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Such repeated sequences complicate gene/transcript quantification during RNA-seq analysis due to reads
mapping to more than one locus, sometimes involving genes embedded in other genes. Genes of different
biotypes have dissimilar levels of sequence duplication, with long-noncoding RNAs and messenger RNAs
sharing less sequence similarity to other genes than biotypes encoding shorter RNAs. Many strategies
have been elaborated to handle these multi-mapped reads, resulting in increased accuracy in gene/tran-
script quantification, although separate tools are typically used to estimate the abundance of short and
long genes due to their dissimilar characteristics. This review discusses the mechanisms leading to
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1. Introduction

Gene duplications are common genomic occurrences resulting
in the addition of new genetic material in a genome and represent-
ing one of the mechanisms enabling molecular evolution [1,2].
With time, the two identical sequences will often gradually diverge
through the acquisition of mutations. Different molecular mecha-
nisms can cause gene duplications, with different genomic regions
presenting a different susceptibility to these mechanisms, as
described in section 2. Duplicated genomic regions represent a
challenge when analysing high-throughput RNA sequencing data-
sets as the reads align equally well at more than one such genomic
location. When reads cannot be unambiguously aligned to a refer-
ence, genes cannot be accurately quantified [3]. The short reads
from technologies such as Illumina compound the problem,
although many repeated sequences correspond to short genes for
which longer reads would not solve the problem. Fractions of
RNA sequencing (RNA-seq) reads that cannot be uniquely aligned
vary depending on the organism, the sample, the type of molecule
enriched for in the experiment, the aligner and the reference anno-
tation used. Proportions of multi-mapped reads typically range
from 5 to 40% of total reads mapped [4,5], representing a substan-
tial subset of reads. Diverse strategies have been devised to deal
with multi-mapping reads, including ignoring them, splitting them
equally between the multi-mapped genes, distributing them
between the multi-mapped genes or gene portions proportionally
to their uniquely mapped reads or based on a statistical model of
mapping uncertainty, and providing quantifications for gene
groups rather than individual genes. Section 3 of the review
describes these strategies. In addition to duplicated genomic
sequences, duplicated transcriptomic sequences, due to alternative
splicing for example, cause similar problems during RNA-seq read
alignment to transcriptomic sequences. This mini-review explores
the mechanisms by which genomic and transcriptomic sequences
can be duplicated, the classes of transcripts with repeated
sequences and the computational strategies to manage the map-
ping of reads to duplicated sequences.

2. Genomic and transcriptomic sequence duplication
mechanisms and affected RNA biotypes

2.1. Recombination and whole genome duplication

Recombination is a molecular mechanism enabling genetic
sequence exchange that can be reciprocal or not. Recombination
usually results from a sequence exchange between DNA regions
from the same locus on homologous chromosomes. In some cases,
the crossing-over of the homologous chromosomes can be
unequal, leading to tandem duplication of genes [1,2,6]. In addi-
tion, recombination can also occur ectopically between non-
homologous loci, leading to the insertion of different genetic mate-
rial in one of the loci involved and resulting in the duplication of
sequence [6,7]. Such duplication events can generate new func-
tional genes termed paralogs of the original copy. However, if they
lack gene expression capability or acquire mutations affecting their
capacity to code for proteins, they are referred to as pseudogenes.
Though under different selective pressure, paralogs but even more
so pseudogenes progressively acquire mutations compared to their
parental copy, the age of the copy reflecting the extent of sequence
divergence with the parent gene [8]. Most duplicated genes are
thought to eventually become pseudogenes or be lost [9].

Whole genome duplication is another mechanism resulting in
sequence duplication. Strong evidence points to the occurrence of
whole genome duplication in diverse ancestral organisms includ-
ing in the lineage leading to the baker’s yeast Saccharomyces cere-

visiae, in early chordate evolution and in diverse plant lineages
[10-13]. And while such events are typically followed by wide-
spread gene loss, a subset of genes remain present in more than
one copy as a consequence. For example, many gene families in
vertebrates are believed to have been formed or expanded by a
whole genome duplication event in early chordate evolution [11].

