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I. INTRODUCTION AND BACKGROUND

1.1. Overview

Brown adipocytes, which reside in specific depots called brown adipose tissues (BAT), 

produce heat in a process called non-shivering thermogenesis. Thermogenesis in BAT is 

stimulated mainly by the sympathetic nervous system in response to cold exposure, and it 

helps maintain body temperature (euthermia) in placental mammals. The acquisition of BAT 

in early mammalian evolution is considered one key evolutionary advantage that allowed for 

the successful expansion of mammals, and its functional importance in newborn humans and 

small rodents has long been appreciated. More recently, it has become apparent that adult 

humans also have functionally relevant BAT, and possibly the additional capacity to induce 

the formation of brown-like adipocytes within white adipose tissues (WAT) (called brite or 

beige adipocytes) under certain conditions. Because these thermogenic cells, when active, 

have a high rate of nutrient consumption and energy expenditure, their existence in adult 

humans not only correlates with improved metabolic profiles (Betz and Enerback, 2018), but 

has stimulated interest in targeting them therapeutically to fight obesity and improve 

glycemic control (Hanssen et al., 2015, Ouellet et al., 2012, Yoneshiro et al., 2011b, 

Yoneshiro et al., 2011c). This has gone hand-in-hand with renewed interest in understanding 

the basic biological mechanisms of brown fat development and metabolic regulation, which 

includes understanding the cellular lineages and precursor cell pools that give rise to brown 

and brite/beige adipocytes, and the signals that govern their fuel selection and unique 

metabolism. Identifying brown adipocyte stem and progenitor cells, and elucidating the 

mechanisms that stimulate their differentiation into mature thermogenic adipocytes, could 
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have important implications in developing brown fat based therapeutics. Here, we will 

discuss our present understanding of brown adipocyte development and function, the related 

topic of brite/beige adipocytes, and key future goals and unanswered questions especially as 

they relate to potential therapies.

1.2. Basics of Non-shivering thermogenesis

Cold-stimulated non-shivering thermogenesis (NST) in the brown adipocyte is dependent 

upon the intrinsic expression and function of uncoupling protein 1 (UCP1), an inner 

mitochondrial membrane transporter that dissipates the energy stored in the mitochondrial 

electrochemical gradient as heat, “uncoupled” from ATP synthesis (Betz and Enerback, 

2018). In the absence of thermal stress, brown adipocyte UCP1 is thought to be inhibited by 

purine nucleotides (Nicholls, 2006, Sluse et al., 2006). During cold stress, brown fat 

thermogenesis is classically stimulated by norepinephrine released from the sympathetic 

nervous system (SNS), which activates β3-adrenergic receptors on brown adipocytes to 

stimulate intracellular synthesis of the second messenger cyclic AMP (cAMP), leading to 

cAMP-driven protein kinase A (PKA) signaling activation. This stimulates lipid catabolism 

processes such as lipolysis which liberates free fatty acids from triacylglycerol lipid storage 

droplets, and increases expression of a thermogenic gene expression program that includes 

UCP1 mRNA (Nicholls, 2006, Sluse et al., 2006, Fedorenko et al., 2012, Lehr et al., 2006).

Exactly how brown adipocytes choose and utilize fuel remains an important and open 

question. Recent studies suggest that active lipolysis in brown adipocytes may not be 

required for sustaining thermogenesis so long as exogenous lipids are available; 

nevertheless, cellular free fatty acids reportedly directly activate UCP1 (Fedorenko et al., 

2012, Shin et al., 2017, Schreiber et al., 2017). Active brown adipocytes also take up glucose 

from circulation, and synthesize free fatty acids de novo from glucose and possibly other 

lipogenic precursors (i.e. the process of de novo lipogenesis) to continuously fuel NST or to 

provide other yet to be appreciated metabolic advantages (Sanchez-Gurmaches et al., 2018, 

McCormack and Denton, 1977, Mottillo et al., 2014, Shimazu and Takahashi, 1980, 

Trayhurn, 1979, Yu et al., 2002). In addition, BAT thermogenesis is fueled by liver-derived 

plasma lipid metabolites (acyl-carnitines), the release of which is stimulated by cold-induced 

lipolysis in the WAT (Simcox et al., 2017). It has also been suggested recently that UCP1-

independent mechanisms of thermogenesis might exist under certain circumstances 

(Bertholet et al., 2017, Ikeda et al., 2018, Kazak et al., 2015). Brown adipocytes might also 

have key metabolic functions in addition to thermogenesis, such as secreting special 

adipokines (called BATokines) and exosome containing miRNAs that might have both 

autocrine function and paracrine functions on nearby immune cells, as well as endocrine 

functions related to glucose homeostasis and cardiovascular health (Thomou et al., 2017, 

Villarroya et al., 2013, Hansen et al., 2014, Svensson et al., 2016, Long et al., 2016, Wang et 

al., 2014a, Villarroya and Giralt, 2015).

1.3. Brown Fat Anatomy and Morphology

The color distinction between a “brown” and a “white” adipocyte largely reflects the many 

more mitochondria (which are high in iron) in brown adipocytes compared to white 

adipocytes (Figure 1). A stimulated brown adipocyte actively generating heat also contains 
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many small lipid droplets and is referred to as being multi-locular, while white adipocytes, 

such as those in subcutaneous and visceral depots (sWAT and vWAT, respectively) typically 

have a single large unilocular lipid droplet (Figure 1). Having many small lipid droplets 

increases lipid droplet surface area and presumably promotes metabolite exchange with 

mitochondria (Blanchette-Mackie and Scow, 1983, Benador et al., 2018). A less active 

brown adipocyte that is not engaged in thermogenesis (e.g. after acclimation to 

thermoneutrality) adopts a morphology more similar to a white adipocyte although it retains 

an epigenetic cellular identity that differentiates it from a white adipocyte (Roh et al., 2018).

As indicated above, brown adipocytes exist in defined BAT depots in the mouse, which is 

the main model organism used to study brown fat. Notably, the size and composition of each 

BAT depot differs with age, gender and mouse strain background (Frontini and Cinti, 2010, 

Murano et al., 2009). The largest BAT depots are clustered in the dorsal anterior regions of 

the mouse body and include the inter-scapular (iBAT), sub-scapular (sBAT) and cervical 

depots (cBAT) (Frontini and Cinti, 2010, de Jong et al., 2015, Walden et al., 2012, Cinti, 

2005) (Figure 2). In addition, there are several small BAT depots proximal to major blood 

vessels and specific organs, such as the peri-aortic BAT depot (paBAT) that aligns to aortic 

vessels, and the peri-renal BAT depot (prBAT) that localizes in a fibrous capsule of the 

kidney (Frontini and Cinti, 2010) (Figure 2). Recent studies using 18F-FDG PET/CT or 

(123/125I)-β-methyl-p-iodophenyl-pentadecanoic acid with SPECT/CT imaging, which traces 

glucose and lipid uptake respectively, suggests additional small pockets of cold responsive 

fat depots exist in suprascapular, supraspinal, infrascapular, and ventral spinal regions 

(Zhang et al., 2018, Mo et al., 2017).

