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Abstract

Epigenetic mechanisms, including DNA methylation, histone post-translational modifications, and 

chromatin structure regulation, are critical for the interactions between tumor and immune cells. 

Emerging evidence shows that tumors commonly hijack various epigenetic mechanisms to escape 

immune restriction. As a result, the pharmaceutical modulation of epigenetic regulators, including 

‘writers’, ‘readers’, ‘erasers’, and ‘remodelers’, is able to normalize the impaired 

immunosurveillance and/or trigger antitumor immune responses. Thus, epigenetic targeting agents 

are attractive immunomodulatory drugs and will have major impacts on immuno-oncology. Here, 

we discuss epigenetic regulators of the cancer–immunity cycle and current advances in developing 

epigenetic therapies to boost anticancer immune responses, either alone or in combination with 

current immunotherapies.

Epigenetics and Cancer

Epigenetics is defined as the DNA sequence-independent inheritance of phenotype or gene 

expression [1]. By modulating which, when, and where genes are expressed, epigenetic 

machinery determines cell fates during differentiation and maintains cell identities during 

and after cell division [2]. There are four major mechanisms of epigenetic regulation: DNA 

methylation, histone post-translational modifications, chromatin structure regulation, and 

noncoding RNA regulation [1]. Here, we mainly focus on the first three mechanisms, which 

are chromatin-based mechanisms (Figure 1). These epigenetic mechanisms usually work in 

a coordinated manner to provide precise and durable gene regulation. DNA and histone 

marks and chromatin structure are dynamically regulated by four classes of epigenetic 

regulators. These regulators are commonly known as ‘writers’, which add the epigenetic 

marks; ‘erasers’, which remove the epigenetic marks; ‘readers’, which recognize specific 

epigenetic marks to mediate downstream effects; and ‘remodelers’, which modulate 
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chromatin status (Figure 1). There are ~1000 epigenetic regulators in mammals, forming one 

of the largest protein groups (Table 1).

Epigenetic features are commonly dysregulated in cancer. Genome-wide DNA 

hypomethylation in cancer cells was first observed during the 1980s, while tumor suppressor 

genes are usually silenced by DNA hypermethylation at their promoters [3]. Similarly, loss 

of histone H4K16 acetylation and H4K20 trimethylation was reported to be a common 

hallmark of human cancer [4]. One of the surprising findings from cancer genome-

sequencing studies is the high rate of alterations in many epigenetic regulator genes [5], such 

as loss-of-function mutations of genes encoding the SWI/SNF chromatin remodeling 

complex in ~20% of all cancers [6].

The accumulation of genetic and epigenetic alterations is a key characteristic of cancer cells 

[7]. Some genetic mutations create neoantigens, while epigenetic alterations may lead to the 

reactivation of genes, the expression of which is normally limited to immune-privileged 

stages or organs, such as cancer/testis antigens (CTAs) [8]. Both tumor neoantigens and 

autoantigens can be immunogenic [9].

Recent studies revealed that epigenetic regulation is critical for anticancer immune response 

and the evasion of immunosurveillance by tumor cells, nominating epigenetic targeting 

agents a new category of immune modulators. In this review, we will discuss the impact of 

epigenetic regulation on the interactions between tumor cells and immune cells and the 

emerging strategies to target the epigenetic machinery to boost anti-tumor immune 

responses.

Cancer–Immunity Cycle and Cancer Immunotherapy

The human immune system should theoretically be capable of eradicating cancer cells 

through an acquired immune response executed by T cells. A series of stepwise events, 

called the ‘cancer–immunity cycle’, is required for tumor cell clearance by the immune 

system [10] (Figure 2). This self-amplifying process supposedly will end with complete 

clearance of nascent tumors. However, clinically detectable tumors often develop due to 

failed immunosurveillance through various mechanisms. For example, dendritic cell (DC)-

mediated T cell priming and activation can be prevented by the lack of DC cells, DC-

suppressive mechanisms, or activation of an immune check-point, such as CTLA-4 [11,12]. 