2.2. Transposable elements

Transposons (or transposable elements) are genomic elements
with the capacity to change genomic position, either by ‘cut and
paste’ or ‘copy and paste’ mechanisms [14]. Approximately half
to two-third of the human genome is believed to consist of trans-
posons, although only a small proportion of these elements
(<0.05%) are believed to be active today [15-17]. Transposons
include both DNA transposons and retrotransposons, which move
about the genome using different mechanisms. DNA transposons
excise themselves from their current genomic location to integrate
into another position. In contrast, retrotransposition first involves
transcription of the element into RNA which is then reverse tran-
scribed into DNA and reinserted into the genome at another locus,
generating new retrotransposon copies. Transposons can be
inserted in diverse genomic loci including in intergenic regions,
but also within other genes, in sense or antisense, in their exons
or introns, resulting in much sequence redundancy in genomes.
Retrotransposition machinery can also, in addition, use cellular
RNAs as substrates, reverse transcribing and inserting them in
the genome, leading to new copies of existing genes [14]. Such
new genes lack the genomic and thus the regulatory context of
their parental copy and are often not expressed. Genes resulting
from the retrotransposition of messenger RNAs are referred to as
processed pseudogenes, lacking the introns of their parental copy
[14]. As a consequence, they typically share sequence identity with
the exons of their parental copy although since most are not
expressed, they are under low selective pressure to avoid acquiring
mutations, progressively losing sequence identity with their par-
ental copy.

Many noncoding RNAs also benefit from retrotransposition,
resulting in many copies in genomes and an expansion in their
family member count. For example, depending on the genome,
small nucleolar RNAs (snoRNAs), which are structured noncoding
RNAs typically varying in length between 70 and 150 nucleotides
and playing a role in ribosome biogenesis, encode dozens to thou-
sands of copies with evidence of their propagation through retro-
transposition [18-20]. Diverse other families of noncoding RNA
including small nuclear RNA (involved in splicing), 7SL (the signal
recognition particle RNA) and miRNA (involved in the regulation of
transcript stability and translation) derive many of their members
through retrotransposition [20-25]. In the case of retrotranscribed
noncoding RNAs, many copies have been shown to be expressed
and functional.

Thus as a consequence of recombination, whole genome dupli-
cation and transposition, many genomic sequences are repeated
and can be distinguished in two groups: paralogous gene families
resulting from the duplication of whole genes and genes contain-
ing highly repetitive elements embedded in their sequence. The
former group consists of genes of any biotype and have high
sequence similarity over their whole length whereas the latter
group mostly affects longer genes such the protein_coding and
IncRNA RNA classes and have strong sequence similarity only over
a portion of the gene. Fig. 1 shows the proportion of human genes
of different biotypes displaying sequence similarity to other genes,
based on Ensembl annotations [26]. The gene biotypes rRNA, pseu-
dogene, snRNA, miscellaneous RNA, snoRNA and rRNA_pseudo-
gene show the largest proportion of members with sequence
similarity to other genes (Fig. 1A). For the genes with sequence
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Fig. 1. Proportion of human genes with sequence similarity to other genes, per biotype. (A) Stacked bar chart displaying the percentage of genes per biotype with specified
number of genes sharing sequence similarity. (B) For each biotype and for all genes of that biotype that share similarity with another human gene, the distribution of the
biotypes of their similar genes is shown. To calculate gene similarity, human genes were obtained from the Ensembl annotation (version 99). Pairwise sequence similarity was
measured with BLAST (version 2.9.0 from bioconda). The BLAST database was composed of the genomic sequence from each gene, and the spliced sequence of their transcript
having the highest number of exons. The spliced transcript is used to identify processed pseudogenes by reducing gap bias. The blastn algorithm was run for all pairs of
sequences in the database, with 1e-20 as a minimum e-value, and keeping only the best hit for each pairwise comparison. Each BLAST hit was scored as the average of the
alignment length divided by the whole length of the sequence and multiplied by the percentage of identical matches for each sequence in the pair. Results were then parsed,
eliminating self-hits (a gene with itself or its transcript), and analysed using a BLAST pairwise score threshold of 60%.

similarity to other genes, most biotypes display similarity to their
own biotype (for example snRNA, miRNA, snoRNA and misc_RNA,
Fig. 1B and 2). However, unsurprisingly, rRNA and rRNA pseudoge-
nes show high levels of similarity with each other. And similarly,
protein_coding, IncRNA and pseudogenes also display high levels
of similarity with each other (Figs. 1B and 2). The most common
similarity relationships for the main biotypes are illustrated in
Fig. 2. The distribution of abundance of transcripts of different bio-
types varies depending on the organism and the sample, but also
the library preparation protocol and the computational pipeline
used for the quantification [27,28], which will ultimately influence
the abundance distribution of each biotype and the proportion of
multi-mapped reads for each biotype and overall for the sample
[4,5].