Similar to the mouse, newborn humans have active brown adipocytes present at birth in large 

interscapular BAT depots and peri-renal depots (Figure 3A), which presumably helps 

maintain core body temperature though could also have other neonatal functions not yet 

appreciated. Until recently, it was widely believed that after neonatal BAT recedes, adult 

humans lacked brown fat. However, about a decade ago the widespread existence of active 

BAT in adults was revealed by retrospective analyses of 18F-fluodeoxyglucose (FDG) uptake 

assays, which uses positron emission tomography/computed tomography (PET-CT) to 

measure glucose uptake into organs (Yoneshiro et al., 2011a, Yoneshiro et al., 2013, van der 

Lans et al., 2013, Ouellet et al., 2012, Hanssen et al., 2015, Nedergaard et al., 2007, Cypess 

et al., 2009, van Marken Lichtenbelt et al., 2009, Saito et al., 2009, Virtanen et al., 2009, 

Kortelainen et al., 1993). These studies also revealed a correlation between BAT activity/

amount and metabolic fitness. More recent studies show that BAT depots in adult humans 

exist in the supraclavicular, axillar and paravertebral regions, though the variability across 

individuals and populations is still being worked out (Zhang et al., 2018, Nedergaard et al., 

2007, Cypess et al., 2009, van Marken Lichtenbelt et al., 2009, Virtanen et al., 2009, Ouellet 

et al., 2012) (Figure 3B). There are also small BAT depots in perivascular regions (aorta, 

common carotid artery), and near the heart wall (epicardium), lung bronchia, and some solid 

organs (hilum of kidney and spleen, adrenal, pancreas, liver) (Sacks and Symonds, 2013) 

(Figure 3B).
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1.4. BAT vascularization and innervation

Brown fat depots are also highly vascularized, which facilitates the exchange of oxygen and 

nutrients and the dissipation of heat and release of BATokines into circulation (Bartelt et al., 

2011, Labbe et al., 2015, Sacks and Symonds, 2013). In fact, BAT requires increased blood 

infusion rate during BAT recruitment (i.e. cold stimulation) to obtain sufficient metabolic 

substrates and oxygen. Brown adipocytes also generate vascular endothelial growth factor-A 

(VEGF-A) and nitric oxide (NO), which facilitates BAT angiogenesis and vascularization 

(Xue et al., 2009, Sun et al., 2014, Nisoli et al., 1998, Mahdaviani et al., 2016), a process 

that is reduced in obese mice resulting in loss of thermogenic activity (Shimizu et al., 2014). 

Other recent work suggests that brown adipocytes may have a vasoprotective role that might 

be mediated by the secretion of hydrogen peroxide (H2O2), which inhibits vessel 

contractions in nearby vascular cells (Friederich-Persson et al., 2017).

In addition to being highly vascularized, BAT is extensively innervated allowing for its rapid 

stimulation by the sympathetic nervous system (SNS). The SNS releases catecholamines 

such as norepinephrine that activate G-protein coupled β3-adrenergic receptors that are 

highly expressed on mature brown adipocytes, and β1-adrenergic receptors on brown 

adipocyte precursors (Cannon and Nedergaard, 2004, Morrison et al., 2012, Bukowiecki et 

al., 1986, Bronnikov et al., 1992). While β3-adrenergic receptor signaling stimulates mature 

brown adipocyte lipid catabolic activity and thermogenesis, β1-adrenergic receptor signaling 

stimulates brown fat adipogenesis upon prolonged cold challenge (Bronnikov et al., 1992). 

Classic denervation studies reveal the indispensability of the SNS connections for 

thermogenesis (Silva and Larsen, 1983, Rothwell and Stock, 1984, Takahashi et al., 1992, 

Labbe et al., 2015). Emerging research also suggests that innervation may also be critical for 

BAT to communicate directly with other non-SNS tissues, such as the WAT (Schulz et al., 

2013, Garretson et al., 2016, Nguyen et al., 2018).

In summary, BAT is a dynamic and heterogeneous tissue, and the extensive networks of 

vessels and nerves found in BAT suggests that during brown fat development, there is tight 

coordination between brown adipocyte precursors (discussed below), endothelial lineages, 

and nerve cell lineages, and likely immune cells too (Lumeng and Saltiel, 2011, Olefsky and 

Glass, 2010, Villarroya et al., 2018). The signaling and metabolic interactions between 

different cell lineages during brown fat development has not yet been extensively studied by 

systems based approaches.

1.5. Transcriptional control of brown adipocyte differentiation

Much of the general transcriptional cascade that promotes adipogenesis is shared between 

brown and white adipocytes, and has been studied at length using in vitro models (e.g. 3T3–

L1 cells). The master regulator of adipogenesis, PPARγ, is both necessary and sufficient for 

adipogenesis (Rosen et al., 1999, Tontonoz et al., 1994, Wang et al., 2013a). Other key 

components of the general adipogenesis transcriptional cascade also important in brown and 

brite/beige adipocyte differentiation include the members of the C/EBP family (C/EBPα, C/

EBPβ, C/EBPδ)(Farmer, 2006). While PPARγ is the dominant factor, overexpression of all 

C/EBP family members induces adipocyte formation. In culture, C/EBPβ and C/EBPδ 
function in the first wave of adipogenic transcription factors (hours after adipogenic 
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induction) that eventually triggers a second wave (days after adipogenic induction) that 

includes C/EBPα and PPARγ, which feed-forward activate themselves (Farmer, 2006).

More recently, efforts to identify brown adipocyte lineage specific transcription factors has 

identified new additional components that may contribute to the brown (or brite/beige) 

adipocyte fate. PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) was 

originally described as a BAT transcriptional determination factor that induces a robust 

thermogenic adipocyte phenotype in white adipocytes both in vitro and in vivo, and can 

direct muscle precursors to differentiate into brown adipocytes in vitro (Seale et al., 2008, 

Seale et al., 2007, Seale et al., 2011). In vivo, other PRDM family members can compensate 

for the loss of PRDM16 in BAT precursors to maintain normal BAT formation (Harms et al., 

2014). In addition, the EBF2 (early B-cell factor 2) transcription factor is selectively 

expressed in both BAT and brite/beige precursors, and it is required for BAT identity and 

efficient brite/beige cell formation (Rajakumari et al., 2013, Stine et al., 2016, Wang et al., 

2014b). Recent studies also identified zinc finger protein 516 (Zfp516), whose expression in 

brown fat is markedly increased in response to cold exposure or β-adrenergic stimulation via 

β-AR-cAMP pathway, and it directly interacts with PRDM16 to promote BAT development 

and WAT browning while suppressing myogenesis (Dempersmier et al., 2015, Sambeat et 

al., 2016). Whether there are brite/beige specific transcription factors that do not function in 

brown adipocyte lineages remains an important area of investigation.

In contrast to pro-thermogenic transcription factors, less is known about the transcriptional 

machinery that promotes and/or maintains the white adipocyte phenotype. One interesting 

candidate is Zfp423, which has recently emerged as a critical brake that prevents white 

adipocytes from converting to thermogenic adipocytes. Zfp423 is expressed in white 

adipocyte precursor cells and functions to block the brite/beige thermogenic program by 

inhibiting the EBF2 and PRDM16 (Gupta et al., 2010, Gupta et al., 2012, Shao and Gupta, 

2018, Shao et al., 2016). While these studies are opening the door to our understanding of 

adipocyte fate determination at the level of gene expression, there is still much to be learned 

especially if this information is to be harnessed for therapeutic opportunities. Moreover, 

other key gene expression factors that contribute to fate decisions, such as epigenetic marks 

and higher order chromatin regulation, are just beginning to be explored (Roh et al., 2017, 

Zhao et al., 2016, Carrer et al., 2017, Roh et al., 2018) making this an important area of 

investigation for many years to come.

II. BROWN FAT GROWTH

2.1. Techniques for studying BAT development

Understanding how brown fat grows begins with understanding its developmental origins. 