Lack of proper chemokines and an immunosuppressive tumor microenvironment (TME) 

may block the migration or infiltration of T cells into tumor tissue [13,14]. Even if tumor 

antigen-specific T cells infiltrate tumor tissue, their tumor-killing activity can be blocked by 

regulatory cells in the TME, such as regulatory T cells, macrophages, myeloid-derived 

suppressor cells, and cancer-associated fibroblasts, or by activation of immune checkpoints, 

such as PD-L1, on tumor cells or macrophages [15].

An understanding of these immune escape mechanisms has provided therapeutic 

opportunities by lifting immune suppression and restoring antitumor immune responses. For 

example, the discovery of immune checkpoint-mediated immune suppression led to the 

development of immune checkpoint blockade therapies (ICBTs). Antibody-based therapies 

targeting CTLA-4, PD-1, or PD-L1 have achieved lasting responses in some patients against 
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a range of cancer types, especially those with considerable immunogenicity [16–18]. The 

success of ICBTs is, arguably, the most significant advance in cancer treatment over the past 

decade.

Despite the long-term efficacy of ICBTs for some patients, there are many patients who do 

not benefit from this advanced treatment for three major reasons. First, many cancers do not 

have strong immunogenicity, such as tumors from breast, prostate, glioblastoma, and 

pancreatic adenocarcinoma. The estimated percentage of patients with cancer who are 

eligible for any of the approved ICBTs is still <50% in the USA [19]. Second, not all 

patients with immunogenic tumor types respond to the treatment, due to tumor cell-intrinsic 

and extrinsic mechanisms [20]. A pan-cancer overall response rate is estimated to be ~25% 

[19]. Third, acquired resistance appears in some patients. This occurs through mechanisms 

that are induced or selected by the ICBTs, such as loss of antigens, inactivation of antigen-

presenting machinery, desensitization to immune attack, and alternative immune suppressive 

pathways [20]. Intensive investigations have focused on expanding the application of current 

ICBTs and improve the response rate. Given that epigenetic regulation has important roles in 

antitumor immune responses, combining ICBTs with epigenetic drugs (epidrugs) could 

sensitize less-immunogenic tumors and prevent both primary and acquired resistance.

Impact of Epigenetics on the Cancer–Immunity Cycle

Epigenetic mechanisms are critical for many processes in the cancer–immunity cycle 

(Figure 3). Here, we discuss their impacts on these specific processes, either in tumor or 

immune cells.

In Tumor Cells: Generation of Tumor Antigens

Deamination of 5-methyl-cytosine, either spontaneous or mutagen triggered, results in CNT 

transitions. Signature analysis revealed that DNA methylation-associated mutagenesis is the 

single most important source of genetic alterations, leading to neoantigen formation in most 

cancers [21]. CTAs are encoded by a group of genes, the expression of which is limited to 

male germ cells in healthy conditions [9]. However, demethylation of CpGs associated with 

these genes, as well as other epigenetic dysregulation, can cause CTA-coding genes to 

escape epigenetic silencing and re-express in tumors [22]. As a regenerative organ, the testis 

has an immune-privileged status [9]. Thus, when the protein products of these gametogenic 

genes are reactivated in tumor tissues, which are not immune privileged, they are capable of 

inducing an acquired immune response [22]. Similarly, the dysregulated epigenetic program 

in tumors can result in the reactivation of developmentally restricted genes, providing tumor 

differentiation antigens [23].

In Tumor Cells: Cytokine Production

Proinflammatory cytokines are required by effector T cells to enter the TME and execute an 

immune attack on tumor cells. Recent studies showed a strong connection between 

epigenetics and cytokine production in tumor cells. One such example is ‘viral mimicry’ as 

the result of DNA methyltransferase (DNMT) inhibition. Endogenous retroviruses (ERVs) 

represent >8% of the human genome but are predominantly silenced. DNA methylation is 
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the major mechanism maintaining ERV silencing, and DNA demethylation in ERV 

promoters restores expression of ERV RNAs. ERV transcripts are mostly nonfunctional 

themselves. However, these transcripts can trigger the pattern-recognition receptor MDA5, 

which normally senses viral infection by recognizing viral double-strand (ds) RNAs. MDA5 

induces signaling cascades that result in the secretion of type I interferon and eventually 

immune cell-induced killing. Thus, DNMT inhibitor (DNMTi) treatment tricks cancer cells 

into a ‘viral mimicry’ state, in which they behave as virus-infected cells, leading to 

activation of the interferon pathway. These changes were shown to enhance the effectiveness 

of immune checkpoint inhibitors [24,25]. Further studies revealed that histone deacetylases 

(HDACs) and KDM1A (LSD1), an ‘eraser’ of H3K4me1/2, also have similar roles in the 

suppression of ERVs and ERV-induced activation of the interferon pathway [26,27].