2.3. Alternative splicing as a source of duplicated sequences

Alternative splicing, as well as the use of alternative promoters,
increase the number of different transcripts produced by a gene
[29-31]. While such isoforms contain unique sequences, all com-
mon exons included in these transcripts will have identical
sequences, increasing the amount of sequence duplication when
one considers the entire transcript content of an RNA sample (ie
its transcriptome) [3]. While alternative splicing does not result

in sequence duplication in a genome, it does in the context of a
transcriptome (ie in the context of a transcriptome annotation,
alternative splicing results in more than one transcript from the
same gene, usually with overlapping sequences). Thus if RNA-seq
reads are aligned to a transcriptome rather than to a genome, mul-
tiple overlapping transcripts annotated for a given gene will appear
as duplicated sequences in the reference.

3. Strategies to deal with repeated sequences when analysing
RNA-seq

RNA-seq is a powerful high-throughput approach which
enables the quantification of RNAs in a sample. As extensively
reviewed in [32,33], the RNA-seq methodology involves isolating
the RNA of interest with optional fragmentation depending on
the technology and the RNAs considered, construction of the
sequencing library, typically implicating reverse transcription to
DNA, generating the inserts that will be sequenced, to which adap-
ters are added and then amplification, followed by the sequencing
itself. Many variations of the protocol exist to sequence specific
RNAs or portions of RNAs of interest [32]. The analysis of RNA-
seq involves evaluating the quality of the individual sequencing
reads and alignment of the reads to the genome or transcriptome
of the organism from which the RNA was obtained, if available, fol-
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Fig. 2. Most common sequence similarity relationships between human genes, per biotype. The network of sequence similarity relationships was measured for all human
genes as described in Fig. 1. The most common sequence similarity patterns are illustrated here, per biotype.

lowed by attribution of the aligned reads to specific genes or tran-
scripts and their quantification [34]. In this context, all sequence
repetition, whether genomic or transcriptomic, adds complexity
to RNA-seq analysis because all the reads aligning to one copy of
a repeated sequence will also align to most or all of its copies.
The RNA-seq reads mapping to more than one locus, or multireads,
are thus difficult to quantify and add uncertainty to downstream
analysis. Both types of RNA-seq analyses, either gene- or
transcript-level, have different types of multireads and strategies
to quantify them, although recent methods deal with them simul-
taneously within the same model (summarized in Table 1). Here,
we discuss the methods that deal with both multireads mapping
to more than one genomic location and to more than one transcript
(in the case of transcript-level analyses).

3.1. Simple methods

The simplest ways of handling multireads are to ignore them all
together, count them once for each alignment, randomly assign
them to one of the best alignments or split them equally between
each alignment (Fig. 3). The first method consisting in discarding
all the multi-mapped reads is often used in gene-level quantifica-
tion. This approach is employed by popular tools such as HTSeq-
count [35], STAR geneCounts [36] and Subreads’s featureCounts
[37] using their default parameters. This strategy reduces the