We begin this section with a brief commentary on the two main methods that have been 

instrumental in beginning to elucidate the developmental origins of both brown and white 

adipocytes; (1) fluorescence activated cell sorting (FACS), in which stem and progenitor 

cells are isolated based on their expression of cell surface markers or engineered genetic 

labels, then tested for their ability to function as adipocyte precursors; and (2) lineage 
tracing, in which stem and progenitor cells are indelibly labelled with a genetic mark that 

can be followed, or traced, throughout development in all descendant cells.
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FACS—Adipocyte precursors reside within whole adipose tissue depots in a highly 

heterogeneous non-adipocyte cell population commonly referred to as the stromal vascular 

fraction or “SVF”. In addition to adipocyte stem and progenitor cells, the SVF contains 

endothelial, immune, nerve, and other cells that support tissue function. Adipocyte 

precursors are necessary not only for establishing fat depots, but also for expanding and 

regenerating adipocytes. Starting with only the SVF population from white adipocytes, 

several studies have used FACS technology with cell surface markers thought to label the 

adipocyte precursor population to enrich for pools of adipocyte stem and progenitor cells 

(ASPCs) (Berry et al., 2014). Although a single marker for prospective isolation of 

adipocyte precursors has not been found, combinations of surface markers have been use in 

this regard to isolate white ASPCs (Berry and Rodeheffer, 2013, Rodeheffer et al., 2008). 

One common example in mice is the CD31neg, CD45neg,Ter119neg, CD29pos, Sca1pos, 

CD34pos, CD24pos population, which has enhanced adipogenic potential compared to the 

total SVF. Although brown and white adipocytes have many functional, anatomical, and 

morphological differences, a similar population of ASPCs can be isolated from BAT depots 

(Sanchez-Gurmaches et al., 2012, Wang et al., 2014b).

Recently, PDGFRα was also reported to be a marker for ASPCs. PDGFRα can be used to 

isolate ASPCs using flow cytometry from the CD31neg;CD45neg population within the SVF 

of all WAT and BAT (Church et al., 2014, Berry and Rodeheffer, 2013). These findings have 

been further validated using lineage tracing approaches (discussed below), which confirm 

that adipocyte lineages express Cre recombinase driven by the PDGFRα promoter (Berry 

and Rodeheffer, 2013, Vishvanath et al., 2016, Lee et al., 2012, Lee et al., 2015). From a 

technical perspective, this finding is important because it simplifies the enrichment protocol 

for ASPCs. Interestingly, PDGFRα also labels a fibro/adipogenic precursor cell population 

within skeletal muscles and skin (Joe et al., 2010, Rivera-Gonzalez et al., 2016) suggesting 

PDGFRα may be a broadly relevant marker of ASPCs, and recent studies further conclude 

that PDGFRα signaling may functionally contribute to ASPCs fate and adipose tissue 

organogenesis (Rivera-Gonzalez et al., 2016, Sun et al., 2017). However, PDGFRα also 

expresses in many non-adipocyte cells and it will be important to delineate its different roles 

within the heterogeneous SVF population of adipose tissues.

A current key challenge of using FACS isolated adipocyte precursors is that the ASPCs, 

although enriched for adipogenic precursors, are still a heterogeneous population containing 

subpopulations of cells that remain largely undefined by molecular approaches, and whether 

a true adipocyte stem cell can be purified is still an open question. Recent studies using 

single cell RNA-seq are beginning to provide key insights into this problem (discussed 

below). Other studies have identified markers of differentiated brown or beige adipocytes 

(Ussar et al., 2014). However, highly specific and reliable surface markers that can 

differentiate between brown, beige, or white adipocyte progenitors have not yet been 

identified. On the other hand, the prospective nature of using FACS to isolated adipocyte 

precursors may facilitate the isolation and application of human ASPCs for use in cell-based 

therapies. Several different protocols for the isolation of human adipocyte progenitors are 

being developed (van Harmelen et al., 2005, Baglioni et al., 2009, Baglioni et al., 2012, 

Perrini et al., 2013).
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Lineage tracing—Lineage tracing is a classic developmental biology technique that has 

been used to study adipose tissue development mainly in mouse models due to its genetic 

nature. In classic lineage tracing experiments, an indelible mark, often a fluorescent reporter, 

is expressed in a specific population of precursor cells by homologous recombination or by a 

transgenic approach, and the permanently modified cells then transmit the reporter to all of 

their descendant cells, or lineages. A common strategy for studying adipocyte lineages in 

mice is to use a cell-specific Cre recombinase that activates the reporter’s expression. Cre-

drivers can be always on in the specific population being studied, called constitutive, or 

stimulated to be active only transiently in a cell population, called inducible. The latter 

requires the administration of a stimulus to turn on Cre activity.

Both methods have advantages and disadvantages that need to be considered for data 

interpretation of adipocyte lineages. For starters, there is currently no known Cre driver that 

only expresses in ASPCs. Inducible Cre recombinases have the advantage that they allow the 

timing of activation to be regulated such that cells are only labeled for a brief moment, then 

those specific cells can be followed. This is not achievable with constitutive Cre drivers, 

making it difficult to determine precisely which cells first express the Cre in a particular 

lineage using these drivers. However, the inducers used to turn on the inducible Cre drivers, 

typically tamoxifen or doxycycline, can have unintended toxic effects on cells (Ye et al., 

2015, Moullan et al., 2015). Even when pools of cells are inducibly labeled, it is difficult to 

distinguish whether two descendant labelled cells originate from common or distinct Cre 

expressing precursors. Another consideration is whether a particular Cre driver reflects the 

expression of the actual endogenous gene/protein whose promoter is used to drive the Cre, 

or whether it only reflects the promoter activity uncoupled from the normal expression of the 

associated gene and/or protein. The use of knock-in Cre drivers, which are expressed from 

endogenous promoters, can help mitigate against this concern. Related to this point, caution 

should be taken in inferring whether the activity of a specific Cre (i.e. promoter) reflects a 

functional role for the associated gene in lineage specification.

The choice of a reporter (often a fluorescent reporter) is also important when performing 

lineage tracing in adipocytes. One issue with adipocytes relative to non-adipocytes is the 

small amount of cytoplasm and large quantity of lipid droplets, which both makes the use of 

cytoplasmic fluorescent reporters challenging to detect, and makes it difficult to obtain high 

quality frozen sections. Thus, the reporter of choice for adipocytes is typically a membrane 

targeted reporter, such as the dual fluorescent membrane targeted Tomato;membrane 

targeted GFP or mTmG reporter (Muzumdar et al., 2007). This reporter has two major 

advantages; (1) all cells are labelled, the mGFP reporter only being activated in Cre-positive 

lineages, and (2) both fluorescent reporters are membrane targeted. Its utility in adipose 

tissue both for lineage tracing as well as for use in FACS-based studies has been 

demonstrated in many reports (Berry and Rodeheffer, 2013, Sanchez-Gurmaches and 

Guertin, 2014, Shao et al., 2016, Wang et al., 2014b). Related to lineage tracing is cell-

labeling or cell-marking, which is a common technique to study mature adipocyte dynamics. 

By this strategy, only mature adipocytes are labeled (rather than precursors), which allows 

single mature adipocytes to be followed over time especially when combined with inducible 

Cre-drivers of reporter expression.
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2.2. Brown Adipocyte Origins

Brown adipocytes are thought to originate from the mesoderm during embryonic 

development and thus share a very early developmental origin with skeletal muscle, bone, 

white adipocytes, and connective tissues (Wang et al., 2014b, Atit et al., 2006, Seale et al., 

2008, Lepper and Fan, 2010, Sanchez-Gurmaches et al., 2012). However, the pathways that 

specify the brown adipocyte developmental lineage is not fully clear. In accordance with a 

mesodermal origin, a population of cells within the central dermomyotome that is labelled at 

E9.5 by expression of the homeobox transcription factor Engrailed 1 (En1) gives rise to 

iBAT, dermis, and epaxial muscles (Figure 2A, 4 and Table 1) (Atit et al., 2006). However, 

these E9.5 En1+ progenitors do not appear to give rise to sBAT, or any of the major white fat 

depots (Atit et al., 2006)(Atit personal communication) suggesting that some brown and 

white adipocyte origins may differ, and that not all brown adipocytes share a common origin 

(see below). This concept of adipocyte heterogeneity within and between depots, as we will 

discuss, is now a central tenet of adipocyte biology.

