
ORIGINAL RESEARCH ARTICLE

Biomethanol Production from Methane by Immobilized Co-
cultures of Methanotrophs

Sanjay K. S. Patel1 • Rahul K. Gupta1 • Virendra Kumar1 • Sanath Kondaveeti1 •

Anurag Kumar1 • Devashish Das1 • Vipin Chandra Kalia1 • Jung-Kul Lee1

Received: 25 April 2020 / Accepted: 6 May 2020 / Published online: 22 May 2020

� Association of Microbiologists of India 2020

Abstract Methanol production by co-culture of methan-

otrophs Methylocystis bryophila and Methyloferula stellata

was examined from methane, a greenhouse gas. Co-culture

exhibited higher methanol yield of 4.72 mM at optimum

ratio of M. bryophila and M. stellata (3:2) compared to

individual cultures. The immobilized co-culture within

polyvinyl alcohol (PVA) showed relative efficiency of

90.1% for methanol production at polymer concentration of

10% (v/v). The immobilized co-culture cells within PVA

resulted in higher bioprocess stability over free cells at

different pH, and temperatures. Free and encapsulated co-

cultures showed maximum methanol production of 4.81

and 5.37 mM under optimum conditions, respectively.

After five cycles of reusage under batch conditions, free

and encapsulated co-cultures retained methanol production

efficiency of 23.8 and 61.9%, respectively. The present

investigation successfully revealed the useful influence of

co-culture on the methanol production over pure culture.

Further, encapsulation within the polymeric matrix proved

to be a better approach for the enhanced stability of the

bioprocess.
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Introduction

A substantial increase in the emission of greenhouse gases

(GHGs) especially methane (CH4) has been noted by

growing anthropogenic activities in commercial and

industrial sectors [1–4]. CH4 has been suggested as

potential feedstock to produce value-added products to

counter its harmful environmental impact [1, 5–7].

Methanotrophs use CH4 (carbon source) as feed to produce

various economically important bioproducts such as bio-

fuels, biopolymers, carotenoids, lactic acid, single cell

protein, and vitamin B12 [8–10]. The production of biofuel

such as methanol is reported widely by methanotrophs

including Methylosinus sporium and Methylosinus tri-

cosporium [11–13]. Methanol is an industrially important

compound, employed for producing chemical compounds

such as acetic acid, alcohols, formaldehyde, paints, and

resins [1, 2, 14]. Production of methanol over CH4 is

pondered more valuable in terms of safety, transportation

and storage concerns [1, 15, 16].

Biotransformation approaches have been recognized to

be more beneficial compared to chemical processes that

requires high energy and financial investments. In addition,

there are issues of low selectivity and non-ecofriendly

nature [17–24]. The conversion of CH4 to methanol is

catalyzed by CH4 monooxygenases (MMOs). Thereafter,

methanol is converted to formaldehyde followed by for-

mate, and finally to CO2 by the action of methanol dehy-

drogenase (MDH), formaldehyde- and formate-

dehydrogenases, respectively [1, 3]. A few limiting factors

hindering efficient bioconversion are lower conversion

yield of methanol, fewer methanotroph screenings, low

stability of free cells under varying physiological condi-

tions and repeated batch production. A few strategies have

been proposed to enhance production of methanol through:
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(i) screening microbes, (ii) optimization of process

parameters, (iii) supplementation of metal ions such as

copper (Cu2?) and iron (Fe?2), (iv) addition of formate,

and MDH inhibitors, and (v) immobilization of whole-

cells. The biocatalytic activity of MMOs is significantly

modulated in the presence of Cu2? and Fe?2 metal ions

during the methanol production [2, 3, 12]. Also, the partial

inhibition of MDH activity by ethylenediaminetetraacetate,

magnesium chloride (MgCl2), phosphate buffer, and

sodium chloride and exhibited diverse influences on

methanol production seems necessary for increasing it

[2, 12]. It may be remarked that higher inhibition may not

lead to increase in methanol production due to lowering of

co-factor regeneration in the case of soluble MMOs

(sMMOs) activity. Further, the immobilization of biocata-

lyst has demonstrated to improve their stability [25–32]. A

few reports on the immobilization of methanotrophs

through encapsulation have demonstrated the enhancement

of methanol production [13, 33]. In addition, only few

investigations have established the improvement in

methanol production with the help of co-cultures of

methanotrophs, including i) Methylococcus capsulatus, M.

