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Abstract

Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate 

filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have 

recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft 

dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the 

plasma membrane enriched in sphingolipids and cholesterol. These domains participate in 

membrane domain heterogeneity, signaling and membrane trafficking. Cellular structures known 

to be dependent on raft dynamics include the post-synaptic density in neurons, the immunological 

synapse, and intercellular junctions, including desmosomes. In this review, we discuss the current 

state of the desmosome field and put forward new hypotheses for the role of lipid rafts in 

desmosome adhesion, signaling and epidermal homeostasis. Furthermore, we propose that 

differential lipid raft affinity of intercellular junction proteins is a central driving force in the 

organization of the epithelial apical junctional complex.

Introduction: Plasma membrane organization and intercellular junctions

The establishment of plasma membrane heterogeneity represents a fundamental mechanism 

by which various cellular activities are compartmentalized at the cell surface. This 

organization is achieved through the formation of membrane domains where specific sets of 

proteins, lipids, and carbohydrates coalesce to carry out distinct functions such as signaling, 

transport, and adhesion [1]. Prominent examples of these domains include the post-synaptic 

density in neurons, the immunological synapse, and intercellular junction complexes [2–5]. 

It is widely appreciated that key aspects of plasma membrane heterogeneity are driven by 
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protein-protein interactions that mediate the formation of macromolecular complexes. It is 

also clear that the lipid composition of the plasma membrane is heterogeneous and that 

protein-lipid and lipid-lipid associations are central factors in establishing membrane 

domain specialization.

We recently reported that the desmosome is a specialized membrane domain with properties 

of a mesoscale (intermediately-sized, 10–1000nm) lipid raft [5]. Lipid rafts have emerged as 

domains essential for membrane organization and specialization (Figure 1). Lipid rafts are 

transient, 10–200nm clusters of protein and lipid nanodomains that can further assemble into 

larger, more stable microdomains through protein-protein and protein-lipid interactions [1]. 

Lipid rafts are enriched in sphingolipids and cholesterol, are detergent-resistant, and are 

more ordered than surrounding membrane regions. Importantly, only a specific subset of 

proteins associate with lipid rafts, thus providing a mechanism for collecting particular 

proteins into functional scaffolds while selectively excluding non-raft proteins. In cells, lipid 

rafts have been shown to be essential for numerous processes, including the polarization of 

the epithelial apical membrane, immunological signaling, and host-pathogen interactions [1, 

3, 6, 7]. In recent years, evidence for the involvement of lipid rafts in intercellular junctions, 

particularly desmosomes, has emerged [5, 8].

Intercellular junction complexes, including tight junctions (TJ), gap junctions, adherens 

junctions (AJ), and desmosomes, form at sites of cell-cell contact to mediate cell-cell 

adhesion and communication (Figure 2). These junctions exhibit different molecular features 

that contribute to their differential functions in epithelial biology. TJs are continuous, 

anastomosing strands of membrane contact that form barriers to establish tissue 

compartmentalization and to regulate paracellular solute flow [9]. Multipass transmembrane 

proteins, including claudins and occludin, associate with the actin cytoskeleton through 

adaptor proteins, including zona occludens proteins (e.g., ZO-1, ZO-2), cingulin, and others 

[10, 11]. Gap junctions allow solutes to pass between adjacent cells by forming pores 

composed of two connexons, one in each cell membrane, which are complexes of six single-

pass transmembrane proteins called connexins [12]. Though functionally and 

morphologically distinct, AJs and desmosomes are both anchoring junctions that mediate 

adhesion at sites of cell-cell contact. AJs are composed of calcium-dependent classical 

cadherins and intracellular adaptor proteins, β-catenin and α-catenin, that link the cadherins 

to the actin cytoskeleton [13]. Desmosomes are composed of calcium-dependent 

desmosomal cadherins and intracellular adaptor proteins, plakoglobin, plakophilin, and 

desmoplakin, that connect the cadherins to the intermediate filament cytoskeleton [14]. 

Thus, cells assemble a variety of specialized intercellular contacts required for the complex 

processes that occur during development and adult tissue homeostasis.