Similar to the dsRNA sensor MDA5, cyclic GMP-AMP synthase (cGAS) detects the 

abnormal presence of dsDNA in the cytosol, which signals infection or DNA damage [28]. 

cGAS then activates STING to trigger an innate immune response, especially the expression 

and secretion of cytokines [28]. Thus, STING agonists have been suggested as the next 

generation of immune-therapy agents [29]. However, robust activation of the STING 

pathway requires not only STING activation, but also sufficient STING protein to mediate 

the signaling cascade. The STING pathway is disrupted or epigenetically silenced in many 

tumors, enabling cancer cells to evade immunosurveillance [30]. It was found that the 

histone H3K4 demethylases KDM5B (JARID1B) and KDM5C (JARID1C) bind to the 

STING promoter and block the interferon response induced by cytosolic DNA in breast 

cancer cells [31]. Treatment with KDM5 inhibitors (KDM5i) induced STING expression 

and triggered a robust interferon response in a cytosolic DNA-dependent manner in breast 

cancer cells. These findings demonstrate that KDM5i act as STING inducers, representing a 

potential new class of cancer immunotherapeutic drugs, especially in tumors with low 

expression levels of STING.

Epigenetic enzymes also regulate interferons, cytokines, and chemokines through 

mechanisms other than through MDA5 or STING. For example, both DNMT and KMT6A 

(EZH2) directly suppress the expression of Th1-type chemokines, such as CXCL9 and 

CXCL10 [32], which are critical for T cell recruitment and infiltration. Counterintuitively, 

KDM6B (JMJD3), the methyltransferase with the counter role of KMT6A (EZH2), also 

suppresses chemokine expression [32]. Another methyltransferase, KMT3A, is required for 

the interferon pathway by catalyzing the methylation of STAT1, a key transcription factor of 

the interferon response [33].

In Tumor Cells: Tumor Antigen Presentation

Epigenetics contributes to the dysregulation of antigen-presenting machinery in tumor cells, 

which enables tumor cells to become invisible to T cells. To present self- and tumor-specific 

peptides to CD8 T cells, proteins in tumor cells need to be digested by the proteasome to 

generate short oligopeptides. Transporter associated with antigen processing 1 and 2 (TAP1 

and TAP2) form a heterodimer to transport these peptides from the cytosol to the 

endoplasmic reticulum (ER). In the ER, antigen peptides are loaded onto nascent MHC-I 

molecules with the assistance of chaperone proteins. Antigen-loaded MHC-I, which consists 
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of two polypeptide chains, human leukocyte antigens (HLA) and β2-microglobulin (B2M), 

is then delivered to the cell surface for display [34].

DNMT and HDAC both suppress MHC-I expression in tumor cells, evidenced by the re-

expression of MHC-I after treating cells with DNMTi and HDACi [35,36]. In some cases, 

loss of MHC-I is caused by the epigenetic silencing of other genes involved in the antigen-

presenting machinery, such as B2M, TAP-1, and TAP-2 [37,38]. Treating tumor cells and 

patients with DNMTi led to the increased expression of genes required for antigen 

presentation [37]. Interestingly, the deacetylation of histones was also responsible for the 

downregulation of MHC-I in devil facial tumor, an unusual disease that can transmit 

between Tasmanian devils as an infectious cell line [39].

