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ABSTRACT: To improve thermal stability and hardness of UV-cured materials, a
series of UV-cured solvent-free coatings were prepared from allyl-terminated
hyperbranched polycarbosilanes and thiol silicone resins. The silicone coatings
prepared have pencil hardness of 4−9 H, water absorption no more than 0.04 wt %,
and transmittance higher than 94%. The temperature for the coatings’ starting thermal
decomposition is higher than 236 °C; especially, that of the coating prepared with G1
is as high as 371.1 °C. The UV-cured coatings in this work exhibit much higher pencil
hardness than and superior thermal stability to those reported previously.

■ INTRODUCTION

Ultraviolet (UV)-cured coatings possess numerous merits
including low VOC, energy saving, and fast curing speed.1−3

However, many UV-cured materials suffer from relatively poor
thermal stability4 and low hardness.5−7 Materials with poor
thermal stability are liable to decompose at relatively low
temperature.8,9 Additionally, the coatings with low pencil
hardness are very easy to be scratched.5−7 Nowadays, many
efforts have been made to overcome these shortcomings.
Many experiments have confirmed that hyperbranched

polymers can reduce the VOC emission of UV-cured coatings
for reduction in the content of the reactive diluent and
solvent.2,12−15 In addition, the functional groups on the surface
of hyperbranched polymers will increase the cross-linking
density, which will benefit preparation of coatings with
moderately high hardness.12−14 As hyperbranched polymers,
hyperbranched polycarbosilanes have Si−C bonds contributing
to the relative stability of the carbosilane because of less
sensitivity to nucleophilic attack.15

UV-cured silicone coatings have been proven to possess
spectacular performances such as good UV resistance and
thermal stability, wide operating temperature, high trans-
parency, and low humidity absorption.1,4,10,11 Thiol-ene
reactions initiated by UV have been widely applied to develop
silicone materials under mild reaction conditions due to their
advantages including high effectivity, no photoinitiator
required, relative tolerance to lots of functional moieties, no
oxygen inhibition, and less by-products.16,17 Recently, a kind of

transparent flexible silicone material with thermal decom-
position temperatures about 340 °C has been produced by
UV-initiated thiol-ene reaction from hyperbranched poly-
carbosilanes and thiol silicone resins.18 Inspired by this
interesting work, a class of UV-cured transparent solvent-free
coatings with pencil hardness of 4−9 H, initial thermal
decomposition temperature higher than 236 °C, transmittance
higher than 94%, and water absorption no more than 0.04 wt
% were prepared.

■ RESULTS AND DISCUSSION
Effect of UV Curing Time. UV curing time has a

significant impact as shown in Table 1. Even if the curing
time is only 5 s, the curing degree is as high as 98.2%. The
pencil hardness increases continuously from B to 8 H when the
curing time increases from 5 to 30 s. If the curing time is
longer than 30 s, it will have a less effect on the curing degree
and pencil hardness, which is quite similar to the epoxy-
modified silicone coating reported previously.1 The surface
water contact angles are almost constant, 101.3−105.4°, and
water absorption is no more than 0.04 wt %.
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The Effect of the Molar Ratio of Thiol to Allyl. The
effect of the molar ratio of thiol to allyl (n(thiol):n(allyl)) is
shown in Figure 1. It is obvious that the silicone coatings have

a fairly high pencil hardness (6−8 H). When n(thiol):n(allyl)
increases from 1.3:1 to 1.4:1, the pencil hardness reaches the
highest for the highest cross-linking density of cured materials.
The pencil hardness of the UV-cured epoxy-modified silicone
resin coating reported by our group can reach 5 H,1 while
those of the UV-cured coatings reported by other groups are
generally not higher than 4 H.2−4,12 As argued by previous
works,12−14 the abundant functional groups on the surface of
hyperbranched polymers will increase the cross-linking density,
which will benefit preparation of coatings with moderately high
hardness. Similarly, the much higher pencil hardness of the
UV-cured coatings obtained might be contributed by plenty of
allyls in the hyperbranched polycarbosilanes, which will react
with the thiol group of the thiol silicone resin by UV-initiated
thiol-ene reaction without an additional photoinitiator and
increase the cross-linking density of the cured coatings. On the
basis of these results, a conclusion might be drawn that the
coatings have very high pencil hardness, which can be good
candidates to overcome the problems such as scratches on the
surface and marks produced during transportation or work.
The Effect of the R/Si Molar Ratio of Silicone Resin.