This review focuses on desmosomes with an emphasis on the role of lipid rafts in the 

formation and function of this unique and important cell junction. We will summarize the 

current understanding of desmosomal components and how disruption of desmosome 

function leads to human skin and heart disorders. We then put forward new hypotheses that 

frame the desmosome as a specialized lipid raft-like membrane domain harboring proteins, 

lipids, and biophysical features that contribute to both the formation of the desmosome and 

the exclusion of non-desmosomal proteins.
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Skin and heart require desmosomes to resist mechanical stress

Desmosomes are 0.5μm-1.0μm long protein complexes that anchor keratin filaments to the 

plasma membrane through a series of protein-protein interactions that mediate robust cell-

cell adhesion, thus allowing tissues to resist mechanical stress. The desmosomal cadherins, 

including desmogleins (DSG) and desmocollins (DSC), are single pass transmembrane 

proteins that mediate adhesion through homophilic and heterophilic extracellular 

interactions between adjacent cells [15–18]. The desmosomal cadherins also interact with 

intracellular armadillo proteins, including plakoglobin (PG) and plakophilins (PKP), which 

also bind to desmoplakin (DP). DP binds to intermediate filaments, thereby coupling the 

cytoskeletal elements of adjacent cells. In this manner, desmosomes integrate cytoskeletal 

networks with adhesive complexes to provide mechanical strength throughout a tissue.

Desmosomes form in all epithelial tissues but are most abundant in the epidermis and heart 

where their function is crucial. Desmosomal protein composition depends on tissue- and 

differentiation-specific gene expression [14, 19]. In humans, four genes encode DSGs 

(DSG1–4) and three genes encode DSCs (DSC1–3); expression of at least one DSG and one 

DSC is necessary for normal desmosome formation [15]. DSGs and DSCs each contain five 

extracellular cadherin repeats, a transmembrane domain, and several intracellular domains, 

including an intracellular anchor and a cadherin-like sequence where plakoglobin binds [20–

22]. DSGs also have a proline-rich domain, repeat unit domain, and a DSG terminal domain 

[23]. The function of these unique intracellular domains in DSG is not well understood but 

may aid in desmosomal cadherin clustering [24, 25].

Desmosomes are essential for epidermal differentiation and barrier formation [26]. As a 

barrier to the external environment, the epidermis is a constantly renewing stratified 

epithelium composed of proliferating keratinocytes within the basal layer that migrate 

suprabasally as they differentiate [27]. EGFR signaling partly maintains keratinocytes in the 

basal layer in a proliferative state, where DSG3 and DSC3 are predominantly expressed [28, 

29]. At the interface between the basal layer and suprabasal layers, DSG1 initiates the 

differentiation process by interacting with Erbin to inhibit EGFR signaling [30, 31]. As 

keratinocytes differentiate and move suprabasally, DSG3 and DSC3 expression decreases 

while DSG1 continues to increase, also driving DSC1 expression. Keratin expression 

switches from keratin-5 and keratin-14 to keratin-1 and keratin-10 and additional epidermal 

differentiation markers are expressed, such as loricrin and filaggrin [27]. These findings 

suggest that the differential expression pattern of desmosomal cadherin genes is a key driver 

of the epidermal differentiation process.

Mutations in nearly all desmosomal genes are linked to numerous diseases of the heart and 

skin. In the heart, desmosomes provide mechanical integrity and cardiomyocyte connectivity 

in conjunction with AJs and gap junctions in the intercalated discs [32, 33]. DSG2 and PKP2 
mutations cause heart-specific diseases such as arrythmogenic right ventricular 

cardiomyopathy/dysplasia and other congenital heart problems while mutations in DP, 

DSC2, PG, and most other desmosomal genes can cause heart and/or skin disorders. [34] 

Among the many skin-centric desmosomal diseases, common symptoms include woolly 

hair, hypotrichosis (hair formation defects), keratoderma (epidermal thickening), and skin 

fragility due to loss of epidermal integrity. The desmosome is also the target of autoimmune 
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responses and bacterial toxins. Pemphigus vulgaris and pemphigus foliaceus are severe 

autoimmune epidermal blistering diseases resulting from autoantibodies (IgG) targeting 

DSG3 and DSG1, respectively [35]. These autoantibodies compromise desmosomal 

adhesion, leading to epidermal fragility and skin blistering. DSG1 can be cleaved by 

bacterially-produced toxins to cause bullous impetigo and staphylococcal scalded skin 

syndrome [35], resulting in epidermal blisters that are histologically indistinguishable from 

pemphigus foliaceus. Collectively, these clinical findings underscore the important role for 

desmosomes in resisting mechanical stress.