In Tumor Cells: PD-L1 Expression

PD-L1 binds to the immune checkpoint receptor PD-1 on T cells, leading to the suppression 

of T cell proliferation, cytokine production, and cytotoxic activity, a phenotype described as 

‘T cell exhaustion’ [40]. The upregulation of PD-L1 in some tumors is likely a result of 

selection caused by T cell immune responses. Epigenetic mechanisms certainly contribute to 

the regulation of PD-L1 expression. For example, in multiple cancers, methylation of the 

PD-L1 promotor was found to be negatively correlated with PD-L1 expression and 

prognosis [41–43]. Additionally, the histone acetylation ‘eraser’ HDAC6, methylation 

‘writer’ KMT2A, and acetylation ‘reader’ bromodomain and extraterminal (BET) protein 

BRD4 activate PD-L1 expression in melanoma, pancreatic cancer, and ovarian cancer, 

respectively [44–46]. Thus, small-molecule inhibitors of HDAC6, KMT2A, and BET 

proteins suppressed PD-L1 expression and promoted antitumor immunity [44–46]. By 

contrast, ARID1A, a SWI/SNF ‘remodeler’ subunit frequently mutated in ovarian cancer, 

was shown to repress PD-L1 expression [47].

In Tumor Cells: Response to T Cell Attack

Besides epigenetic ‘writers’, ‘erasers’, and ‘readers’, ‘remodelers’ also alter interactions 

between cancer cells and immune cells in the TME. Sequencing of tumors isolated from 

patients with clear cell renal cell carcinoma who had received anti-PD-1 ICBT revealed that 

the mutation status of the PBRM1 gene was associated with clinical benefits [48]. PBRM1, 

ARID2, and BRD7 are signature components of the PBAF form of the SWI/SNF chromatin-

remodeling complex [6]. An in vitro CRISPR/Cas9 screen identified that loss of PBRM1, 

ARID2, or BRD7 in melanoma cell lines sensitized cells to immune attack by CD8 T cells 

[49]. Increased response to IFNγ, a key cytotoxic cytokine secreted by NK and T cells, in 

PBAF-null cells appears to be responsible for the phenotype [49]. Thus, loss of the PBAF 

complex may serve as a biomarker for the response to ICBTs. However, utilization of this 

association to sensitize PBAF-intact tumors remains challenging, since PBRM1, ARID2, 

and BRD7 are not enzymes and there are no inhibitors of them available. Targeting their 

associated enzymes, such as BRG1, may serve as an alternative approach.

In Immune Cells: Lymphocyte Development

Epigenetic machinery has been implicated in cell-fate decisions during lymphocyte 

development [50]. Alterations in epigenetic regulators directly cause hematological 
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malignancies. Key examples include translocation of KMT2A (MLL1) driving acute 

leukemia [51,52], and KMT6A (EZH2) gain-of-function mutations driving non-Hodgkin’s 

lymphoma [53].

The functional and phenotypic changes that occur during activation of the adaptive immune 

system also largely rely on the epigenetic machinery. Chromatin architecture and histone 

regulators are essential determinants of DC function [54]. For example, the histone H3K4 

demethylase KDM5B negatively regulates the activation of bone marrow-derived DCs, 

leading to an incomplete T cell response [55]. By contrast, a ‘reader’ of methylated DNA, 

MBD2, is required for the phenotypic activation of DCs and their ability to initiate a T cell 

response [56]. Additionally, the DNA methylation ‘eraser’ TET2 and the histone acetylation 

‘eraser’ HDAC2 coordinate to repress interleukin-6 expression by DCs, limiting the 

inflammatory response [57].

In Immune Cells: T Cell Activation

The primary T cell response in lymph nodes requires interactions between T cell receptors 

(TCR) on naïve T cells and MHC-peptides on antigen-presenting DCs. Upon the co-

stimulation provided by mature DCs, the TCR–MHC-peptide interaction initiates an 

autonomous program of T cell differentiation and proliferation. This program not only 

increases the number of cells carrying the initial TCR sequence by clonal expansion, but 

also equips the lymphocytes with effector functions. During these processes, there is a 

global change in the epigenetic landscape in T cells, including DNA methylation [58,59], 

histone modifications [60,61], and genome accessibility [62], indicating the fundamental 

role of epigenetics in T cell activation.

The priming and activation of cytolytic T cells is accompanied by global DNA methylation 

remodeling [58]. Differentially methylated regions include de novo methylation on 

enhancers active in naïve T cells and promotor demethylation on effector genes, such as 

Gzmk and Gzmb [58]. Consistent with this, DNMT3A, a methyltransferase in charge of de 
novo DNA methylation, controls early effector CD8+ T cell fate decisions. Loss of 

DNMT3A leads to fewer effector cells, due to the ineffective repression of genes that are 

supposed to be silenced in effector cells [59].