uncertainty of the multi-copy gene quantification, but will also
lead to an underestimation of certain gene sets and biotypes
(Fig. 3). This is not an option in transcript-level analyses, since
complete exons would be ignored. The second option, which is to
count all valid alignments for a read will have the opposite effect
of systematically overestimating these gene sets and RNA biotypes.
Using this strategy, a read may be counted more than once, inflat-
ing the number of molecules that appear to have been sequenced,
misrepresenting the studied sample (Fig. 3). This option is avail-
able using Subread’s featureCounts with —-M option. The last simple
strategy is to equally split the multi-mapped reads between all
their alignments (Fig. 3). This can be achieved by using fea-
tureCounts -M --fraction options and Cufflinks [38]. Uniformly dis-
tributing the multireads, by either keeping a single random
alignment or by splitting the count between each alignment, will
ensure that every read is counted only once, and will give a better
representation of the proportion of each RNA biotype in the
sequenced sample. The downfall of these approaches is the dilu-
tion of the effect on a single active gene copy between all the other
inactive ones. For instance, if a protein coding gene having multiple
inactive copies is expressed (for example, in Fig. 2, one of the pro-
tein_coding genes with similarity to one or several pseudogenes
could be in this situation), the reads that align to the active and
inactive copies will be shared, and the region of the inactive copies
that diverge from the parent gene won'’t have any expression. Thus,
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Table 1
Computational strategies and methods that handle multi-mapped reads.
Tool Quantification  Input Strandedness  Count type Strategy Paired  Confidence level Focus Reference
level can end
be specified
HTSeq-count Gene BAM Y Counts Ignore Y N Long RNA [35]
STAR Gene Fastq Y Counts Ignore Y N Long RNA [36]
geneCounts
Cufflinks Transcript BAM Y RPKM Split equally, Rescue Y N Long RNA [38]
featureCounts Gene BAM Y Counts Ignore, count all, Y N Long RNA [37]
split equally
CoCo Gene BAM Y Counts, CPM,  Rescue Y N Small RNA [28]
TPM Long RNA
ERANGE Transcript BAM N RPKM Rescue Y N Long RNA [39]
EMASE Transcript BAM N Counts, TPM EM Y N Long RNA [48]
[soEM2 Both SAM Y FPKM, TPM EM Y Confidence Long RNA [56]
intervals
Kallisto Transcript Fastq Y TPM EM Y Bootstrap values Long RNA [49]
RSEM Both Fastq, Y Counts, TPM, EM Y 95% credibility Long RNA [45]
BAM FPKM intervals
Salmon Transcript Fastq Y Counts, TPM EM Y Bootstrap values Long RNA [50]
MMR N/A BAM Y N/A Read coverage Y N/A Long RNA [44]
MuMRescueLite Genomic loci Custom N Counts Read coverage N N Short [41]
format sequence tags
Rcount Gene BAM Y Counts Read coverage N N Long RNA [42]
ShortStack Gene Fastq, N Counts, RPM  Read coverage N N Small RNA [43]
BAM
mmquant Gene BAM Y Counts Gene Clustering Y N Small RNA [51]
Long RNA
SeqCluster Gene BAM N Counts Gene clustering N N Small RNA [53]
Fuzzy method Gene Custom N Fuzzy counts  Fuzzy sets N Fuzzy counts Small RNA [54]
format Long RNA
geneQC Gene SAM Y NA ML Y Mapping Small RNA [5]
uncertainty level Long RNA

the truly expressed gene will be underestimated and the inactive
copies overestimated.

3.2. Rescue methods

To address the above issue and more accurately represent the
relative abundance of the repeated genes, the rescue method was
introduced. This strategy consists of distributing the multi-
mapped reads between their alignments based on the uniquely
mapped read ratio (Fig. 3). Taking the example cited above, if a pro-
tein coding gene has many uniquely mapped reads throughout its
length, whereas the only reads aligned to the inactive copies are
also aligned to the active one, all the multi-mapped reads will be
assigned to the active copy. However, if two genes are completely
identical, which is more frequent for short RNA genes such as
snoRNAs and miRNAs, none will have uniquely mapped reads,
and the multi-mapped reads will either be equally split between
both copies or not counted at all using this approach, depending
on the tool. This strategy was introduced by ERANGE [39], and is
also used by Cufflinks with —u option and CoCo [28]. A problem
with this strategy occurs when a short gene sequence is entirely
contained in a longer gene. In this case, all the reads originating
from the small gene will also map to the longer one, while the
longer gene can have uniquely mapped reads, resulting in an over-
estimation of the longer gene at the expense of the shorter one.
This situation is common for small noncoding RNAs such as snoR-
NAs and miRNAs, many of which are intronic in mammalian gen-
omes, encoded in longer genes referred to as their host genes
[40]. Such noncoding RNAs often overlap with retained introns of
their host genes, resulting in reads mapping exactly to the small
RNA being rather attributed to the host gene. CoCo rescues such
reads by aligning them to an alternative annotation in which exo-
nic regions overlapping an embedded small RNA are removed
(these regions are typically retained introns), resulting in the attri-

bution of the reads to the embedded small RNA. CoCo then per-
forms a background subtraction over the whole exon to ensure
that reads are not wrongly assigned to the smaller RNA [28].