Insight into the importance of individual desmosomal components in epidermal 

differentiation and homeostasis is also evident from mouse genetic models. Full knockout, 

conditional knockout, and misexpression of various desmosomal proteins have revealed 

important roles in both heart and skin function as well as development and differentiation 

(Table 1). Such findings underscore the importance of desmosomal protein expression 

patterns in driving tissue specific functions and differentiation programs. Thus, many of the 

desmosomal components are essential not only for epidermal integrity but also for normal 

development and differentiation.

The desmosome has features characteristic of a lipid raft-like membrane domain

The molecular mechanisms of desmosome formation are not fully understood. Desmosomal 

cadherin adhesion is necessary for the assembly process, but the mechanisms by which 

desmosomal cadherins and plaque components coalesce into a densely-packed membrane 

domain are not clear. A number of studies have now shown that desmosomal proteins 

associate with lipid rafts and that desmosome assembly, cell-cell adhesion, and desmosome 

disassembly are all raft-dependent processes [36, 37]. Several previous studies have 

examined the role of raft domains in desmosome assembly [37, 38]; this work is reviewed 

elsewhere [35] and will not be discussed here. Early studies of desmosomes showed that 

cholesterol and sphingolipids, both of which are enriched in lipid raft membrane domains, 

are enriched in desmosomes isolated from bovine snout [39, 40]. More recently, evidence for 

lipid raft association has come from sucrose gradient fractionations in which desmosomal 

components were identified in detergent-resistant membrane (DRM) fractions, starting with 

the identification of DSG2 [41]. Later studies revealed that DSG1, DSG3, DSC2, PG, PKP2, 

DP, and keratins are all present in DRM fractions [5, 36, 37]. These studies also found that 

depleting cholesterol in cells with methyl-β-cyclodextrin (mβCD) redistributed desmosomal 

cadherins along cell borders, reduced adhesion strength, and prevented assembly of 

desmosomal components without disrupting AJ formation [36, 37, 42]. These studies also 

found that desmosomal components colocalized with certain raft markers, including 

ostreolysin, CD59, and caveolin but not clathrin [36, 37]. For ostreolysin, transmission 

immunoelectron microscopy was used to further show an association with desmosomes 

which was reduced when cells were treated with mβCD [42]. Furthermore, siRNA 

knockdown of the raft marker, flotillin-2, reduced cell-cell adhesion [43]. Collectively, these 

studies link desmosome assembly and function with lipid rafts.

Studies in model membranes have shown that lipid bilayers composed of longer and 

saturated acyl chains such as those found in rafts are thicker than those with unsaturated or 
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shorter acyl chains found in non-raft membrane domains [44]. In addition, the presence of 

higher levels of cholesterol in raft domains thickens the bilayer, increases order, and stiffens 

the membrane [45–48]. Using cryo-electron tomography, we found that the lipid bilayer of 

the plasma membrane within the desmosome is thicker than non-desmosome and 

desmosome-adjacent bilayers [5]. These findings represent the first evidence that a plasma 

membrane domain known to contain lipid raft associating proteins is thicker than other 

regions of the plasma membrane. Based on the fact that desmosomal proteins associate with 

lipid rafts, disruption of rafts prevents desmosome assembly, and that the desmosomal lipid 

bilayer is thicker than surrounding membrane, we concluded that desmosomes represent a 

mesoscale, or intermediately-sized, raft-like plasma membrane domain.