The model tilted toward brown fat and skeletal muscle sharing a common developmental 

origin with the finding that brown adipocytes in the iBAT and the skeletal muscles, but not 

certain populations of WAT, share a common cellular origin in the dermomyotome defined 

by the expression of Myf5-Cre (Seale et al., 2008). Using the constitutively expressing 

Myf5-Cre knock-in driver with a cytoplasmic reporter, this study found that Cre 

recombinase activity labels mature brown adipocytes in the iBAT in addition to skeletal 

muscles (Seale et al., 2008). Myf5 is a classic myogenic determination factor from the basic 

helix loop helix (bHLH) family, and thus the labeling of brown adipocytes with Myf5-Cre 

(Tallquist et al., 2000) was predicated to explain the metabolic similarities between brown 

fat and skeletal muscle with respect to high oxygen consumption and fuel usage, and 

conversely the metabolic difference between BAT and the less metabolically active and 

energy storing WAT depots (Harms and Seale, 2013). Notably, at the time most studies used 

mice that were mildly cold stressed in which the BAT is hyperactive, rather than mice living 

at thermoneutrality, when brown adipocytes are more similar morphologically and 

metabolically to white adipocytes. Nevertheless, in support of this model, an inducible Cre 

driver under control of the Pax7 promoter (the PAX transcription factor family member 7 

collaborates with Myf5 and other myogenic factors during skeletal myogenesis) showed that 

Pax7+ progenitors that arise between E9.5 and E10.5 (but not later in development) also give 

rise to interscapular brown adipocytes (Lepper and Fan, 2010). This also suggested an early 

divergence between BAT and muscle lineages.

While the Myf5-lineage model of BAT specification was elegant in its simplicity, studies 

challenging its uniformity soon after revealed that the brown adipocyte developmental 

landscape is more complicated. Similar fate mapping experiments using the same Myf5-Cre 

driver, but more broadly examining brown and white fat depots, and using the mTmG 

reporter, showed that many white adipocytes are also Myf5-Cre lineage positive, and 

unexpectedly that many brown adipocytes are Myf5-Cre lineage negative (Sanchez-

Gurmaches and Guertin, 2014). For example, Myf5-Cre labelled precursors appear to give 

rise to nearly all brown adipocytes in iBAT and sBAT depots, but only about half of the 

brown adipocytes in the cervical BAT, and none of the brown adipocytes in prBAT or 
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paBAT. Moreover, Myf5-Cre positive adipocytes populate the asWAT and rWAT depots 

(Figure 2A), indicating that Myf5-Cre neither uniformly nor specifically labels brown 

adipocytes. Other studies have replicated these findings confirming the heterogeneous 

labeling of adipocytes with Myf5-Cre (Sanchez-Gurmaches and Guertin, 2014, Sanchez-

Gurmaches et al., 2012, Shan et al., 2013, Wang et al., 2014b)

Interestingly, lineage tracing using a Pax3-Cre driver, (Pax3 is another myogenic Pax family 

transcription factor that expresses just prior to Myf5) labels similar populations of cells with 

a few key differences. Notably, Pax3-Cre cells give rise to most of the brown adipocyte in 

iBAT, sBAT, cBAT and prBAT, but none of the brown adipocytes in the paBAT (Sanchez-

Gurmaches and Guertin, 2014, Liu et al., 2013), and also to nearly 50% of the white 

adipocytes in the large visceral pgWAT depot. For comparison, MyoD-Cre (another classic 

myogenic transcription factor) does not label any brown or white adipocytes, but importantly 

does label skeletal muscles (Sanchez-Gurmaches and Guertin, 2014). Thus, there may be 

specificity within skeletal muscle lineages in which some precursors (i.e. Pax3/Myf5/

Pax7positive) can also become adipocytes while others (i.e. MyoDpositive) cannot, or rather 

that some adipocyte and muscle precursors can independently express Pax3/Myf5/Pax7-Cre 

(see discussion above on the challenges of lineage tracing studies)(Sanchez-Gurmaches and 

Guertin, 2014, Haldar et al., 2008, Gensch et al., 2008). The most interesting possibility is 

that there is a temporal or spatial separation between certain lineages and understanding this 

may help in understanding the commitment phase to brown adipocytes. Regardless, these 

studies conclusively revealed an unanticipated heterogeneity in both brown and white 

adipocyte development that suggests brown adipocytes residing in different depots could 

have different embryonic origins.

The developmental heterogeneity observed between brown adipocyte lineages is not likely 

due to low efficiency or specificity of the Cre-drivers because independent experiments with 

Myf5-Cre, Pax3-Cre and Pax7-CreER lines are remarkably similar (Lepper and Fan, 2010, 

Sanchez-Gurmaches and Guertin, 2014, Liu et al., 2013, Sanchez-Gurmaches et al., 2012, 

Seale et al., 2008, Shan et al., 2013, Wang et al., 2014b). Moreover, heterogenous Myf5 

labeling is also observed in skeletal muscle lineages in which Myf5 only labels around 50% 

of the satellite cells in the limb muscles but around 80% in epaxial muscles (Haldar et al., 

2008, Gensch et al., 2008). An unanswered question is whether developmentally distinct 

brown (or white) adipocytes differ only in their anatomical location, or whether they have 

unique functions (e.g. metabolic efficiency, BATokine production, exosome secretion, etc.) 

that might be specific by their developmental origins. Answering these questions will require 

an improved ability to isolate and study single brown adipocytes, a deeper understanding of 

the regulatory mechanisms of BAT development, and markers that label the unidentified 

(Myf5-Cre;Pax3-Crenegative) brown adipocyte lineages.

2.3. Postnatal and Adult Brown Fat Growth and Metabolism

In older laboratory mice (i.e. juveniles and adults), individual BAT depots can expand their 

mass by either increasing brown adipocyte number (hyperplasia) or by increasing individual 

cell size (hypertrophy) depending upon their initial housing temperature and the duration 

and degree of cold exposure. For example, hypertrophic growth of brown adipocytes is 
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observed when mice living in standard housing conditions (22°C) are acclimated to their 

thermoneutral zone (e.g., 30~32 °C). Under these conditions, the sympathetic tone is 

reduced by removing thermal stress, and the brown adipocytes decrease their thermogenic 

activity. This results in lipids accumulating and coalescing into a single large unilocular lipid 

droplet, thereby increasing individual cell size. Notably, while thermoneutral BAT displays a 

WAT-like morphology and gene expression signature, it maintains its BAT epigenetic 

signature (Hung et al., 2014, Veniant et al., 2015, Roh et al., 2018). Nevertheless, the net 

result of increasing cell size is in an increase in total depot size compared to mice living in 

the mild cold temperatures of most mouse facilities (Figure 2).