Bivalent chromatin with the active transcriptional mark H3K4me3 and the suppressive mark 

H3K27me3 was found at gene loci associated with T cell proliferation and differentiation in 

naïve T cells. During priming and activation, most of these loci lose H3K27me3 while 

retaining the permissive H3K4me3 modification [60,61]. Additional analysis of enhancer 

marks, such as H3K4me1 and H3K27Ac, revealed a highly dynamic repertoire of enhancers 

during T cell activation [63].

In Immune Cells: T Cell Exhaustion

Chromatin organization has a central role in T cell exhaustion, as highlighted by recent 

studies. T cell exhaustion was originally discovered in a study of lymphocytic 

choriomeningitis mammarenavirus (LCMV), a natural pathogen of mice [64]. ATAC-seq 

showed that persistent LCMV infection-induced exhausted T cells have ~6000 open 
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chromatin regions that are different from effector T cells [65]. This difference is comparable 

with the difference between hematopoietic lineages [66].

PD-1 blockade has the ability to reinvigorate exhausted T cells in both chronic infection and 

tumor settings, as shown by transcriptional, cellular, and functional changes [67–69]. 

However, the reinvigoration is usually not sustainable. After PD-1 blockade, reinvigorated 

effector T cells became re-exhausted, likely due to the failure of the blockade to reprogram 

the epigenetic landscape of exhausted T cells into effector T cells, shown by ATAC-seq 

analysis [70]. A de novo DNA methylation program in effector T cells is required for the 

development of fully exhausted T cells [71]. Interestingly, exhaustion-associated DNA 

methylation is preserved during ICBTs [71], consistent with the ATAC-seq analysis.

In addition to the chronic LCMV infection model, tumor models created by injecting 

antigen-carrying cancer cells into TCR transgenic mice have also been established to study 

the epigenetic contribution to T cell exhaustion. ATAC-seq showed that a consistent 

chromatin-remodeling program dominated the exhaustion of effector T cells, which was 

absent in the formation of memory T cells [72]. Additionally, there are two discrete 

chromatin states of T cell exhaustion. The first stage is plastic, because T cells can be 

rescued. The later stage is permanent, in which cells are resistant to reprogramming [72].

Targeting Epigenetic Regulators to Boost Antitumor Immune Responses

Targeting epigenetic aberrations is considered one of the most attractive cancer therapies for 

several reasons. First, recurrent mutations of epigenetic modulators and dysregulation of 

epigenetic features are widely observed in tumors. Second, in contrast to genetic changes, 

epigenetic alterations are largely reversible. Third, epigenetic features are regulated by 

enzymes or chromatin-binding proteins that are targetable. Thus, epidrugs can be developed 

to treat cancer by suppressing oncogenic epigenetic regulators and restoring normal 

epigenetic features.

Over the past two decades, major efforts from both academia and industry have been 

devoted to the development of epidrugs. Before 2020, there were only FDA-approved 

epidrugs for cancer treatment, including four pan-HDACi and two DNMTi (Table 2). These 

were approved to treat T cell lymphoma, multiple myeloma, or myelodysplastic syndromes, 

all of which are hematopoietic malignancies (clinical responses reviewed in [73,74]). 

Another HDACi, chidamide (also called HBI-8000), was approved by the Chinese Food and 

Drug Administration for treating peripheral T cell lymphoma (clinical responses reviewed in 

[75]). Several additional FDA-approved drugs, (hydralazine, procaine, and procainamide, for 

treating hypertension, local anesthetics, and cardiac arrhythmia, respectively) have also been 

shown to have DNMTi activity [76–78]. Similarly, valproic acid, an approved seizures drug, 

was also found to be a HDACi. These existing drugs with newly identified epigenetic 

modulating activities are still evaluated in the clinical trials for cancer treatment. In January 

2020, tazemetostat, a KMT6A (EZH2) inhibitor, was approved for treatment of epithelioid 

sarcoma, making it the first approved histone ‘writer’ inhibitor and the first epidrug to treat 

solid tumors [79].
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Interestingly, emerging evidence suggests that some epigenetics-targeting molecules, 

including drugs that are approved or under preclinical and clinical studies, modulate the 

tumor immune microenvironment and induce robust antitumor immune responses 

[24,25,27,31].