sporium NCIMB 11,126 and M. trichosporium OB3b

enriched cultures from landfill soil [34], and ii) Methy-

lomonas methanica and Methylocella tundrae [16]. In the

present investigation, co-culture ofMethylocystis bryophila

and Methyloferula stellata was used for produc-

ing methanol from CH4. Further, influence of co-culture

immobilization within polyvinyl alcohol (PVA) through

encapsulation was evaluated to improve the stability on the

methanol production process. These findings imply that

methanol production by co-culture is more beneficial over

pure culture and encapsulation of co-culture proved more

effective in improving methanol production stability under

repeated batch culture.

Materials and Methods

Materials

M. bryophila (DSM21852), and M. stellata (DSM22108)

were acquired from German Collection of Microorganisms

and Cell Cultures (DSMZ). Copper sulfate (CuSO4),

MgCl2, ferrous sulfate (FeSO4), and PVA were obtained

from Sigma-Aldrich, USA. Pure CH4 was acquired from

NK Co., Busan, Republic of Korea. All other chemicals

employed were of analytical grade.

Growth Conditions

Strains were cultured on nitrate mineral salt medium

(200 mL in 1-L Erlenmeyer flask) with CH4 (20%) as feed

(added on alternate days) at 30 �C and shaking of 200 rpm

and incubated up to 7 days [2, 35]. Further, fully-grown

cells were recovered through centrifugation (4000 rpm for

30 min at 4 �C) followed by washing twice with phosphate

buffer (20 mM, pH 7.0). Finally, the harvested cells were

stored at 4 �C [36, 37].

Co-culture Preparation and Optimization of Pure

Cultures Ratio

Pure strains of M. bryophila and M. stellata were used for

the preparation of co-culture by mixing them at a final

inoculum concentration of 3 mg of dry cell mass (mg-

DCM)/mL. The effective strain ratios of (M. bryophila: M.

stellate) 4:1, 3:2, 2:1; 1:1, 1:2, 2:3, and 1:4 in the co-culture

were examined for optimum conditions to produce

methanol.

Biomethanol Production

The methanol production by pure or co-culture was carried

out in serum bottles of 120 mL capacity. Reaction mixture

of 20 mL was prepared containing Fe2? (10 lM), Cu2?

(5 lM), MgCl2 (20 mM), formate (100 mM) and 3 mg-

DCM/mL of inoculum in phosphate buffer (100 mM, pH

7.0). This mixture was incubated at 30 �C for 24 h and

stirred at 150 rpm after saturating the headspace with CH4

(30%) as a feed [2, 35].

Encapsulation of Co-culture Within PVA

Co-culture immobilization was achieved by encapsulating

them within PVA at various concentrations (5–15%) using

3 mg-DCM/mL cells [33, 36]. Loosely attached cells were

removed by washing (twice) with distilled water, which

was followed by buffer (20 mM, pH 7.0). Encapsulated

bacterial cells were stored at 4 �C [16]. The relative effi-

ciency (RE) of methanol production was calculated as ratio

of methanol produced by encapsulated and free co-

culture 9 100.

Optimization of Encapsulated Co-culture

The optimization of methanol production conditions for

free or encapsulated co-culture was examined by altering

buffer pH (6.0–8.0) and incubation temperatures

(25–40 �C). Further, methanol production patterns of the

cultures were monitored up to 72 h.

Reusability

The encapsulated co-culture within PVA reusability was

assessed for methanol production from CH4 (30%) under
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repeated-batch conditions up to five cycles as reported

previously. During each cycle (24 h) of operation, encap-

sulated cells were separated by filtration followed by

washing with buffer and used as inoculum. The methanol

production efficiency of the zero cycle was taken as 100%

[16].

Instrumental Analysis

Methanol concentration was analyzed by gas chromatog-

raphy (GC, Agilent 7890A, USA) system equipped with

HP-5 column (Agilent 19091 J-413, USA) and flame ion-

ization detector as reported earlier [3, 38]. Absorbance was

assessed spectrophotometrycally (6705 UV/Vis. Spec-

trophotometer, Jenway Scientific, UK) [39, 40]. The

experimental data are given as mean values ± standard

deviations of three replicates.