Conversely, if mice living at thermoneutrality are moved to the mild cold (21–22°C) and 

BAT thermogenesis is activated, the mobilization and metabolism of lipids and other 

metabolites reduce individual adipocyte cell size and thereby overall BAT depot size (Figure 

2). However, if these mice are then further adapted to more severely cold temperatures (e.g. 

in 6–10°C range), additional new active brown adipocytes are recruited into the BAT depots 

(presumably from the brown ASPC pool described above), which increases BAT mass, but 

by hyperplastic growth (Bukowiecki et al., 1982, Rehnmark and Nedergaard, 1989, Geloen 

et al., 1992, Lee et al., 2015, Razzoli et al., 2018). Indeed, de novo adipogenesis of brown 

adipocyte precursor cells occurs in response to chronic cold (Rosenwald et al., 2013, Lee et 

al., 2015). Brown adipocyte size also increases by denervation, during extended high caloric 

(fat) feeding, or with aging (Hung et al., 2014, Roberts-Toler et al., 2015). Thus, while there 

is an underlying natural turnover of brown adipocytes (Sakaguchi et al., 2017), the iBAT 

depots in laboratory mice are smallest when mice are acclimated to standard lab conditions 

(mild cold), and it grows with increased or decreased temperature mainly by hypertrophic or 

hyperplasic growth, respectively.

Gene expression profiling of BAT tissue reveals greater differences between mice acclimated 

to thermoneutrality (30~32°C) and mild cold (21~22°C) than between mice acclimated to 

mild cold (21~22°C) and severe cold (6°C) (Sanchez-Gurmaches et al., 2018). This is 

consistent with brown fat morphology at these temperatures, which shows individual brown 

adipocytes in an “off” state (unilocular) in thermoneutrality and an “on” state (multilocular 

lipid droplets) at 22°C. Further reductions in temperature (e.g. to 6°C) increase the 

magnitude of thermogenesis and many genes associated with thermogenesis, and this is 

additionally reflected by morphological “ordering” of the lipid droplets (Figure 2). A survey 

of metabolic genes upregulated in the mild cold indicates that genes encoding regulators 

fatty acid oxidation and de novo lipogenesis are both upregulated as are genes whose 

products function in respiratory metabolism (e.g. the tricarboxylic (TCA) cycle, electron 

transport chain) and thermogenesis (Sanchez-Gurmaches et al., 2018, McCormack and 

Denton, 1977, Mottillo et al., 2014, Shimazu and Takahashi, 1980, Townsend and Tseng, 

2015, Trayhurn, 1979, Yu et al., 2002). This emphasizes an interesting metabolic paradox of 

brown adipocytes; that increasing BAT catabolic activity by cold is also associated with 

induction of anabolic lipid synthesis pathways. This may be another BAT characteristic 

futile cycling mechanism or alternatively, the stimulation of de novo lipogenesis may have 

other metabolic implications since many intermediates in the de novo lipogenesis pathway, 

such as acetyl-coA, also function as second messengers (Pietrocola et al., 2015).
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III. OTHER THERMOGENIC ADIPOCYTES

3.1. Brite/Beige adipocytes

A second type of UCP1-expressing adipocyte called a brite (brown-like in white) adipocyte, 

also known as a beige adipocyte, is also attracting interest as a potential therapeutic target in 

obesity and metabolic disease. As the synonymous names imply, brite/beige adipocytes 

appear within specific WAT depots under certain stresses, and their morphology (lipid 

droplet size and mitochondria content) is intermediary between that of classic brown and 

white adipocytes (Figure 1). There have been two experimental methods used to drive brite/

beige cell formation in sWAT. Acclimation to severe cold temperatures (6–10°C) may be the 

most physiological approach, which strongly induces BAT thermogenesis along with the 

formation of brite/beige adipocytes that express UCP1 in sWAT. Similar to how brown 

adipocytes change their appearance between thermoneutrality and mild cold, brite/beige 

adipocytes undergo morphological changes between mild cold and severe cold that include 

the typical multilocular morphology in severe cold (Figure 2A–2B). A second common 

method to induce brite/beige cell formation is to treat mice with the β3-adrenergic agonists 

CL-316243, which resembles the effects of cold exposure on mature adipocytes. Many other 

stresses can also lead to the formation of brite/beige adipocytes including exercise, cancer 

cachexia, and peripheral tissue injury (Ikeda et al., 2018, Singh and Dalton, 2018) 

suggesting brite/beige adipocyte formation may reflect a general stress response rather than 

specifically the response to cold. Whether these alternative modes of browning indicate a 

physiologically relevant role for thermogenesis, or reflect a secondary consequence of 

altered adipocyte state is not yet clear. Nevertheless, increasing brite/beige adipocyte number 

could also be a strategy to fight obesity, and thus there is strong interest in understanding the 

biology of how brite/beige adipocytes develop.

The location and number of brite/beige adipocytes in adult humans is less clear. Studies 

suggest that UCP1-positive brown-like adipocytes purified from human supraclavicular BAT 

depots have a similar gene expression pattern to murine brite/beige adipocytes (Lidell et al., 

2013, Wu et al., 2012, Sharp et al., 2012, Shinoda et al., 2015), whereas brown-like 

adipocytes isolated from other human BAT depots (neck, cervical, perirenal) appear to more 

closely resemble classic brown adipocytes in mice (Cypess et al., 2013, Xue et al., 2015). 

More recent studies using 18F-fluodeoxyglucose (FDG) PET-CT imaging noticed that 

several additional metabolically active adipocytes reside in the abdominal and subcutaneous 

areas of adult humans, which could be brown or brite/beige adipocytes (Leitner et al., 2017). 

Other studies of BAT in the supraclavicular region of adult humans have shown more mixed 

transcriptional profiling representative of both brown and brite/beige adipocytes (Leitner et 

al., 2017). One caveat of comparing human studies to mouse studies is that often the 

comparisons are made between thermoneutral humans and cold stressed mice, and it is 

possible that some of the human brite/beige adipocytes could be less-stimulated brown 

adipocytes. Another open question is whether brite/beige adipocytes make significant 

contributions to overall thermogenesis (Singh and Dalton, 2018, Kajimura et al., 2015, 

Nedergaard and Cannon, 2014). Nevertheless, these studies support the idea that stimulating 

brite/beige adipocyte formation in humans could be another way to improve glucose 

homeostasis.
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3.2. Brite/beige adipocyte origins

Understanding brite/beige adipocyte origins is important because it may provide insight into 

therapeutic strategies to induce their formation. Currently, there are two main competing 

theories to explain where brite/beige adipocytes originate from that are not necessarily 

mutually exclusive. The first theory posits that brite/beige adipocytes form de novo upon 

stimulation from a precursor cell pool (Wang et al., 2013b); the second argues that they 

inter-covert from existing adipocytes between a dormant to active state depending upon the 

presence of stimulus (Lee et al., 2015, Barbatelli et al., 2010). A third likely possibility is 

that both mechanisms occur, perhaps in a context dependent manner dependent upon many 

factors including type of stimulation, its duration, the depot analyzed, and proximity to the 

sympathetic nervous system input.

Using strategies to fluorescently mark individual adipocytes, it has been shown that around 

60% of the total UCP1+ adipocytes that form in the sWAT after cold acclimation (7 days) 

are generated de novo by the process of adipogenesis (Wang et al., 2013b, Berry et al., 

2016). These new brite/beige adipocytes originate from smooth muscle actin (SMA) positive 

progenitors and require β1-adrenergic receptor signaling similar to how nascent brown 

adipocytes form upon cold exposure (Berry et al., 2016, Jiang et al., 2017, Bukowiecki et al., 

1986, Bronnikov et al., 1992, Bukowiecki et al., 1982, Rehnmark and Nedergaard, 1989, 

Geloen et al., 1992, Razzoli et al., 2018). However, SMA+ progenitors also give rise to all 

white adipocytes in both subcutaneous and visceral fats (Jiang et al., 2014). Thus, whether 

these reflect two distinct sub-pools of SMA+ progenitors for white and brite/beige 

adipocytes, or a common precursor pool, is unclear. The other implication of these data is 

that the other 40% of the UCP1+ adipocytes that formed originate, or interconvert, from 

preexisting white adipocytes, which has also been referred to as transdifferentiation to reflect 

the fundamental changes in gene expression and morphology (Cinti, 2002). However, there 

is inconsistency between these and other studies that may be related to the lack of a standard 

experimental approach across studies, or differences in strain background, age, and/or 

previous exposure to environmental or dietary variables (Lee et al., 2015).

