaction depends on the con-
stant presence of reductants, transition metal ions and H2O2. 
During this reaction ·OH is generated. This molecule is also 
produced throughout peroxidase-mediated Haber–Weiss 
reactions (Müller et al. 2009; Demidchik 2015). ·OH reacts 
only with molecules that are very close (a few nm of approx-
imate diffusion radius), while H2O2 has longer half-life and 
can diffuse across membranes (Møller et al. 2011; Demid-
chik 2015; Jeevan Kumar et al. 2015; Davies 2016), thus 
considered to be the primary (direct or non-direct) cellular 
messenger (Møller et al. 2007).

One of the most important enzymatic producers of ROS 
is a plasma membrane respiratory burst oxidase homolog 
(Rboh)––a nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase (Jeevan Kumar et al. 2015). It has been 
proposed that NADPH oxidases in plants participate in regu-
lation of cell death. Old leaves of RBOHF2-silenced barley 
(Hordeum vulgare L.) mutants exhibited increased leaf-tip 
necrosis and higher accumulation of salicylic acid (Torres 
et al. 2017).

The maintenance of optimal ROS concentration is based 
on the action of antioxidant enzymatic and non-enzymatic 
systems. The elementary enzymes involved in ROS modu-
lation are as follows: various isoforms of superoxide dis-
mutases (SODs), catalase (CAT), ascorbate peroxidase 
(APX), glutathione peroxidase-like (GPX-like) and glu-
tathione reductase (GR). Thioredoxins, glutaredoxins and 
peroxiredoxins are also ROS scavengers (Demidchik 2015; 
Morscher et al. 2015). Non-enzymatic modulators of ROS 
content are as follows: reduced form of ascorbic acid (ASA) 
and reduced form of glutathione (GSH), proline, (Signo-
relli et al. 2014) carotenoids and α-tocopherols (Kranner 
et al. 2006; Demidchik 2015; Morscher et al. 2015). As was 
mentioned, SODs are the primary enzymatic antioxidants 
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which catalyse the conversion of O2
·− into H2O2 (Alscher 

2002). Further, CAT catalyses the change of two molecules 
of H2O2 into water and O2 (Mhamdi et al. 2010). Tran-
script levels of SOD and GR decreased in aged pea seeds 
(Yao et al. 2012). Additionally, accelerated ageing had a 
negative impact on the de novo transcription of those genes. 
On the other hand, the controlled deterioration procedure 
(artificial ageing) did not affect the transcript level of CAT​ 
in pea embryonic axes (Yao et al. 2012). GPX (in plants 
are present selenium-lacking GPX-like proteins) activity 
results in scavenging of peroxides, especially phospholipid 
hydroperoxides (Navrot et al. 2006). This enzyme may serve 
as a membrane and storage lipid protector. An increase in 
GPX-like activity was noted in sunflower embryonic axes 
isolated from artificially aged embryos (Morscher et al. 
2015). GPX-like proteins utilize GSH and convert it into 
the oxidized form (GSSG). GSH as well as the high GSH/
GSSG ratio maintains redox state of the cells at the physi-
ological level (Kranner et al. 2006; Demidchik 2015). GR 
is responsible for preservation of an optimal GSH/GSSG 
ratio by the reduction of GSSG to GSH in a reaction requir-
ing NADPH. Increased GSSG content may point to age-
ing, e.g. in seeds with a viability loss (Kranner et al. 2006). 
A decrease in the size of the total glutathione pool, with 
the strong increase in GSSG content was demonstrated for 
dormant and non-dormant sunflower embryos subjected to 
controlled deterioration (Morscher et al. 2015). Addition-
ally, a lower CAT activity during accelerated ageing under 
high O2 concentration was detected. Nevertheless, a constant 
activity of this enzyme was measured at ambient O2 level. 
CAT isolated from peroxisomes of castor beans endosperms 
was carbonylated as a result of metal-catalysed oxidation 
(MCO). This modification only partly inhibited CAT activ-
ity (Nguyen and Donaldson 2005). It is supposed that this 
enzyme may have some evolutionary adaptation to oxidative 
attack (Nguyen and Donaldson 2005). In turn, peroxidases 
of class III (POx) are haem-containing glycoproteins which 
are involved in both scavenging and production of ROS. In 
senescing 6-week-old Arabidopsis plants, the activity and 
inducibility of POx were higher, while SOD activity and 
inducibility decreased (Abarca et al. 2001).

