Skip to main content
. 2020 Jun 1;10(16):7211–7230. doi: 10.7150/thno.47281

Table 3.

Dataset imbalance for binary classification analysis

Rabbit # 3D:P(cm3) 3D:N(cm3) 3D:P/(P+N) 2D:P(cm2) 2D:N(cm2) 2D:P/(P+N)
1 0.10 14.48 0.7% 0.14 7.15 1.9%
2 0.10 14.48 0.7% 0.16 7.13 2.2%
3 0.09 14.49 0.6% 0.11 7.18 1.5%
4 0.07 14.51 0.5% 0.13 7.16 1.8%
5 0.06 14.52 0.4% 0.12 7.17 1.7%
6 0.05 14.53 0.3% 0.13 7.16 1.8%
7 0.06 14.52 0.4% 0.10 7.19 1.4%
8 0.03 14.55 0.2% 0.06 7.23 0.8%
9 0.03 14.55 0.2% 0.06 7.23 0.8%
Global 0.59 130.63 0.5% 1.01 64.60 1.6%

Class distribution for the MRI2D and MRI3D datasets. The positive (P = damaged tissue) and negative (N = undamaged tissue) class sizes (MRI3D: volume, MRI2D: area) are provided both on an animal-wise basis (cohort #1) and for the global datasets.