Administering the β3-adrenergic agonist CL-316243, which is widely used to induce brite/

beige cell formation, appears to induce brite/beige adipocyte formation from preexisting 

mature white adipocytes (Jiang et al., 2017, de Jong et al., 2017). However, because 

CL-316,243 acts only on the mature cells, a systemically derived signal that might act on the 

precursors may be absent. Notably, lack of β3-adrenergic receptor activity does not prevent 

the “browning” capacity of sWAT by cold further suggesting that multiple pathways to brite/

beige adipocyte formation exist that could have compensatory capability (Jiang et al., 2017). 

Again, these results must be interpreted carefully because distinct responses to β3-

adrenergic receptor inactivation are observed depending on mouse background (Barbatelli et 

al., 2010). An additional confusing factor is that the browning capacity of the psWAT 

depends on the genetic background. For instance, the A/J mouse strain shows higher UCP1 

induction upon β3-adrenergic stimulation (in the psWAT) than the more commonly used 

C57Bl6 mice (Chabowska-Kita and Kozak, 2016, Collins et al., 1997). More research is 

clearly needed to fully understand which modality of brite/beige adipocyte formation is most 

tractable for therapeutic targeting.
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An interesting question is whether all white adipocytes can become brite/beige under certain 

conditions, or whether there is a fundamental cell intrinsic feature of like the sWAT 

adipocytes that give them their “britening” capacity. A related question is whether there is a 

specific brite/beige adipocyte cell lineage that is different from the lineages that give rise to 

the white adipocytes that do not become brite/beige and the brown adipocytes (Nedergaard 

and Cannon, 2014, Kozak, 2011). Originally it was suggested that Myf5 expression could 

delineate between the brown adipocyte lineage and the brite/beige adipocyte lineage, which 

was thought to be Myf5-negative. However, more comprehensive Myf5-lineage tracing 

studies later showed that the brite/beige adipocytes that form in the Myf5-positive asWAT 

and retroperitoneal WAT depots are also Myf5-positive (Shan et al., 2013, Sanchez-

Gurmaches and Guertin, 2014) (Figure 2A). In contrast, none of the brite/beige adipocytes 

that form in psWAT are Myf5-positive, suggesting Myf5 expression likely delineates 

between anatomical positioning rather than function; however, this has not yet been fully 

resolved and it is unknown if Myf5-positive brite/beige adipocytes are functionally identical 

to Myf5-negative brite/beige adipocytes (Berry et al., 2016, Sanchez-Gurmaches and 

Guertin, 2014, Sanchez-Gurmaches et al., 2012, Seale et al., 2008).

One study searching for markers of a brite/beige adipocyte lineage found that CD137 

positive precursors isolated from psWAT have a greater propensity to induce UCP1 mRNA 

in culture compared to CD137-negative precursors, suggesting an intrinsic heterogeneity in 

the capacity to adopt different metabolic profiles (Wu et al., 2012). However, it has not yet 

been shown that this population is specific to a brite/beige adipocyte lineage in vivo such as 

by lineage tracing studies. Ribosome profiling studies have also shown that brite/beige 

adipocytes in the psWAT possess a gene expression signature that has similarity to smooth 

muscle-like cells, which is not observed in brown adipocytes and it is independent of 

anatomical position (Long et al., 2014). However, this appears to only represent a subset of 

the total brite/beige adipocyte population because lineage tracing experiments with a Cre 

recombinase driven by the Myh11 promoter, which is a marker of smooth muscle cells, only 

labels ~10% of the UCP1+ brite/beige adipocytes following prolonged cold acclimation 

(Long et al., 2014, Berry et al., 2016), and deleting PPARγ in this lineage does prevent not 

WAT browning (Berry et al., 2016). These data may reflect the inherent heterogeneity in 

adipocytes and thus, a specific brite/beige adipocyte lineage marker remains elusive. High 

expression of Ebf2 is found in precursor cells with high thermogenic capacity in psWAT 

(Wang et al., 2014b, Stine et al., 2016). It will be interesting to see whether Ebf2 

functionally commits progenitors to a thermogenic lineage.

In contrast to the intra-depot heterogeneity seen with other brite/beige cell markers, all 

psWAT and bone marrow adipocytes are homogeneously labeled by a Cre recombinase 

driven from the paired related homeobox transcription factor 1 (Prx1) promoter, which 

expresses in mesenchymal precursors during development in what appears to be a multi-

potent precursor population that also gives rise to limb and head tissues (Sanchez-

Gurmaches et al., 2015, Krueger et al., 2014, Ambrosi et al., 2017). Interestingly, the Prx1 
transcription factor itself has been linked to cell-fate decisions including adipocyte 

specification (Logan et al., 2002, Cserjesi et al., 1992, Du et al., 2013, Hu et al., 1998, Lu et 

al., 1999, Peterson et al., 2005, ten Berge et al., 1998). What is noteworthy about Prx1-Cre is 

that it does not significantly label any other WAT or BAT depots, allowing for some degree 
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of depot specificity when used for targeting WAT that cannot be achieved with Adiponectin-

Cre (Eguchi et al., 2011). Because Prx1-Cre does not label the brite/beige adipocytes that 

form in other depots, such as the rWAT, it is not a universal brite/beige marker, and it likely 

expresses very early before adipocyte specification. However, its labelling pattern could be a 

clue to understanding inter-depot heterogeneity, but this remains to be seen.

One factor to consider in studying brite/beige lineages is not only the potential heterogeneity 

of the ASPC pool or the individual adipocyte functional identities (which is still mysterious), 

but also the morphological heterogeneity across the depot with respect to where these cells 

form. For example, cold can induce browning in an irregular “patchy” pattern in sWAT such 

that distinct islands of brite/beige adipocytes can sometimes be seen. It is possible that there 

are differences in the local concentration of adrenaline/noradrenaline that is dependent upon 

proximity to nerves or neurite density and could explain the erratic patterning. However, 

recent discoveries suggest that almost all sWAT adipocytes are in direct contact with 

sympathetic innervation (Chi et al., 2018, Jiang et al., 2017) suggesting the alternative 

possibilities that the pattering is cell-autonomously regulated or could reflect different yet to 

be defined niches within the depot. In sum, a distinct lineage or ASPC population that 

exclusively gives rise to the brite/beige cells is still lacking, suggesting their formation is 

likely more complex and multifactorial.

IV. GOING FORWARD

4.1. Unanswered questions and future goals

Understanding the developmental origins of brown and brite/beige adipocytes, and the cell 

intrinsic and extrinsic signals that specify their fate and metabolic properties, is not only of 

biological interested, but critical to advancing potential therapies that target thermogenesis 

as a means to increase energy expenditure. One of the major themes in adipose tissue 

biology that has emerged in recent years, driven by both developmental and metabolic 

studies, is that adipose tissues are highly heterogeneous. Developmental studies suggest 

brown and white adipocytes in different depots, as well as brown and white adipocytes 

within the same depot, may have different embryonic origins. Metabolic studies indicate that 

different white fat depots have different metabolic properties; for example, excess vWAT is 

metabolically unhealthy while excess sWAT can be protective against metabolic disease 

(Reaven, 1988, Snijder et al., 2003, Snijder et al., 2004, Van Pelt et al., 2005). Even within 

WAT depots, some neighboring adipocytes may have different metabolic activity (Lee et al., 

2017). Perhaps an interesting comparison is to skeletal muscle, which can have both fast and 

slow twitch fibers. Whether different BAT depots or brown adipocytes within single BAT 

depots have different metabolic properties or other functions is less clear. Understanding the 

functional significance of BAT heterogeneity, both at the mature adipocyte level and within 

the ASPC pool, is one important future goal.