Protein carbonylation: friend or foe?

A proper metabolism depends on a precise function of pro-
teins, and unsettled cellular proteome can lead to the dys-
function of the entire organism. ROS participate in protein 
oxidation which occurs via around 60 different paths, includ-
ing carbonylation (Madian and Regnier 2010; Møller et al. 
2011). The induction of protein oxidation includes MCO, 
oxidation-induced cleavage, amino acid oxidation and the 
conjugation of lipid peroxidation products (Cecarini et al. 

2007 and citations therein). Thus, oxidative protein modi-
fications lead to formation of intra- and inter-protein disul-
phides, S-sulphenylation, S-sulphinylation and S-sulphonyla-
tion. The formation of carbonylated proteins is one of the 
major products of protein oxidation (Cecarini et al. 2007 and 
citations therein; Rudyk and Eaton 2014).

As was demonstrated for humans, increased protein 
carbonylation perturbs cellular homeostasis, which leads 
to metabolic disorders, and carbonylated proteins serve as 
indicators of a cellular oxidative imbalance (Dalle-Donne 
et al. 2003). Carbonylation as incorporation of carbonyls 
into the molecule, applies to proteins, lipids and nucleic 
acids (Dalle-Donne et al. 2003, 2006). It is estimated that 
during ageing, starvation or disease of various organisms 
about 10% of the proteome is more prone to carbonylation 
(Levine 2002; Sohal 2002; Maisonneuve et al. 2009). Thus, 
a positive correlation between the increase in protein car-
bonylation content and ageing has been proposed (Levine 
and Stadtman 2001; Höhn et al. 2017).

As the actual level of carbonylated proteins is an indirect 
but stable marker of ROS content, the analytical practice 
is based on reliable methods for detection and estimation 
of this posttranslational modification. Assays that are com-
monly used for carbonyl (CO) groups measurement in pro-
teins mostly depend on 2,4-dinitrophenylhydrazine (DNPH). 
This reagent is suitable for spectrophotometric protein quan-
tity estimation or for immunodetection (DNPH-specific anti-
bodies) for protein quantity and quality analyses. Further-
more, in the literature the data obtained after fluorescent 
hydroxylamine or fluorescein-5-thiosemicarbazide detection 
can be found. Other methods based on an incorporation of 
biotin hydrazide label at sites of protein carbonylation, fol-
lowed by visualization with avidin-coupled techniques are 
more often used, especially in the aspect of further MS 
analyses (Møller et al. 2011 and citations therein; Havelund 
et al. 2017).

Protein carbonylation seems to be a selective process. Das 
et al. (2001) demonstrated that, during ageing of Drosophila, 
aconitase was the only mitochondrial protein characterized 
by the increased oxidation accompanied by the loss of its 
activity. The specificity of protein carbonylation was also 
demonstrated for Escherichia coli (Nyström 2005 and cita-
tions therein), yeast cells (Cabiscol et al. 2000), ageing flies 
(Yan et al. 1997; Sohal 2002) and plants (Johansson et al. 
2004; Kristensen et al. 2004). Accumulation of carbonylated 
proteins is the result of even basic reactions (e.g. carbohy-
drate metabolism), protein maintenance and homeostasis 
as well as cellular motility as was shown for adult muscle 
stem cells (Baraibar et al. 2011). This modification occurs 
during whole ontogeny of living organisms, and some simi-
larities in the pattern of this process can be found in plants 
and animals, but there is no strict correlation with the age 
of examined biological samples. The only comparisons 
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between plants and animals concern this time in life-span 
when the offspring is generated connected with a low level 
of oxidative damage (Fig. 2) (Nyström 2005). The analyses 
performed on animals indicated that the content of carbon-
ylated proteins increased starting from birth. Comparable 
alterations of the level of oxidized protein were observed 
in plants, e.g. Arabidopsis. Nevertheless, this high content 
of modified proteins decreased prior to the transition from 
the vegetative to reproductive phases (Fig. 1) (Johansson 
et al. 2004). Accumulation of oxidatively modified proteins, 
which are not inherited by daughter cells during cytokine-
sis, occurs during the replicative age of yeast (Aguilaniu 
et al. 2003). Moreover, the mother cells of the strain lack-
ing the sir2 gene (the silent information regulator) failed to 
retain modified proteins (Aguilaniu et al. 2003). Sirtuins or 
Sir2––NAD-dependent histone deacetylase––are life-span 
determinants, evolutionarily conserved from bacteria to 
humans. Thus, the results demonstrated by Aguilaniu et al. 
(2003) strongly indicate that the ability for keeping carbon-
ylated proteins in the mother cells during division depends 
on the replicative age.