Results and Discussion

Production of Methanol by Co-culture

The co-culture of M. bryophila and M. stellata (1:1) led to

higher methanol production of 4.24 mM in comparison

to 3.82 and 2.65 mM by respective free cells (Fig. 1a).

Here, an increase in the methanol production can be

associated with the syntrophic behavior between the two

organisms. This influence might be helpful to improve

physiological stability of methanol production process.

Previously, enhancement in methanol production has been

reported by enrichment of mixed culture (M. capsulatus,

M. sporium NCIMB 11,126, and M. trichosporium OB3b)

from landfill soil [34], methanotrophs consortium from

anaerobic digestion [41], type I methanotrophs mixed

culture from activated sludge [42] and mixed methan-

otrophic species from landfill soil [43]. The use of unde-

fined methanotrophic consortium is unreliable as

methanotrophic population may be strongly influenced

even by slight variations in enrichment conditions or

sampling period. Therefore, the use of defined co-culture

for methanol production can be expected to overcome such

issues, and also for improving the process efficiency and

operation stability than the pure cultures

[11, 14, 16, 34, 41].

Since, the ratio of population of strains in the co-culture

can significantly influence the methanol yield [16], there-

fore, various ratios of M. bryophila and M. stellata were

examined (Fig. 1b). The various ratios of these two

organisms resulted in methanol production ranging from

2.95 to 4.72 mM. The ratio of 3:2 was observed to be the

most efficient for methanol production. On the other hand,

the ratio of 1:4 showed lowest methanol production. These

results suggest that higher concentration M. bryophila is

more beneficial over M. stellata in the co-culture prepa-

ration. Figure 2 reflects that pure and co-cultures followed

quite similar production trends. Initially, methanol pro-

duction was observed to increase with longer incubation

period up to 24 h. Thereafter, a decline in production was

noted that might be a consequence of subsequent methanol

utilization due to partial inhibition of MDH activity [13].

The optimum incubation period was 24 h, where a maxi-

mum production of 2.65, 3.82 and 4.72 mM by M. stellata,

M. bryophila and co-culture under similar experimental

conditions, respectively were recorded. Here, co-culture of

M. bryophila and M. stellata exhibited higher methanol

production than that of 0.02–0.71 mM by pure cultures of

M. sporium KCTC 22,312, and M. trichosporium strains

OB3b and IMV [12, 44, 45].

Fig. 1 Methanol production by co-culture of Methylocystis bryophila and Methyloferula stellata: a production yield and b effect of strains ratio

in co-culture
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Encapsulation and Characterization of Co-culture

The encapsulation of co-culture (M. bryophila: M. stellata,

3:2) was evaluated using different concentrations of PVA

(5–15%, v/v) to enhance the stability of the methanol

production process (Fig. 3a). The concentrations of PVA

showed variable influence on the methanol production with

the RE in range of 82.2–90.1%. Here, a variation in the RE

might be correlated with either rigidity of polymers or mass

transfer limitation [13, 14]. PVA proved more efficient as

support for co-culture to achieve higher RE than 72.4%

reported for alginate immobilized M. tundrae [14]. The

concentration of PVA (10%, v/v) was noted as an optimum

for retaining maximum RE of 90.1%. A comparison of the

methanol production stability of free and encapsulated co-

cultures revealed a remarkable increase in the methanol

production of 4.72 with an increase in incubation up to

24 h by free co-culture, which declined to 4.23 mM at

longer incubation period of 72 h (Fig. 3b). Encapsulated

co-culture showed higher maximum methanol production

of 4.93 mM at the incubation of 48 h compared to free

cells (4.72 mM). Also, immobilized cells exhibited better

stability to retain 16% higher methanol production at

longer incubation (72 h) than those of free cells. Previ-

ously, the higher stability of pure cultures immobilized

within PVA was demonstrated forM. sporium B-2121 [33].