While adipose tissue heterogeneity can be visualized by imaging studies, understanding the 

biochemical significance of BAT heterogeneity, and adipose tissue heterogeneity in general, 

has been more complicated by the fact that whole depots (as well as FACS-isolated ASPC 

pools) contain many non-adipocyte cells that can “contaminate” experiments that are 

focused on the adipocyte linages. Thus, key unanswered questions include whether there are 
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genetic or epigenetic differences between lineages, whether there are lineage specific 

transcription factors, receptors, or other factors, and whether different lineages produce 

different amounts of adipokines/BATokines or other transmissible signals. Exciting 

technological advances in single-cell RNA/DNA-sequencing, metabolomics and proteomics, 

combined with emerging tools that can purify organelles (including nuclei) and translating 

RNA away from non-adipocyte cells (Roh et al., 2017, Chen et al., 2016, Abu-Remaileh et 

al., 2017) are opening the door to a much higher-resolution view of adipocyte heterogeneity.

Single cell profiling, for example, will allow us to define the cellular heterogeneity of 

ASPCs (and mature adipocyte populations) based on their genetic and epigenetic expression 

profiles. Single cell analysis on cells captured at different differentiation stages has been 

useful in other systems to understand the differentiation path of a particular cell type 

(following what has been called pseudotime). In one application for lineage tracing 

purposes, mutations or single nucleotide polymorphism can be introduced in precursors in a 

manner that will accumulate over time such that unique individual cell sequences can be 

followed cumulatively in descendent cells (McKenna et al., 2016). Additionally, algorithms 

capable of deciphering spatial differences in gene expression are being developed to help 

understand region specific functions within a tissue (Potter, 2018, Griffiths et al., 2018, 

Kumar et al., 2017, McKenna et al., 2016).

In a recent study focusing on adipocytes that will undoubtedly usher more, single-cell RNA-

sequencing of the ASPCs population in WAT identified at least three different cell 

populations involved in adipocyte regulation, one of which surprisingly secretes an unknown 

signal that inhibits adipogenesis (Schwalie et al., 2018). Another recent study performed 

single cell transcriptomic analysis with human sWAT precursor cells and demonstrated that 

ASPCs are largely clustered in a single population (Acosta et al., 2017). Combining such 

studies with new tools that can isolate adipocytes away from the many non-adipocytes in a 

whole depot will be powerful. For example, a novel mouse model called NuTRAP, when 

combined with a fat-specific Cre driver, enables transcriptional and epigenomic profiling of 

only the Cre-marked adipocytes isolated from whole fat tissues (Roh et al., 2017, Roh et al., 

2018). Advances such as these will undoubtedly refine our understanding of the adipocyte 

lineages and will be a major focus area for the near future. As such, it will be important to 

standardize strains, diets, temperature, sex across experiments as well as consider each depot 

as separate and functionally distinct entities so that results are comparable across 

laboratories.

Another important goal is to understand BAT fuel utilization, and whether developmental 

origins have any role in specifying metabolic activities. Since thermogenesis requires free 

fatty acid exchange with mitochondria, it will be important to understand how BAT handles 

lipids. For example, why does BAT have both catabolic and anabolic lipid pathways working 

simultaneously? (Sanchez-Gurmaches et al., 2018, McCormack and Denton, 1977, Mottillo 

et al., 2014, Shimazu and Takahashi, 1980, Townsend and Tseng, 2015, Trayhurn, 1979, Yu 

et al., 2002) What is the significance of BAT lipolysis (Schreiber et al., 2017, Shin et al., 

2017)? Recent studies also suggest that mitochondria proximal to lipid droplets, called 

peridroplet mitochondria, are functionally different from cytoplasmic mitochondria not 

associated with lipid droplets (Benador et al., 2018, Rambold et al., 2015, Nguyen et al., 
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2017, Stone et al., 2009, Wang et al., 2011). The prospect of mitochondria heterogeneity 

within a single cell opens up a whole new avenue of interest in understanding how 

organelles communicate with each other and the genome to control BAT metabolism. For 

example, although brown adipocytes have lower endoplasmic reticulum compared to other 

cell types, a recent study shows that brown adipocyte thermogenesis is regulated by an ER-

membrane-embedded transcription factor (Bartelt et al., 2018). Sorting out intracellular BAT 

metabolism, and the influence of anatomical positioning, developmental patterning, 

innervation/vascularization, and immune cell communication on these processes will be 

critical in guiding the development of better therapeutic models.

While the role of the SNS in stimulating brown fat activity has long been understood 

(Kawate et al., 1994, Muzik et al., 2017, Owen et al., 2014), there are many interesting 

future questions about the role of the SNS in brite/beige adipocyte formation, as well as in 

the ability of BAT to communicate back to the brain and to other WAT depots. For example, 

it was recently proposed that iBAT cross-talks to the sWAT through an “sWAT sensory 

neuron—Brain—iBAT” SNS connection (Garretson et al., 2016, Nguyen et al., 2018). 

According to this model, cold-induced sWAT lipolysis activates local afferent neurons 

triggering a neuronal circuit from sWAT to iBAT that controls iBAT thermogenesis, and this 

effect is abolished when the sWAT is denervated (Garretson et al., 2016, Nguyen et al., 

2018). These findings emphasize that BAT development is likely tightly coordinated with 

nerve development, and the concept of “neurometabolism” remains and understudied aspect 

of BAT growth and overall metabolic homeostasis.

Regarding potential connections between brown (and white) adipocyte origins and human 

fat disorders, a curious observation is that many lipodystrophy disorders present as selective 

adipose tissue atrophy, in which some depots shrink or disappear while others expand 

possibly as a compensatory response (Garg, 2011). A similar type of fat body redistribution 

is observed when Myf5-Cre is used to genetically ablate regulators of the insulin signaling 

pathway in mice (Sanchez-Gurmaches et al., 2012, Sanchez-Gurmaches and Guertin, 2014). 

For example, deleting PTEN (a negative regulator of insulin signaling) in the Myf5-lineage 

expands Myf5-positive brown and white fat, converts the brown fat into a white-fat like 

tissue, and causes the non Myf5-lineage positive adipocytes to disappear (Sanchez-

Gurmaches et al., 2012); in contrast, deleting insulin receptor-beta (IR-β) with Myf5-Cre 

redistributes body fat in the other direction and reduces individual adipocyte size (Sanchez-

Gurmaches and Guertin, 2014, Gesta et al., 2007). The former model is strikingly similar to 

a rare fat disorder called multiple symmetric lipomatosis or Madelung’s disease (Guastella 

et al., 2002, Ramos et al., 2010, Herbst, 2012). Thus, another key question is whether 

differences in body fat distribution, whether pathological--such as in lipodystrophy or 

obesity--or even normal fat distribution across the population may have some link to the 

developmental heterogeneity of fat.