The first step in the oxidation of methionine (Met) and 
cysteine (Cys) is reversible in contrast to protein carbon-
ylation. There is no strong proof regarding enzymatic or 
non-enzymatic nature of pathways to revert CO groups in 
amino acids residues (Dalle-Donne et al. 2003; Nyström 
2005). Examination carried out on aged animals revealed 
the significant contribution of carbonylation in the regula-
tion of proteins function and degradation (Levine 2002). 
Higher level of protein carbonylation was demonstrated to be 
linked with diseases such as Parkinson, Alzheimer, cancer, 
cataractogenesis, diabetes and sepsis (Levine 2002; Dalle-
Donne et al. 2003). By contrast, the decrease in the level 
of proteins with CO groups was shown for skeletal muscle 
mitochondria of mouse with the prolonged life-span (Lass 
et al. 1998). The results of experiments carried out on sev-
eral animal cells and tissues have indicated that the last third 
of life is accompanied by a strong increase in carbonylated 
protein content (Stadtman and Levine 2000). Moreover, dur-
ing oxidative stress, disease or ageing the average level of 
proteins marked with CO groups increases and is estimated 
around one-third of the all molecules (Stadtman and Levine 

Fig. 2   The most common pathways of protein carbonylation include 
direct ROS attack on amino acid residues (Pro, Arg, Lys and Thr), 
metal-catalysed oxidation (MCO) attack on Lys, Arg, Pro and Thr 
residues in the presence of ROS and reduced metal ions, adduction 
of advanced glycation end products (AGEs) formed in the presence of 

ROS, reduced metal ions and reducing sugars, e.g. glucose (Glu), and 
incorporation of products of lipid peroxidation, e.g. 4-hydroxynone-
nal. R represents amino acid residue of targeted protein for carbonyla-
tion
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2000). Some authors indicate that even half of all proteins 
are modified at the stage of ageing progression (Rao et al. 
2018 and citations therein). On the other hand, prolonged 
life-span (reached by experimental manipulation) is linked 
to a lower content of carbonylated proteins, as was demon-
strated using Drosophila flies (Levine and Stadtman 2001 
and citations therein).

Ageing accompanied by a higher ROS level and an 
increased amount of oxidized proteins is also connected with 
the intracellular availability of free iron (Stadtman 1992; 
Stadtman and Levine 2000). Yeast mutants lacking YFH1p 
protein (the iron storage protein) showed higher carbonyla-
tion levels (Desmyter et al. 2004).

The correlation between loss of seed vigour and protein 
modifications was observed in seeds subjected to controlled 
deterioration (Rajjou et al. 2008). Thus, conditions which 
accelerate seed ageing favour the increase in protein car-
bonylation in Arabidopsis seeds (Rajjou et al. 2008), and 
apple embryos isolated from warm stratified seeds (Dębska 
et al. 2013). Prolonged warm stratification of apple seeds 
was accompanied by an increase in ROS accumulation, an 
elevated level of CO groups in extracts of soluble proteins 
isolated from embryonic axes, and resulted in a decrease in 
the germination rate of the embryos (Dębska et al. 2013).