Treating tumor-bearing animals with DNMTi and/or HDACi altered the immunosuppressive 

TME and enhanced tumor-infiltrating lymphocytes [26,35,47,81]. These effects are the 

result of enhanced tumor antigen expression and/or presentation, ‘viral mimicry’ effects, 

activation of DC cells, suppression of T cell exhaustion, or combinations thereof. Additional 

epidrugs, such as inhibitors targeting KMT6A (EZH2) [82], KDM1A (LSD1) [83], PRMT5 

[84], and BET proteins [85,86], were also capable of remodeling the TME in animal models. 

Similar changes in the TME have been observed in tumor tissues isolated from patients who 

received epidrugs [37,87]. Thus, epidrugs are attractive immunotherapy agents to boost 

antitumor immune responses, either as single agents or in combination with other anticancer 

agents, including ICBTs.

In addition to FDA-approved DNMTi and HDACi, new inhibitors of DNMTs and HDACs 

have been developed to improve efficiency and achieve stability, high specificity, and low 

toxicity. For example, guadecitabine (SGI-110), TdCyd, FdCyd, aza-TdCyd, and ASTX727 

are cytidine analogs that inhibit DNMTs through a mechanism similar to azacitidine and 

decitabine. These drugs have already entered clinical trials. New categories of DNMTi, such 

as DNA-binding compounds, oligonucleotides, and S-adenosyl-I-methionine (SAM) 

competitors, are under preclinical investigation [88]. There are more than a dozen new 

HDACi, representing different specificities against 18 HDACs (including SIRTs, a subgroup 

of NAD+ dependent HDACs) in the human genome, also in clinical trials [89].

Furthermore, intensive efforts are also being dedicated to targeting other epigenetic 

regulators (Table 2). Many epigenetic targeting agents are under clinical investigation for the 

treatment of both hematological and solid tumors. For example, inhibitors that target the 

histone mark ‘writers’ KMT6A (EZH2), KMT4 (DOT1L), and PRMT5, ‘erasers’ KDM1A 

(LSD1), and ‘reader’ BET proteins, have entered clinical trials. Other inhibitors, such as 

KMT2, KDM4, and KDM5 inhibitors, are still at the preclinical stages for oncology 

indications. Since the combination of epidrugs with checkpoint inhibitors showed 

synergistic effects in animal experiments [71,81,85,86,90], some clinical-stage epidrugs are 

being evaluated in clinical trials in combination with CTLA-4, PD-1, and PD-L1 ICBTs 

(Table 3).

Concluding Remarks

Cancer epigenetics and cancer immunology are both fast-moving fields, attracting major 

investigational efforts. Recent studies have shown that epigenetic regulation affects all 

cancer hall-marks, including all aspects of the interaction between tumor cells and the 

immune system. As a result, epigenetic modulation can elicit robust antitumor immune 

responses. Although some changes are broad, others are more restricted to certain cells 

and/or tissues. Here, we suggest that epigenetic therapies are novel immunotherapies by 

themselves. These findings provide unique opportunities to combine epidrug-based therapies 
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with other cancer treatment strategies, including current and upcoming immunotherapies. 

These combinations could not only have synergistic effects, but could also reduce adverse 

effects and prevent drug resistance. Identifying the most effective epigenetic targeting 

strategies to boost anti-tumor immune responses, especially in solid tumors, and developing 

rationale-based combinational strategies will have major impacts on our practice of immuno-

oncology in the future (see Outstanding Questions).
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Highlights

Epigenetic mechanisms affect all aspects of the cancer–immunity cycle.

Some epigenetic targeting strategies are novel immunotherapies.

Epigenetic drugs could have synergistic effects with current cancer therapies, including 

immunotherapies, and prevent resistance to current cancer therapies.
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Outstanding Questions

Why are current epigenetic drugs ineffective against most solid tumors?

Which epigenetic targeting strategies can achieve specific immunomodulatory effects?