Mechanism of desmosomal protein association with lipid raft membrane microdomains

Association with raft or non-raft lipid microdomains occurs by incompletely understood 

mechanisms but has been proposed to involve protein-lipid [49] and/or protein-cholesterol 

[50] interactions mediated by the transmembrane domain (TMD) of integral membrane 

proteins [51]. Recently, three physical properties of TMDs have been shown to dictate the 

raft affinity of single pass transmembrane proteins. Collectively termed physiochemical 

properties, these include TMD length, TMD surface area, and palmitoylation [51–53]. 

Lorent et al. [52] combined these properties into a model that can predict the free energy 

required for a single pass transmembrane protein to associate with rafts. This model for raft 

affinity is highly predictive across a wide range of single pass transmembrane proteins and 

incorporates TMD length, surface area and palmitoylation as key driving factors in lipid raft 

association.

TMD Length—Cholesterol and sphingolipid content increases as membranes are modified 

along the secretory pathway, leading to thicker lipid bilayers at the plasma membrane 

compared to the ER and Golgi [54]. Similarly, the amino acid (AA) length of TMDs of 

single-pass transmembrane proteins increases through the secretory pathway such that 

proteins localized to the ER have the shortest TMDs at about 16AA while those that localize 

to the plasma membrane are longer at about 21AA [55]. Consistent with the predicted 

increased thickness of raft bilayers in the plasma membrane, those proteins that partition 

into lipid rafts possess TMDs that are even longer (about 24AA or more) than a typical non-

raft associated plasma membrane protein [51, 52]. This feature allows the extended 

hydrophobic TMD α-helix of raft proteins to associate with extended acyl chains and 

cholesterol present in lipid raft domains while excluding proteins with shorter TMDs due to 

hydrophobic mismatch [56, 57]. Interestingly, the DSG TMDs are all 24AA in length 

whereas the DSC TMDs are only 21AA in length even though DSCs are associated with raft 

domains. These observations highlight the importance of other protein features in regulating 

raft association, including TMD surface area and palmitoylation.

TMD Surface Area—The exposed surface area of a TMD refers to the area of the 

collective amino-acid residue side chains [58]. Single pass transmembrane proteins bearing 

TMDs with smaller surface areas can partition into rafts to a greater degree due to a smaller 

energy barrier; these proteins pack into the more ordered environment of the lipid raft more 

readily than those with larger surface areas. DSG TMDs contain a number of bulky leucine 

Zimmer and Kowalczyk Page 5

Biochim Biophys Acta Biomembr. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



residues such that the surface area may be larger than anticipated for a raft-associated 

protein. The E-cadherin TMD also contains numerous leucines. These residues have been 

shown to mediate TMD-TMD dimerization via a leucine zipper-like motif which is 

important for cell adhesion through mechanisms that are not fully understood [59]. Because 

oligomerization via TMD-TMD dimerization can also increase raft affinity [53], leucine 

residues in Dsgs could be important for Dsg dimerization or oligomerization, as well as raft 

association. This possibility remains to be tested. Likewise, leucine residues are also present 

in the DSC TMD. These observations raise the possibility of heterodimerization between 

DSG and DSC, which, when coupled with the longer DSG TMD, could support raft 

association of Dscs as well as segregation of nascent AJs and desmosomes. Additional 

experiments are needed to fully understand how the leucine rich TMDs of these various 

cadherins contribute to dimerization, raft association and overall cadherin function for both 

classical and desmosomal cadherins.

Palmitoylation—The presence of a palmitoyl group on cysteine residues adjacent to 

TMDs in single pass transmembrane proteins has also been shown to increase raft 

association. Palmitoylation is a reversible post-translational modification that adds a 16C 

saturated acyl chain to cysteine residues [60]. For soluble cytoplasmic proteins, 

palmitoylation localizes a protein to the plasma membrane and is important in regulation, 

stability, and function [61, 62]. Integral membrane proteins are commonly palmitoylated on 

cysteine residues on the cytoplasmic face of the TMD [60] and this posttranslational 

modification is recognized as a key raft protein modification [53]. All desmosomal cadherins 

possess membrane proximal cysteines which are well conserved between species. 