In leaves of cereals (e.g. in wheat or barley) senescence 
plays a crucial role in crop productivity. As was demon-
strated using fluorescein-5-thiosemicarbazide the increase 
in carbonylated protein level was observed during natural 
senescence of the wheat flag leaf (Havé et al. 2015). On 
the other hand, the authors also noted relatively high levels 
of carbonylated proteins in young expanding leaves. These 
findings correspond well to data for Arabidopsis (Johansson 
et al. 2004; Qiu et al. 2008) and maize (Prins et al. 2011).

The basic (typical) level of carbonylated proteins in mam-
malian cells reaches the value of around 1 nmol per mg of 
proteins. An increase up to 8 nmol per mg of proteins was 
detected in pathophysiological tissues (Dean et al. 1997). 
In plant cells the basic level of such modified proteins was 
estimated to around 4 nmol CO groups per mg of proteins 
(Romero-Puertas et al. 2002; Nguyen and Donaldson 2005). 
As the presence of carbonylated proteins during whole 
plant ontogeny was confirmed (Johansson et al. 2004), it 
has been proposed that some of ROS-modified proteins (or 
peptides) potentially can function as organelle-specific sig-
nals (Møller and Sweetlove 2010). Protein carbonylation 
is linked to the inhibition of enzymatic activity and even 
degradation of modified molecules (Levine 2002). This is 
particularly observed during ageing when the progressive 
decrease of proteolytic capacity and accumulation of pro-
teins of lower catalytic activity occur (Levine and Stadt-
man 2001 and citation therein). Loss of protein function 
is especially observed when the modification concerns the 
active site. Nevertheless, till now there is no strong proof 

linked to the tight dependence of the amount of CO groups 
and the rate of activity inhibition (Levine 2002; Nguyen and 
Donaldson 2005).

The oxidation of carbohydrates or lipids [for example, 
formation of 4-hydroxynonenal (4-HNE)] leads to formation 
of reactive carbonyl species, which further can be added 
to the protein structure forming carbonyls (aldehydes or 
ketones) (Fig. 2). The results of in vitro experiments using 
mass spectrometric analysis indicate that around 99% of 
proteins modified by 4-HNE contained a free CO group 
(Bruenner et al. 1995). Lipid-derived aldehydes or ketones 
come from peroxidation and breakdown of polyunsaturated 
fatty acids (PUFAs), e.g. linoleic acid. Such products of lipid 
peroxidation are mobile, can diffuse across membranes and 
may covalently modify proteins which are localized far 
from the ROS generation site. It is even proposed that this 
mechanism of protein carbonylation is more widespread 
than direct oxidation of amino acid residues (Schneider et al. 
2001; Yuan et al. 2007). There are various mechanisms of 
protein modification by reactive electrophilic lipid peroxida-
tion products (oxoLPPs) (Griesser et al. 2017). Nucleophilic 
lysine (Lys) and arginine (Arg) residues can be modified by 
oxoLPPs, including saturated aldehydes (alkanals) and oxo-
carboxylic acids, via mechanism of the Schiff base forma-
tion. Lys, Cys and histidine (His) residues can form Michael 
adducts with α,β-unsaturated aldehydes [(hydroxy-)alkenals, 
hydroxy-alkadienals and alkatrienals]. Formation of Michael 
adducts of protein-oxoLPPs with the carbonyl group shifts 
the carbonyl signal from the lipid to the protein fraction. 
Additionally, there are other (and more diverse) products of 
the reaction of dicarbonyls, e.g. glyoxyal or methylglyoxyal 
and protein-bound nucleophiles, e.g. carboxymethyl deriva-
tives and hemiaminal adducts with Lys, His or Arg (Griesser 
et al. 2017).

CO groups are also formed by a metal-catalysed oxidative 
(MCO) attack (in the presence of reduced metal ions, e.g. 
Fe2+ or Cu+ and H2O2) on amino acids residues: asparagine 
(Asn), Lys, Arg, proline (Pro) or threonine (Thr) (Fig. 2) 
(Dalle-Donne et al. 2003; Møller et al. 2011). The transition 
metal ions are able to reduce H2O2 to ·OH which oxidizes 
amino acids residues in its immediate proximity (Berlett and 
Stadtman 1997). As was shown MCO attack is a site-specific 
process in which oxidation involves only one or a few amino 
acids at the metal-binding sites of the protein (Stadtman and 
Oliver 1991). The product of Pro and Arg carbonylation is 
glutamic semialdehyde, and for Lys modification-aminoad-
ipic semialdehyde, a marker of protein damage (Nyström 
2005; Møller et al. 2011; Davies 2016).