Which epidrugs are synergistic with current and upcoming cancer immunotherapies?
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Figure 1. Molecular Basis of Chromatin-Based Epigenetic Mechanisms and their Regulators.
Genomic DNA is wrapped around histone octamers to form nucleosomes, which are further 

packaged into the human nucleus in a highly organized manner. The packaging states of 

chromatin are dynamically regulated by chromatin-remodeling complexes (‘remodelers’) to 

allow or deny access of selected cis-elements by their trans-factors. Core histones can be 

modified at multiple residues through covalent bonds by methylation, acetylation, 

phosphorylation, ubiquitination, and many other modifications. DNA can be methylated (or 

hydroxymethylated) at the 5th position on the pyrimidine ring in cytosines, and less 

commonly in mammals at the nitrogen in the 6th position on the adenine in adenosines. 

Histone post-translational modifications and DNA methylation are added or removed by 

specific enzymes (‘writers’ and ‘erasers’, respectively) and recognized by their binding 

proteins (‘readers’).
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Figure 2. The Cancer–Immunity Cycle.
The cancer–immunity cycle comprises six major steps: (1) releasing: tumor-associated 

antigens are released by tumor cells into the microenvironment, mostly due to cell death; (2) 

presenting: released antigens are captured by dendritic cells (DCs) in the tumor 

microenvironment (TME). Antigen-loaded DCs then process and present the antigens on the 

cell surface with major histocompatibility complex (MHC) complexes and travel to 

lymphoid organs; (3) priming: naïve T cells in lymphoid organs recognize selected peptide–

MHC complexes through T cell receptors (TCRs), which triggers the priming and activation 

of effector T cells; (4) trafficking: differentiated effector T cells leave lymphoid organs, and 

travel along blood vessels to scan peripheral tissues until they find their antigens in tumors; 

(5) infiltrating: T cells enter the tumor bed and migrate into the TME to become tumor-

infiltrating lymphocytes (TILs); and (6) attacking: T cells recognize cancer cells carrying the 

matched antigen through interaction between the TCR and peptide–MHC complex and kill 

cancer cells by direct or indirect immune attack. Immune attack leads to the release of 

additional antigens from the dying tumor cells, which triggers a new round of antitumor 

immune response.
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Figure 3. Major Epigenetic Regulation in Tumor Immunity.
Histone post-translational modifications and DNA methylation play key roles in adaptive 

immune response, including dendritic cell development and T cell priming and activation. In 

tumor cells, histone and DNA modifications affects production of tumor antigens, silencing 

of anti-tumor cytokines, and induction of the PD-L1 checkpoint. Recent studies revealed the 

contributions of chromatin remodeling responding to cytotoxic attack in tumor cells and 

exhaustion phenotype in tumor infiltrating CD8 T cells. Abbreviation: PD-L1, programmed 

death ligand 1.
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Table 1.

Major Groups of Epigenetic Regulators

Epigenetic features Regulator Gene family

DNA methylation Writer DNA methyltransferases (DNMTs)

Reader 5-methylcytosine-binding domain proteins (MeCP2 and MBDs)

Eraser Ten-eleven translocation dioxygenases (TETs), ALKBH1

Histone modifications Writer Lysine methyltransferases (KMTs), protein arginine methyltransferases (PRMTs), lysine 
acetyltransferases (KATs or HATs), histone ubiquitin ligases, histone kinases, and others

Reader Chromodomain, Tudor domain, MBT domain, PhD finger, bromodomain-containing proteins

Eraser Lysine demethylases (KDMs), histone deacetylases (HDACs and SIRTs), histone deubiquitinating 
enzymes, histone phosphatases, and others

Chromatin structure Remodeler SWI/SNF, ISWI, CHD, and INO80/SWR complexes
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Table 2.