Interestingly, palmitoylation of DSG2 regulates trafficking as well as stability of the protein 

but is not necessary for raft association [63]. DSG3, also, does not require palmitoylation for 

raft association [5]. Thus, palmitoylation appears to be important in regulating desmosomal 

cadherin dynamics, but it does not appear to be necessary for raft association.

Proteins are palmitoylated by palmitoyl acyl transferases (PATs), of which there are 23 in 

humans [64]. Named for their conserved DHHC (Asp-His-His-Cys) motif, the DHHC 

proteins are multimeric transmembrane proteins with differential tissue expression that can 

localize to ER, Golgi, or plasma membrane to palmitoylate targets [65]. While the PAT(s) 

responsible for palmitoylating desmosomal proteins remain to be identified, DHHC13 and 

DHHC21 have been shown to be important in keratinocyte proliferation and hair follicle 

differentiation in the epidermis [66–68]. There is some promiscuity among DHHC targets as 

many proteins have been shown to be palmitoylated by multiple DHHC forms in cultured 

cells, raising the possibility that multiple DHHC proteins are capable of palmitoylating 

desmosomal proteins.

In contrast to the desmosomal cadherins, palmitoylation of the cytoplasmic PKPs is 

necessary for both raft association and for desmosome assembly. Loss of membrane 

association and reduced Triton insolubility were seen in palmitoylation-deficient PKP2 and 

PKP3 mutants. Furthermore, expression of these mutants resulted in the loss of desmosome 

assembly and adhesion in a dominant-negative fashion. PKPs are thought to function by 

recruiting and clustering other desmosomal proteins. This is accomplished through actively 

guiding DP and intermediate filaments to sites of cell-cell contact and clustering 
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desmosomal cadherins at the cell surface [69–71]. Though PKP1 is also palmitoylated, no 

studies have been done to address the impact of the modification on PKP1 function. Though 

similar, the PKP proteins serve different purposes. For example, PKP1 but not PKP3 

regulates desmoglein clustering [72]. Disease-causing truncation mutations in PKP1 lead to 

reduced size and number of desmosomes in patients [73, 74] while overexpression of PKP1 

can increase desmosome length and adhesion strength [75]. PKP3 overexpression also 

increases desmosome size and stability by upregulating the expression of other desmosomal 

proteins [76]. PKP palmitoylation likely enhances membrane association during clustering 

of desmosomal cytoplasmic plaque proteins, thereby promoting the lateral packing of 

desmosomal proteins along the two-dimensional plane of the plasma membrane.

Role of raft association in disease—Lipid raft associated proteins have been 

implicated in a variety of human diseases. Well-studied examples of diseases in which raft 

protein function is disrupted include Alzheimer’s Disease and Prion Diseases [77]. Various 

pathogens also have been shown to utilize rafts for various steps in their life cycles [77]. A 

possible link between lipid raft disruption and atopic dermatitis has been identified as genes 

involved in lipid biosynthesis were found to be downregulated in patient skin relative to 

healthy skin [78]. Furthermore, expression profiles were similar between patient skin and 

cultured keratinocytes in which lipid rafts were disrupted by mβCD treatment, including the 

same lipid biosynthesis genes downregulated in patient skin [79]. These findings raise the 

possibility that altered raft function or the inability of proteins to associate with rafts could 

represent an underlying disease pathomechanism.

Recently, we identified a dominantly-inherited disease-causing mutation in the DSG1 gene 

that causes a glycine-to-arginine substitution in the transmembrane spanning region of the 

DSG1 protein [5]. The individuals carrying this mutation were diagnosed with severe 

dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome. SAM syndrome is 

characterized by epidermal thickening, fragility, and barrier defects [26]. Studies of this 

TMD mutation revealed that the mutant DSG1 protein was excluded from lipid rafts and 

failed to assemble into desmosomes both in patient skin and in cell culture models [5]. 

Molecular modeling predicts that the glycine-to-arginine substitution in the DSG1 TMD 

shortens the run of hydrophobic amino acids, resulting in hydrophobic mismatch with the 

thicker lipid bilayer present in the raft-like desmosomal membrane domain. This mutation 

appears to be the first example of a mutation that compromises raft association as part of the 

disease pathomechanism.