In the presence of reducing sugars, which can react with 
Lys and Arg, the formation of glycation products (Amadori 
and Heyns compounds) are observed. They are prone to 
ROS attack (Matamoros et al. 2018 and citations therein). 
As a result, advanced glycation end products (AGEs) are 
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generated. The increase in AGEs accumulation is character-
istic for aged human tissues, e.g. protein glycation targets are 
human lens proteins or collagen (Sajithlal et al. 1999; Smuda 
et al. 2015). MCO and free radicals are strongly involved 
in formation of AGEs (Fig. 2), and AGE-induced protein 
cross-linking as was demonstrated for collagen (Sajithlal 
et al. 1999). The age-dependent increase in plant protein 
glycation was confirmed in Arabidopsis leaves (Bilova et al. 
2017) and aged bean (Phaseolus vulgaris L.) nodules (Mata-
moros et al. 2018).

Protein carbonylation is also the result of direct ROS 
reaction with Pro, Arg, Lys and Thr residues (Fig. 2); thus, 
the incorporation of reactive carbonyl derivatives into pep-
tides by interaction with Cys, His and Lys, and the adduction 
of AGEs products or MCO attack are the main causes of the 
generation of this irreversible modification (Fig. 2) (Yan and 
Forster 2011; Møller et al. 2011).

Carbonylation of proteins initiates modification of their 
structure by the unfolding and exposure of the hydropho-
bic core, which is inside the folded molecule. These altera-
tions allow interactions between oxidized proteins lead-
ing to formation of insoluble aggregates (Fig. 3) (Grune 
et al. 2004; Nyström 2005; Petrov and Zagrovic 2011). 
Furthermore, the CO group of one protein can react with 
an amino group of another molecule (Schiff base forma-
tion) stimulating the creation of aggregates. Such increase 

of aggregates content may occur without further oxida-
tion (Höhn et al. 2011). Therefore, carbonylation may be 
considered as a positive process marking aberrant proteins 
even independently of direct ROS action. Hence, this mod-
ification would serve as an additional control of proteins 
quality (Dukan et al. 2000; Grune et al. 2004; Nyström 
2005). Furthermore, under oxidative stress conditions, 
the system of the control of proteins quality, consisting of 
the various chaperones and ATP-dependent proteases, is 
responsible for removal of irreversibly damaged proteins 
(Smakowska et al. 2014 and citations therein). It is also 
proposed that dysfunctional proteins are more prone to 
oxidative alterations (Nyström 2005 and citations therein). 
Thus, carbonylation of abnormal proteins may serve as a 
signal for initiation of degradation instead of the chap-
erone/repair pathway. Thus, this “marking mechanism” 
ensures the exclusion of damaged proteins from metabolic 
pathways (Dukan et al. 2000). As was demonstrated for 
plants mitochondria, some chaperones and antioxidant 
enzymes may undergo carbonylation per se, especially 
under prolonged oxidative stress conditions, leading even-
tually to cell death (Smakowska et al. 2014 and citations 
therein). And again, it could be another important physi-
ological function of proteins carbonylation maintaining the 
current program of growth and development (senescence 
and death of some cells), especially in plants.

Protein carbonylation seems to be not a random process, 
and several groups of researches have been working on 
the identification of the specific carbonylation sites (CS), 
mostly localized on the surface of the molecules (Maison-
neuve et al. 2009; Höhn et al. 2017). MALDI-TOF and 
LC nano-ESI MS/MS techniques used to identify CS in 
oxidized bovine serum albumin (BSA) and some proteins 
from Escherichia coli led to development of the concept 
of the carbonylation "hot spots". The special amino acids 
sequence in BSA-Arg (R), Lys (K), Pro (P) and Thr (T) 
(the so-called RKPT-enriched regions)-is present and 
serves as the carbonylation target. Such CS located within 
RKPT-enriched regions were four times more prone to 
modification than those located outside the regions, and 
were potentially involved in selective protein carbonyla-
tion. Moreover, the close presence of iron binding sites 
with RKPT-enriched regions in proteins increased suscep-
tibility to direct MCO attack (Maisonneuve et al. 2009). 
Not all RKPT-enriched regions underwent carbonylation; 
thus, the authors proposed that other mechanisms were 
also required for their specific modification (Maisonneuve 
et al. 2009).