3.3. Read coverage based methods

Another strategy is to weigh the multireads based on the read
coverage of their different alignments surroundings (Fig. 3).
MuMRescuelite [41], Rcount [42] and ShortStack [43] distribute
the multireads with respect to the read coverage density in their sur-
roundings, rather than over the whole gene as do many rescue meth-
ods. An alignment having more reads mapped in a given window
upstream and downstream the repeated region will be assigned a
more important portion of the multiread. MuMRescueLite and
Rcount distribute the multireads based on uniquely mapped reads
only, whereas ShortStack allows the user to choose between
uniquely mapped reads only or both, with a lesser weight attributed
to the multireads. MMR [44] starts with one alignment for every
read, this alignment can either be the best, the first in the input or
a random one. MMR considers the read coverage profile around
every multiple alighment and keeps the one maximising the
smoothness of the local coverage. While appropriate for genes con-
sisting both of regions that are identical to other genes but also
regions that are unique to them, this method may not be suited for
small RNA-seq where reads accumulate in very well defined blocks
and the corresponding genes do not have flanking unique sequences.
MMR filters the alignments from an alignment file (BAM), and does
not perform quantification. If the user keeps more than one align-
ment per read, the quantification tool must be chosen accordingly.

3.4. Expectation maximization approaches

Many quantification tools use the expectation maximization
(EM) algorithm to estimate the maximum likelihood value of gene
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Fig. 3. Strategies to deal with multi-mapped reads. (A) Example of two genes sharing a duplicated sequence and the distribution of RNA-seq reads originating from them. The
two genes are represented by boxes outlined by dashed lines and their common sequence is illutrated by a red line. The reads are represented by lines above the genes, purple
for reads that are unique to Gene 1, orange for reads that are unique to Gene 2 and black for reads that are common to genes 1 and 2. (B) General classes to handle multi-
mapped reads include ignoring them, counting them once per alignment, splitting them equally between the alignments, rescuing the reads based on uniquely mapped reads
of the gene, expectation-maximization approaches, rescuing methods based on read coverage in flanking regions and clustering methods that group together
genes/transcripts with shared sequences. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

or transcript abundance and can take multi-mapped reads into
account (Fig. 3). The first such tool to manage mapping uncertainty
with a statistical model was RSEM which can handle reads that are
multi-mapped between both transcripts and genes and is capable
of dealing with non-uniform read distributions [45,46]. Several
subsequent tools were proposed including IsoEM, which can also
deal with multi-mapping reads between both transcripts and
genes [47] and EMASE, which manages multireads between genes,
transcripts and alleles [48]. Each tool has a different model usually
taking into account the fragment length distribution, alignment
quality, sequence bias and so on. For genes that have uniquely
mapped reads in addition to their multireads, the expectation-max
imization approach has been shown to be more accurate than the
rescue method, which is reported as equivalent to a single iteration
of the expectation maximization algorithm [45]. Some tools using
this strategy such as RSEM, also report a value representing the
confidence level of each gene or transcript abundance [46]. This
value can be very helpful to evaluate the reliability of the differen-
tial expression analysis results. Indeed, it could indicate if a gene or
transcript was deemed significantly differentially expressed
mainly due to its mapping uncertainty. More recent RNA-seq quan-

tification programs based on pseudoalignment and quasi-mapping
such as Kallisto and Salmon also use the EM algorithm to attribute
read counts to the most likely transcripts [49,50]. Kallisto builds a
transcriptome de Bruijn graph based on sequencing reads. If they
have identical sequences, whether originating from different tran-
scripts of the same gene or from different genes, reads will map to
the same part of the de Bruijn graph and will thus be part of the
same equivalence class. Kallisto samples from the equivalence
classes following a multinomial distribution which are fed to the
EM algorithm, resulting in transcript abundance estimates [49].
Similarly, Salmon also establishes equivalence classes, either
through its own mapping procedure referred to as quasi-
mapping, or from a pre-calculated alignment file, built over the ini-
tial fragment abundance estimates. An EM algorithm is then run
over the equivalence classes which can span different transcripts
and different genes, providing transcripts estimates [50].