The mutation in the DSG1 TMD that causes SAM syndrome may represent a newly 

appreciated class of mutations that disrupt raft association and cause human disease, 

particularly among proteins bearing mutations in the TMD. Disease-causing glycine-to-

arginine substitutions have been identified in the TMDs of other single pass transmembrane 

proteins including myelin protein zero (MPZ) and FGFR3 which cause Marie-Charcot-Tooth 

Syndrome [80, 81] and Achondroplasia [82], respectively. Both proteins have been identified 

in proteomic screens assaying raft association [83, 84]. Though raft association of FGFR3 

has not been further verified, MPZ has been identified in DRMs from adult peripheral nerve 

myelin [85, 86]. In both examples, the mutation was found to disrupt TMD-TMD mediated 

interactions. As oligomerization is known to increase raft affinity [87], loss of lipid raft 
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association could be central to the disease mechanisms of these mutations. Further 

investigation is warranted for these and other mutations that might involve loss of raft 

association as part of an underlying disease pathomechanism.

A new model for epithelial intercellular junction organization: lipid rafts as a driving force 
for the assembly and segregation of junctional complexes

The association of desmosomes with lipid rafts is emerging as a mechanism fundamental to 

the organization of the desmosomal membrane domain. A key question emerging from this 

work is how raft association of desmosomal components integrates with the assembly 

mechanisms of other junctional complexes, including AJs. In contrast to desmosomes, AJ 

components do not associate with lipid rafts biochemically [4, 37]. However, desmosome 

assembly requires E-cadherin-based adhesion [88–91]. The mechanisms by which AJs 

regulate desmosome assembly are not fully understood, although AJs and desmosomal 

proteins engage in a number of overlapping protein-protein interactions [92]. Recently, 

Shafraz et al. [93] showed that the requirement of AJs for desmosome assembly may be 

driven by a direct interaction between E-cadherin and desmosomal cadherins. Using a 

combination of atomic force microscopy and cell biological approaches, E-cadherin trans-

homodimerization was found to initiate both AJ and desmosome assembly by allowing for 

the brief cisheterodimerization of E-cadherin and DSG2 [93]. Concurrently, short-lived 

DSC2 homodimers give way to DSG2:DSC2 heterodimers when the E-cadherin:DSG 

heterodimers disengage. In line with these findings, others have shown that the relative cell 

surface levels of DSGs and DSCs regulate the adhesion process [15], but the recruitment of 

desmosomal cadherins begins with DSC clustering at the cell surface [94, 95]. DSG and 

associated armadillo proteins then stabilize the DSC clusters [94, 95].

If AJ and desmosomal proteins can associate, how do these structures resolve into distinct 

membrane domains? One explanation is differential protein affinities. Both PG and PKPs are 

required for the formation of distinct, non-continuous desmosomes [69]. Mixed adherens/

desmosome junctions were identified in cardiac tissue from mice lacking PG [96]. PG is 

unstable in the absence of a desmosomal cadherin [97], yet is also capable of binding E-

cadherin and α-catenin in place of β-catenin. However, due to overlapping binding sites, PG 

cannot bind α-catenin if it is bound to a desmosomal cadherin, thus excluding the 

desmosomal cadherin:PG complex and likely contributing to segregation of the two 

junctions [92]. These examples highlight how differential protein affinities contribute to the 

assembly of different junctions.

We propose that a second driving force to segregate AJs and desmosomes is differential 

affinity for lipid rafts (Figure 3). In contrast to desmosomal proteins, AJ components show 

poor affinity for raft fractions [4, 5, 37]. For example, when the desmoglein TMD is 

replaced with the E-cadherin TMD, the chimeric cadherin fails to associate with lipid rafts 