The knowledge about the site of carbonylation in pro-
tein structure is available in CarbonylDB data base (https​
://digbi​o.misso​uri.edu/Carbo​nylDB​/), a manually curetted 
resource (Rao et al. 2018).

Fig. 3   Ageing imprinted into the program of life-span or accelerated 
by anthropogenic and environmental stress factors is linked to the 
increase of carbonylated proteins level. The enhanced content of oxi-
dized proteins may negatively implicate proteolytic machinery lead-
ing to the formation of proteins aggregates

https://digbio.missouri.edu/CarbonylDB/
https://digbio.missouri.edu/CarbonylDB/
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Turnover of carbonylated proteins

The induction or/and progression of senescence accom-
panied by an increase in carbonylated protein content are 
associated with disturbed proteostasis. Irreversibly modi-
fied (carbonylated) proteins should be degraded, otherwise 
they will form toxic, insoluble aggregates (Smakowska 
et al. 2014). Oxidized proteins are degraded by the pro-
teasomal system-20S proteasome, which is ATP and ubiq-
uitin independent. Additionally, some data indicated that 
during oxidative stress 26S proteasome (ATP/ubiquitin-
dependent pathway) is inhibited (Shringarpure et al. 2001; 
Grune et al. 2003; Kästle et al. 2012). In sugar-deprived 
maize root tips, carbonylation of the 20S proteasome was 
connected with changes in the peptidic activities of 20S 
proteasome leading to the stimulation of chymotrypsin-
like, peptidylglutamyl-peptide hydrolase and caseinolytic-
specific activities and the inhibition of trypsin-like specific 
activity. These alterations in specific activities of protea-
somes were similar to those observed after mild oxidative 
treatment (by MCO) of 20S proteasome purified from non-
stressed tissue (Basset et al. 2002). For germinating apple 
embryos higher proteolytic activity was accompanied by 
a decrease of carbonylated proteins level. These data sug-
gest the relationship between protein carbonylation rate 
and stimulation of protease activity (Krasuska et al. 2014). 
In Arabidopsis, two classes of chaperones and the inner 
membrane-embedded ATP-dependent metalloproteases 
(FTsH4) participate in the prevention of the accumula-
tion of carbonylated proteins (Gibala et al. 2009; Sma-
kowska et al. 2016). FTsH proteases have been identified 
in mammals and plants. A positive correlation between the 
age and the level of carbonylated mitochondrial proteins 
was demonstrated for Arabidopsis mutant lacking FTsH4, 
growing under short-day photoperiod (Gibala et al. 2009; 
Smakowska et al. 2014 and citations therein).

Ageing-dependent accumulation of carbonylated pro-
teins results in the formation of protein aggregates as was 
first demonstrated in 1842 by Hannover for the cytosol 
of old neurons. These age-related protein aggregates are 
known as “lipofuscin” (Terman and Brunk 2004, 2006), 
“age fluorophore” or “age pigment” (Gutteridge 1984; 
Koistinaho et al. 1990). One of the possible explanations 
for the formation of protein aggregates may be the fact 
that degradation of oxidized proteins is overwhelmed 
(Castro et al. 2012). To support this hypothesis, it was 
demonstrated that part of carbonylated actin subjected to 
oxidative stress was degraded via the proteasome. How-
ever, inhibition of proteolysis leading to the formation of 
aggregates was dependent on the intensity or duration of 
the stimulus (Höhn et al. 2011; Castro et al. 2012). It was 
also proposed that the inhibition of proteasome concerns 