Epigenetic Drugs Approved or under Clinical Trials

Category Target Approved drug and indications Drugs under clinical trials

DNMT inhibitor DNA methylation 
writers

Azacitidine (myelodysplastic 
syndromes), decitabine 
(myelodysplastic syndromes), 
procainamide (cardiac arrhythmias), 
hydralazine (essential hypertension), 
procaine (local anesthetics)

Tioguanine, FdCyd, TdCyd, Aza-TdCyd, 
fluorocyclopentenylcytosine, guadecitabine

HDAC inhibitor Histone acetylation 
erasers

Vorinostat (cutaneous T cell 
lymphoma), romidepsin (cutaneous T 
cell lymphoma), belinostat (peripheral 
T cell lymphoma), panobinostat 
(multiple myeloma), valproic acid 
(seizures), chidamide (peripheral T-cell 
lymphoma, by CFDA)

Tacedinaline, mocetinostat, abexinostat, entinostat, 
pracinostat, resminostat, givinostat, quisinostat, 
kevetrin, tefinostat, nanatinostat, domatinostat, 
ricolinostat, ME-344, CG200745, CUDC-101, AR42

KMT6A 
inhibitor

Histone methylation 
writer

Tazemetostat (epithelioid sarcoma) SHR2554, CPI-1205, GSK2816126, PF-06821497, 
MAK683

SIRT activator Histone acetylation 
erasers

None SRT2104

BET inhibitor Histone acetylation 
readers

None Mivebresib, molibresib, birabresib, INCB057643, 
ZEN003694, FT-1101, GSK2820151, CC-90010, 
CPI-0610, PLX51107, ABBV-744, BAY1238097, BI 
894999, BMS-986158, GS-5829

PRMT5 inhibitor Histone methylation 
writer

None JNJ-64619178, PF-06939999, GSK3326595

PRMT1 inhibitor Histone methylation 
writer

None GSK3368715

KDM1A 
inhibitor

Histone methylation 
eraser

None Seclidemstat, IMG-7289, tranylcypromine, 
GSK2879552, INCB059872, phenelzine sulfate

KMT4 inhibitor Histone methylation 
writer

None Pinometostat
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Table 3.

Clinical Trials with the Indicated Clinicaltrial.gov NCT IDs Combining Immune Checkpoint Inhibitors and 

Epigenetic Targeting Agents
a

Epigenetic 
targeting agent

Immune checkpoint inhibitor

Ipilimumab 
(anti-CTLA4)

Nivolumab 
(anti-PD-1)

Pembrolizumab (anti-
PD-1)

Atezolizumab 
(anti-PD-L1)

Avelumab 
(anti-PD-
L1)

Durvalumab 
(anti-PD-L1)

DNMTi

Azacitidine 02530463, 
02397720

02530463, 
02397720, 
01928576

03264404, 03769532, 
03094637, 02260440, 
02816021, 02845297, 
02546986, 02959437, 
02900560, 02512172

02508870 03390296, 
03699384, 
02953561, 
03390296, 
02951156

02811497, 
03019003, 
02811497, 
02775903, 
03161223, 
02117219, 
02250326, 
03019003

Decitabine 02890329 02664181, 
03358719

03445858, 02996474, 
03969446, 03240211, 
02957968, 03233724

03395873

Guadecitabine 02608437, 
02890329

03576963 02901899, 02998567, 
03220477

02892318, 
02935361, 
03179943, 
03206047

03308396, 
03257761, 
03085849

HDACi

Vorinostat 02619253, 03150329, 
03426891, 02395627

Romidepsin 02393794 03278782, 02512172 03161223

Panobinostat 02032810

Chidamide 02718066

Mocetinostat 03565406 03565406, 
02954991

03220477 02805660, 
02993991

Valproic acid 02648633 03357757

Abexinostat 03590054

Entinostat 03552380, 
02453620

03838042, 
03552380, 
02453620, 
03250273, 
01928576

03179930, 02936752, 
02909452, 03765229, 
02437136, 02697630, 
03978624

02708680, 
03280563

02915523

Domatinostat 03812796

BETi

INCB057643 02959437

BMS-986158 024-19417

KMT6Ai

Tazemetostat 03854474 02220842

CPI-1205 03525795

KDM1Ai

INCB059872 02712905 02959437

a
In addition, sintilimab (anti-PD-1) is being tested in combination with chidamide (HDACi) (NCT03820596), and tremelimumab (anti-CTLA-4) is 

being tested in combination with azacitidine (DNMTi) (NCT03019003) and guadecitabine (DNMTi) (NCT03085849).
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