Immobilization methods of methanotrophs showed

variable influence in the methanol production stability

[13, 14, 46]. Therefore, the methanol production by free

and encapsulated co-cultures were performed at different

pH (6.0–8.0) and temperature (25–40 �C) values at opti-

mum incubation conditions of 24 and 48 h, respectively

(Fig. 4). At different pH values, encapsulated cells showed

higher methanol production over free cells. The optimum

pH value of 6.75 was observed for methanol production

(Fig. 4a). The maximum methanol production by free and

encapsulated were recorded 4.81 and 5.37 mM, respec-

tively. Overall, encapsulated cells showed nearly 84 and

22% higher methanol production at pH 6.0 and 8.0 as

compared free cells with production of 2.45 and 3.35 mM,

respectively. Further, the methanol production was com-

pared by varying incubation temperature at optimum pH

and incubation period conditions for free and encapsulated

co-cultures (Fig. 4b). The optimum methanol production

was noted at 30 �C. The encapsulated cells showed

enhancement in methanol production of 4.68 and 4.14 mM

at 25 and 40 �C over free cells with the values of 4.11 and

2.86 mM, respectively. Overall, better methanol produc-

tion was recorded by encapsulated cells than those of free

cells, and previous reports (Table 1).

Reusability

Methanol production under repeated batch conditions up to

five cycles (Fig. 5) revealed that it declines in the case of

free co-culture. The decline in residual methanol

Fig. 2 Methanol production profile of pure and co-cultures of

Methylocystis bryophila and Methyloferula stellata

Fig. 3 Encapsulation of co-culture of Methylocystis bryophila and Methyloferula stellata using: a different concentration of polyvinyl alcohol

(PVA) and b methanol production profile of immobilized cells within PVA (10%, v/v)
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production was up to 69.7% within 3 cycles of reusage.

Thereafter, it reduced drastically to 23.8% by the end of

five cycles. Whereas, encapsulated cells showed higher

residual methanol production of 83.8 and 61.9% at the end

of three and five cycles, respectively. Overall, encapsulated

cells showed 2.6-fold higher stability for methanol pro-

duction compared to free cells in repeated batch conditions.

Here, reduction in methanol production might be

associated with the loss of higher biocatalytic activity by

free cells as compared with immobilized cells [13, 35].

These results suggest that immobilization is a beneficial to

improve the stability of co-culture. Senko et al. [11]

reported a significant reduction of 90% in residual metha-

nol production by encapsulated pure culture strains of M.

sporium and M. trichosporium within polymeric matrix up

to 3 cycles of reuses. Similarly, lower residual production

of 57.5% after five cycles of reuses for alginate encapsu-

lated M. tundra was also noted previously [14].

Conclusion

Biotransformation of GHG such as CH4 to value-added

products by methanotrophs to methanol have been recog-

nized as a suitable tactic for its mitigation. This investi-

gation demonstrated that the methanotrophs based co-

culture approach improves the methanol production from

CH4. Co-culture consisting of M. bryophila and M. stellata

showed better methanol production over their pure cul-

tures. The immobilization of co-cultures within PVA

retained high RE for methanol production and led to better

stability over free cells. Further, encapsulated cells retained

significantly improved residual methanol production

Fig. 4 Methanol production of free and immobilized co-cultures of Methylocystis bryophila and Methyloferula stellata within polyvinyl alcohol

(PVA): a at different pH and b temperature values using CH4 as a feed

Table 1 Methanol production

by encapsulated methanotrophs
Polymer Methanotrophs Methanol (mM) References

Alginate Methylocella tundrae 3.75 [14]

Methylosinus sporium 3.43 [46]

Methylosinus trichosporium OB3b 3.70 [13]

Polymer matrix M. sporium 2.34 [11]

Silica-gel M. sporium 3.73 [46]

Polyvinyl alcohol M. sporium 1.94 [33]

M. bryophila and M. stellata 5.37 This study

Fig. 5 Reusability of free and immobilized co-cultures of Methylo-

cystis bryophila and Methyloferula stellata within polyvinyl alcohol

(PVA) using CH4 as a feed
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efficiency in repeated batch culture conditions than those

of free cells. This study revealed the beneficial influence of

using co-culture and immobilized cells for better methanol

production using GHGs over pure cultures and free cells,

respectively. Further, utilization of biogas originated form

anaerobic digestion process of biowaste as a feedstock by

co-cultures can be more useful for sustainable

development.
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