[5]. In addition, unlike desmosomal cadherins, E-cadherin is not palmitoylated [98], further 

reducing raft affinity. As discussed above, E-cadherin and desmoglein associate at the 

plasma membrane during initial cell-cell contact formation. Super-resolution imaging shows 

that these nascent complexes then resolve into separate membrane domains as junction 

formation progresses [93]. It is likely that desmosomal cadherin association with raft lipids 
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harboring longer acyl chains and with higher levels of cholesterol leads to thickening of the 

lipid bilayer and the formation of a membrane environment energetically unfavorable for the 

shorter E-cadherin TMD. Through this mechanism, E-cadherin and cytoplasmic plaque 

proteins associated with E-cadherin would be excluded from the desmosome as junction 

formation proceeds. Similarly, the palmitoylated desmosomal plaque proteins, particularly 

PKPs, would further drive coalescence into a raft domain and further exclude AJ 

components. Such a mechanism would allow for coordinated assembly of the two junctions 

followed by subsequent resolution into distinct membrane domains.

It is possible that similar principles apply to TJ assembly. TJ components are also raft 

associated [4] and also require AJs to drive assembly [99, 100]. Like the desmogleins and 

desmocollins, the claudins are also palmitoylated [101–103]. Furthermore, there are 

overlapping protein-protein interactions between TJ and AJ components [104, 105]. In 

simple polarized epithelial cells, such as those lining the intestines, mature junctions are 

arranged along the basolateral sides of adjacent cells such that TJs are most apical followed 

by AJs and then desmosomes. An attractive model is that E-cadherin associates with TJ and 

desmosomal components to initiate the formation of the apical junctional complex, but that 

this process is followed by the recruitment of raft lipids and cholesterol into TJ and 

desmosome domains to drive the segregation of the proteins into distinct membrane 

domains. In this manner, differential raft association would be a key driver of the overall 

organization of the apical junctional complex.

Conclusions and Future Directions

Desmosomes represent an important intercellular junction that also offers unique properties 

for the broader study of raft-like membrane domains. Desmosomes are mesoscale domains 

that can be identified by both super-resolution optical imaging as well as electron 

microscopy. At the same time, desmosomal proteins have been identified as verified lipid 

raft targeting molecules. Desmosomes can also be identified within tissues and isolated from 

tissue homogenates, making these structures ideal for analysis of raft targeting properties of 

desmosomal proteins using both imaging and biochemical approaches. Ongoing studies to 

understand how raft association of desmosomal components impacts the ability of 

desmosomal proteins to cluster and mediate adhesion will be critical in defining how raft 

association contributes to the densely packed and strongly adhesive nature of the 

desmosomal junction. Similarly, although keratin linkages are essential for strong 

desmosomal adhesion [106–108] we do not yet know how these linkages influence raft 

association, or alternatively, how raft association of desmosomal proteins influences keratin 

filament organization.

Desmosomes are both morphologically and functionally distinct from AJs. One key 

difference is that desmosomes are tightly packed and are able to achieve a calcium-

independent, hyperadhesive state [109–111]. This state is characterized by the appearance of 

an electron-dense midline in electron microscopy images and stronger adhesion [110]. 

Though the predominant state in tissues, the hyperadhesive state is reversible; desmosomes 

can return to a state of calcium-dependence for the purpose of wound healing or tissue 

remodeling [110]. Hyperadhesion is regulated by phosphorylation of DP by PKCα [112, 
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113]. PKC inhibition can even initiate desmosome assembly in the absence of AJs or 

calcium [114, 115]. Recent work has shown that PKC inhibition limits desmosomal plaque 

protein diffusion out of the desmosome, thereby conferring hyperadhesion and calcium 

independence [Bartle et al, in press, DOI10.1083/jcb.201906153]. Lastly, desmosomal 

cadherins have recently been shown by fluorescence polarization to arrange into highly 

ordered configurations [116] that presumably contribute to desmosomal cadherin clustering 

and adhesion, but we do not yet know how raft association impacts desmosomal cadherin 

organization within desmosomes.

In addition to the assembly of the desmosomal membrane domain, it is important to consider 

that the relationship between lipid rafts and desmosomes may extend beyond desmosome 

dynamics and adhesive functions. Lipid rafts have been shown to impact the processes of 

proliferation, migration, apoptosis, and differentiation in keratinocytes [117–121]. 

Desmosomal components have also been shown to play a role in each of these processes. 