mostly postmitotic cells, as was demonstrated for neu-
rons (Grune et al. 2004). Lipofuscins consist of highly 
oxidized crossed-linked molecules––proteins, lipids and 
sugars––and also can bind transition metal ions leading 
to formation of ROS via Fenton reaction. This makes 
lipofuscins an extra source of ROS. Furthermore, protein 
aggregates are able to change dynamics of gene expression 
(Catalgol et al. 2009; Kästle et al. 2012) and consequently 
are involved in the progression of ageing (Grune et al. 
2004). Additionally, the autophagy/lysosomal degradation 
pathway was involved in the removal of oxidized proteins 
(Dunlop et al. 2009). Autophagy/lysosomal degradation 
of carbonylated proteins played a significant role at early 
stages of stress induction in rat cardiomyocytes under 
nitro-oxidative stress. By contrast, proteasomal degrada-
tion of carbonylated proteins was linked to the later time 
points of induced stress conditions (Griesser et al. 2017).

In plants the link between senescence, protein carbonyla-
tion and decreased ability to protein degradation (increased 
possibility of protein aggregates formation) was confirmed 
for bean in the context of the control of cell metabolism and 
nodule senescence (Matamoros et  al. 2018 and citations 
therein), as well as in apple embryos subjected to artificial 
ageing (Dębska et al. 2013). Carbonylation led to aggrega-
tion of leghaemoglobin in bean nodules (Matamoros et al. 
2018). Long-time (13 years) stored orthodox type seeds of 
beech (Fagus sylvatica L.) were characterized by low vital-
ity related to the increased level of carbonylated proteins and 
carbonylation of proteins responsible for protein degradation. 
An impaired proteolytic machinery resulted in accumulation 
and formation of aggregates of proteins with carbonyl groups 
(Kalemba and Pukacka 2014). However, it is postulated that 
plants synthesize inhibitors of protein aggregation and these 
metabolites, in addition to their basic metabolic functions, 
could also suppress this unwanted process and participate in 
extension of plants longevity. These inhibitors of protein fibril-
lation (formation of insoluble ß-sheet-rich structures, which 
is a common phenomenon in patients suffering from diseases 
of lifestyle and ageing) are especially detected in long-lived 
plants (older than 100 years), although could be found also at 
lower concentrations in tissues of annual plants (e.g. herbs or/
and spices) (Mohammad-Beigi et al. 2019). Therefore, synthe-
sis of anti-aggregative compounds might be one of many fea-
tures that potentially counteract the negative effect of protein 
modification (including carbonylation) and distinguish plants 
from animals.

Conclusions

Ageing or senescence is accompanied by visible changes in 
the whole body (the animal or the plant) but mainly by phys-
iological malformations, such as accumulation of aberrant 
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proteins. The increased content of abnormal proteins alters 
proteome, thus results in dysfunction of the entire organism. 
Ageing of an organism is marked by the enhancement of 
protein carbonylation, and as was shown for animals, any 
prolongation of the life-span is linked to the lowering of 
oxidized protein levels. Incorporation of CO groups into pro-
teins, lipids and nucleic acids occurs during intensive ROS 
production. Consequently, acceleration of ageing is con-
nected with oxidative stress particularly under conditions of 
insufficient repair of cellular damage (Fig. 3). Moreover, an 
impaired protein degradation system is the cause of forma-
tion of protein aggregates. More and more has been revealed 
about life-span maintenance because science and medicine 
try to do everything to delay the inevitable. It seems there-
fore that understanding the carbonylation process can help 
long-lasting health and vitality for both plants and animals. 
It could be assumed that proteins carbonylation may play a 
key role in the senescence/ageing regulation. This protein 
modification may have dual effect depending on protein 
function and the level of proteins with CO groups.

Considering the fact that due to environmental pollu-
tion and anthropogenic activity the life-spans of plants are 
shortened; thus, more studies of the prevention of ageing 
are required. Despite the knowledge the authors have, some 
questions arise. Do they know all the pathways of protein 
carbonylation? Are there some other metabolites related to 
oxidation, and can they speed up ageing? Another important 
and unsolved problem concerning plants as a food source 
is the possibility that carbonylated proteins of plant origin 
negatively influence human health.
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