3.5. Clustering methods

Instead of trying to weigh and distribute the multiread counts,
some tools, such as mmquant [51], cluster genes together as a
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multi-mapped group (MMG) as proposed by [52]. All the genes to
which a multiread aligns will be clustered as a MMG which can be
used as a gene for further analysis such as differential expression
analysis (Fig. 3). While this method diminishes the multiread
quantification uncertainty, the handling of the MMG can be diffi-
cult. For instance, it would be difficult to evaluate normalized
counts such as transcripts per million, because the shared propor-
tion of the genes may vary inside a group, and from one group to
another. In addition, MMG can span more than one biotype
(Fig. 2), which can make the interpretation difficult. On the other
hand, this strategy can be very useful when aligning to the genome
and trying to identify multireads aligning to unannotated regions.
The gene clustering can help in characterizing potential new genes
as proposed by SeqCluster [53]. For example, if an unannotated
region clusters with tRNA genes, it is likely that this region may
encode a tRNA, and this will help refine the methodology to inves-
tigate its function. One must be careful when trying to identify new
non-annotated genes if most reads are multi-mapped since it could
be an inactive copy of an actual gene.

3.6. Measuring multi-mapping uncertainty

Although many tools offer different strategies for dealing with
multireads, the problem is still not solved and may have an impor-
tant impact in downstream analysis such as differential expression
analysis and functional enrichment. Some methods were devel-
oped to help users understand or have better insights into which
genes are more affected by the multiread bias. For instance, Gen-
eQC [5] uses a machine learning approach to evaluate the uncer-
tainty of a gene or transcript quantification based on the
sequence similarity, the proportion of multireads and the number
of similar genes. It can categorize a gene uncertainty as low, med-
ium or high, which can help in selecting genes with reliable esti-
mated counts, and raise awareness to those needing further
investigation. Another paper used fuzzy sets [54] to evaluate the
effect of different multiread quantification approaches on differen-
tial expression analysis and helps identify false positives. These
methods offer important insights regarding the uncertainty of gene
expression estimation created by multireads, and can have a cru-
cial impact on the selection of genes for experimental validation.

4. Summary and outlook

Genomes are replete with repeated sequences, resulting from
several different mechanisms that drive evolution, leading to gene
duplication. RNA-seq pipelines must acknowledge this concept to
ensure accuracy in gene and transcript quantification. Many strate-
gies have been devised to deal with multi-mapping reads (Table 1).
Early efforts often led to under or overestimates of repeated genes,
but more recent approaches more accurately attribute multireads
to gene or transcript of origin. Genes for which the whole gene
sequence is repeated (typically short genes, often embedded in
other genes) and those for which only a portion is duplicated do
not currently benefit from the same strategies. Unified methodolo-
gies dealing well with both multi-mapped reads originating from
groups of short genes and multi-mapped reads from portions of
long genes will require careful design. Such methodologies will
be important for the quantification of RNA-seq from low structure
bias sequencing approaches such as TGIRT-seq, which detects
accurately both long RNAs and short structured and often embed-
ded RNAs simultaneously [27,55]. A second challenge will be in the
accurate quantification of RNA-seq from samples and conditions
that lead to genetic sequence amplification and aberrations such
as cancer, for which reference genomes or transcriptomes are not
available. Accurate reference-free approaches dealing well with

multi-mapping reads will be important in those cases. A third chal-
lenge will derive from technologies such as single-cell approaches
which suffer from missing data, making gene and transcript esti-
mates more difficult to evaluate, particularly for genes with large
proportions of multi-mapped reads. RNA-seq is now a ubiquitous
tool in molecular biology. The fast paced improvement of RNA-
seq computational pipelines to deal with the widespread issue of
multi-mapping reads will likely continue and these challenges be
rapidly met, ensuring accurate quantification for increasingly
diverse samples.
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