4.2. Prospects for BAT-based therapeutics.

There are a number of key issues that if resolved could help inform the development of BAT-

based therapies. First, the commitment of progenitor cells to the thermogenic lineage is not 

understood. Knowing the mechanisms of brown fat specification could greatly aid in 
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promoting the conversion of non-thermogenic cells to brown adipocytes. Whether better to 

focus on BAT or brite/beige adipocytes as a target for increasing energy expenditure remains 

unknown. Brite/beige fat may be promising because many obese or overweight adults seem 

to have a low abundance of BAT, at least based on classic BAT descriptions; however, better 

detection methods are needed (Hanssen et al., 2015, Ouellet et al., 2012, van der Lans et al., 

2013, Yoneshiro et al., 2011a, Yoneshiro et al., 2011b, Betz and Enerback, 2018). Moreover, 

fully activated individual brite/beige adipocytes seem to have the same amount of UCP1 

protein as an individual brown adipocyte even though total depot levels are quite different 

(Shabalina et al., 2013) and perhaps even slight increases in energy expenditure could have 

large effects over time. On the other hand, it may be possible to “train” adults to increase 

BAT activity (van der Lans et al., 2013, Hanssen et al., 2015). Understanding the 

development of thermogenic adipocytes is also relevant to stem cell-based models of 

thermogenesis such as in isogenic cell therapy programs (Singh and Dalton, 2018). For 

example, it may be possible to generate human induced pluripotent stem cells from patient 

derived somatic cells that are reprogrammed to have a thermogenic adipocyte fate when 

transplanted into recipients (Ahfeldt et al., 2012, Kishida et al., 2015, Guenantin et al., 2017, 

Pisani et al., 2011). Chemical/hormonal induction protocols to generate such cells have not 

yet been described but would be of interest. Directly transplanting patient derived brown 

adipocytes into obese individuals to improve metabolism may also be possible, and has been 

demonstrated in rodent models (Min et al., 2016). At this point, there is not a clear 

consensus as to the best strategy for increasing brown fat activity to fight obesity, and both 

classic brown and brite/beige adipocytes should be considered until we know more about 

BAT and brite/beige adipocyte development and function.

It is remarkable that it was only about a decade ago that it became widely appreciated that 

adults have brown and brite/beige adipocytes, and thus while excitement about the 

therapeutic potential of targeting these amazing cells to increase energy expenditure is high, 

there is much research to done to better understand their biology, and in particular, 

understanding their development and metabolic control, which are major challenge areas 

ahead.
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Figure 1. General characteristics of brown, white and brite/beige adipocytes.
A stimulated brown adipocyte (left) contains numerous small lipid droplets, many 

mitochondria, and expresses high levels of uncoupling protein 1 (UCP1), which is embedded 

in the inner mitochondrial membrane and required for thermogenesis. The color of brown fat 

reflects the high iron content of mitochondria. A white adipocyte (middle) in contrast 

contains a single large lipid droplet, fewer mitochondria, and does not express UCP1. A 

Brite/beige adipocyte (right) is characteristically intermediate between brown and white 

adipocyte, having multiple lipid droplets (though often larger than those seen in a brown 

adipocyte), more mitochondria than a white adipocyte, and it expresses UCP1.
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Figure 2. Adipose tissue anatomy and plasticity
(A) Cartoons showing brown and white fat depots in mice that are acclimated to 

thermoneutrality (30°C ~ 32°C), mild cold (20°C ~ 22°C), and severe cold (6°C ~ 10°C). 

The color and size of each depot is modeled such that it reflects the observed differences in 

mice acclimated to each temperature. A key showing the gradient of “browning” or 

“britening/beiging” is provided below each model. (B) Hematoxylin and Eosin staining of 

the indicated brown and white fat depots at each temperature. Note that at thermoneutrality, 

brown adipocytes contain larger single lipid droplets. At 20–22°C, the standard mouse 

facility temperature, brown adipocytes exhibit their stimulated morphology of being multi-

locular (see Figure 1) while white adipocytes remain unilocular though SWAT adipocyte size 

is reduced likely reflecting in part a higher level of lipolysis that is necessary to fuel the 

active brown fat depots. At severe cold temperatures, (6–10°C), additional morphological 

changes can been see in BAT (i.e. lipid droplets become more uniform), and under these 

conditions, brite/beige adipocytes also from in the subcutaneous WAT. Of note, the browning 

capacity of WAT depots is not dependent on a depot being subcutaneous or visceral because, 

for example, the retroperitoneal visceral WAT depot has high britening/beiging capacity (not 

shown) while the perigonadal visceral WAT (shown) does not. [Abbreviations] iBAT, 

interscapular BAT; sBAT, subscapular BAT; cBAT, cervical BAT; paBAT, peri-aortic BAT; 

prBAT, peri-renal BAT; asWAT, anterior subcutaneous WAT; psWAT, posterior subcutaneous 
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WAT; mWAT, mesenteric WAT; rWAT, retroperitoneal WAT; pgWAT, perigonadal WAT. The 

images in this figure are based primarily on experiments with C57Bl/6 mice.
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Figure 3. Brown fat locations in humans
(A) Newborn infants have large interscapular and peri-renal BAT depots. (B) In adults, 

smaller BAT depots are located in the cervical, supraclavicular, axillary, peri-aortic, 

paravertebral and suprarenal regions. The mapping of these depots in adults is largely based 

on glucose uptake measurements by 18F-FDG-PET/CT imaging, which shows increased 

glucose flux at colder temperatures (shown in figure) and on post-mortem resections. The 

molecular and functional nature of individual (putative) BAT depots remains unclear in 

humans. Also note that the amount of BAT is highly variable between individuals, but when 

active BAT is present, it has been shown to correlate with improved metabolism (not shown, 

discussed in text). Emerging advances in BAT imaging will likely confirm additional depots.
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Figure 4. Model of the heterogeneity and complexity in brown and brite/beige adipocyte 
development.
Several multi-potent cell populations that are mainly mesodermal and express specific 

transcription factors (e.g. En1, Myf5, Pax3, Prx1) appear to give rise heterogeneously to 

thermogenic adipocytes in different depots. Note that there is overlap shared with some 

markers but not with others. For example, Pax3 and Myf5 together may mark a pool of early 

precursors that give rise to iBAT, but only Pax3 marks a precursor pool that gives rise to 

some visceral pgWAT adipocytes (discussed in text). The significance of this heterogeneity 

is not understood. Additionally, there are several populations of brown and brite/beige 

adipocytes for which potential lineage markers remain unidentified. Also note that the brown 

and brite/beige adipocytes shown in this figure are depicted in their active state (i.e. upon β-

adrenergic stimulation), but in vivo brown and brite/beige adipocytes are not necessarily 

present at the same time, such as in mild cold conditions (see Figure 2).

Jung et al. Page 34

Handb Exp Pharmacol. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 35

Table 1.

Depot-specific developmental origins of BAT

Tissue Type Anatomical Locations (Human) Anatomical 
Locations (Mouse)

Developmental Origins (Lineage 
Tracing Study)

Brown adipocyte

Supraclavicular/Paravertebral
Perivasicular: (aorta, artery)

Periviscus: (heart, lung bronchia)
Solid organs: kidney/spleen hilum pancreas, liver

Interscapular En1+, Myf5+, Pax7+, Pax3+, Prx1−

Subscapular En1−, Myf5+, Pax7+, Pax3+, Prx1−

Cervical En1?, Myf5+/−, Pax7+, Pax3+/−, Prx1−

Peri-renal En1?, Myf5−, Pax7+, Pax3+/−, Prx1−

Peri-aortic En1?, Myf5−, Pax7+, Pax3−, Prx1+/−

Brite/beige 
adipocyte Supraclavicular/Subcutaneous

Posterior-
Subcutaneous 

(Inguinal)
En1?, Myf5−, Pax3−, Prx1+
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