The signaling molecules p38 mitogen-activated protein kinase, Akt, ERK1/2, and EGFR 

have been found to be abnormally activated when lipid rafts are disrupted in keratinocytes 

by methyl-β-cyclodextrin (mβCD) treatment [79, 118, 121, 122]. Similarly, many of the 

knockout mouse models described above have revealed that desmosomal components are 

involved in regulating important signaling pathways, including the Wnt [123], EGFR, PI3-

kinase/AKT, and NF-κB signaling pathways [28]. Future studies will be needed to 

understand how the integration of desmosomal cadherin adhesion and signaling is achieved 

and how the association of signaling molecules and desmosomal components with raft 

domains impacts this adhesion and signaling network.
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Figure 1: Lipid raft composition and function.
Lipid rafts are membrane microdomains enriched for cholesterol and sphingolipids which 

cluster proteins for cell functions including trafficking, signaling, and endocytosis. Raft 

membranes have higher degrees of order and thicker lipid bilayers than surrounding 

membrane. They are experimentally characterized by buoyancy on sucrose gradients and 

detergent resistance.
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Figure 2: Intercellular junction structure, composition and key characteristics.
Depicted in the electron microscopy image of polarized rat intestinal mucosa [modified 

image from [135]], intercellular junctions are arranged characteristically with TJs (blue) at 

the most apical side followed by AJs (green) and then desmosomes (purple). TJs maintain 

polarity and regulate paracellular ion flow and are composed of the membrane proteins 

claudins and occludin which interact with intracellular zona occludens proteins and 

additional adaptors to link to the actin cytoskeleton. AJs mediate calcium-dependent 

adhesion by anchoring classical cadherin transmembrane proteins to the actin cytoskeleton 
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through intracellular adaptor proteins. Desmosomes also mediate calcium-dependent 

adhesion but can attain a stronger, calcium-independent state, allowing tissues to resist 

mechanical stress. Desmosomal cadherin transmembrane proteins are anchored to the 

intermediate filaments through intracellular adaptor proteins to mechanically couple 

adjacent cells.
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Figure 3: Lipid rafts drive segregation of adherens junctions and desmosomes during junction 
assembly.
Transient interactions between desmosomal and classical cadherins coordinates cadherin 

clustering at the cell surface. Adaptor proteins stabilize these nascent cadherin clusters. 

Interplay between cadherins and membrane lipids leads to accumulation of cholesterol and 

raft lipids specifically around desmosomal cadherin clusters and drives segregation of AJs 

and desmosome components. Plakophilins further enhance desmosome formation and 

segregation from AJs by promoting raft-associated clustering and by promoting desmoplakin 

and keratin linkages.
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Table 1:

Mouse genetic studies reveal important roles for desmosomal proteins in development and homeostasis.

Gene Expression Lethality Observed Defects References

Dsg1 Knockout Perinatal Lethal epidermal water loss, severe blistering [124]

Dsg2

Knockout Embryonic Lethal Pre-implantation lethality, potentially non-desmosomal role [125]

Suprabasal Epidermal 
Misexpression Not Lethal Hyperproliferation, abnormal differentiation, barrier defects [28]

Dsg3

Knockout Not Lethal Separated keratinocytes, weakened desmosomal adhesion in oral 
mucosa [126]

Suprabasal Epidermal 
Misexpression Not Lethal Hyperproliferation, abnormal differentiation, barrier defects [127]

Dsc1 Knockout Not Lethal Epidermal hyperproliferation, loss of cell-cell adhesion [128]

Dsc3

Knockout Embryonic Lethal Post-implantation lethality, potentially non-desmosomal role [129]

Epidermal Conditional Not Lethal Epidermal fragility, hair loss [130]

Suprabasal Epidermal 
Misexpression Not Lethal Hyperproliferation, abnormal differentiation, barrier defects [123]

PG Knockout Embryonic Lethal Heart defects, skin fragility [131]

Pkp1 Knockout Postnatal Lethality Epidermal fragility, tight junction defects, growth defects [132]

DP
Knockout Embryonic Lethal Die at E6.5 [133]

Epidermal Conditional Perinatal Lethal Severe skin fragility, disrupted barrier function [134]
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