The effect of R/Si molar ratios of thiol silicone resins is shown
in Table 2. After being cured by UV for 30 s, curing degrees
are higher than 99.0%, which implies that the coatings are

almost cured entirely. The pencil hardness of the coatings is
fairly high (4−9 H). The pencil hardness decreases with the
increment of the R/Si molar ratio, which may be because a
relatively high R/Si molar ratio will result in a low cross-linking
density. Though there is a small growth of the water
absorption when the R/Si molar ratio is increased, the water
absorption is still no more than 0.03 wt %.

The Effect of the Thiol Content of Silicone Resin. It is
exhibited in Table 3 that thiol content of thiol silicone resins

takes an important role. If the thiol content increases from
0.002 to 0.004 mol g−1, the pencil hardness increases from 5 H
to 8 H. A further increment of the thiol content has a less effect
on the pencil hardness. The water absorption is still quite low,
which is 0.01−0.02 wt %. The curing degree is 97.5−99.6%,
and the surface water contact angle is about 105° (Table 3 and
Figure S1), which denotes that the curing degree and surface
water contact angle are less influenced by the thiol content.

The Effect of Generations of Hyperbranched Poly-
carbosilanes. The generations of allyl-terminated hyper-
branched polycarbosilanes have a crucial impact on the pencil
hardness of the coatings as shown in Table 4. As it can be seen,
the pencil hardness of the coatings is in the order of G1 > G2 >
G0 > G3. A relatively lower pencil hardness of coatings
prepared from higher-generation hyperbranched polycarbosi-
lanes with a bigger cross-linking network and the more defects
of the molecular structure might be explained by the decrease
of the cross-linking density and curing degree.19 To verify the
cross-linking density of these coatings, DSC of the coatings
was carried out as shown in Figure S2. Obviously, the glass
transition temperature (Tg) of the coatings is in the order of
G1 > G2 > G0 > G3, which can actually prove that the
coatings’ cross-linking density is in the order of G1 > G2 > G0
> G3.1,20,21 Generally speaking, the coating prepared with G1
exhibits optimum comprehensive performance. Highly trans-

Table 1. Effect of UV Curing Timea

entry
curing
time/s

curing
degree/%

pencil
hardness

surface water
contact angle/deg

water
absorption/

wt %

1 5 98.2 B 101.3 0.04
2 10 98.8 2 H 103.4 0.02
3 15 98.5 3 H 104.2 0.01
4 20 98.8 5 H 104.3 0.02
5 30 99.6 8 H 105.3 0.01
6 40 99.6 8 H 104.6 0.03
7 50 99.7 8 H 104.8 0.02
8 60 99.7 8 H 105.4 0.04

aConditions: R/Si and thiol content of thiol silicone resin are 1.4 and
0.004 mol g−1, respectively. The terminated hyperbranched
polycarbosilane is G1. n(thiol):n(allyl) = 1.4:1.

Figure 1. Effect of n(thiol):n(allyl) on the pencil hardness of the
coatings. Conditions: R/Si of thiol silicone resin is 1.4. The
hyperbranched polycarbosilane is G1. The coatings were all cured
for 30 s.

Table 2. Effect of R/Si Molar Ratios of Thiol Silicone
Resinsa

entry

R/Si
molar
ratio

curing
degree/%

pencil
hardness

surface water
contact angle/deg

water
absorption/

wt %

1 1.3 99.8 9 H 104.4 0.01
2 1.4 99.6 8 H 105.3 0.01
3 1.5 99.3 5 H 105.4 0.03
4 1.6 99.8 4 H 106.4 0.03

aConditions: the thiol content of thiol silicone resin is 0.004 mol g−1.
The terminated hyperbranched polycarbosilane is G1. n(thiol):n(all-
yl) = 1.4:1. The coatings were cured for 30 s.

Table 3. Influence of the Thiol Content of Thiol Silicone
Resina

entry

thiol
content/
mol g−1

curing
degree/%

pencil
hardness

surface water
contact angle/

deg

water
absorption/

wt %

1 0.002 97.5 5 H 105.5 0.01
2 0.003 99.3 6 H 105.4 0.01
3 0.004 99.6 8 H 105.3 0.01
4 0.005 98.1 8 H 104.6 0.02
5 0.006 98.7 8 H 104.9 0.02

aConditions: R/Si of thiol silicone resin is 1.4. The terminated
hyperbranched polycarbosilane is G1. n(thiol):n(allyl) = 1.4:1. The
coatings were cured for 30 s.
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parent materials can be applied to prepare or protect optical
devices,22−25 and new silicone materials with high trans-
mittance have drawn much attention. It can be obviously seen
from Figures 2 and 3 that the coatings have transmittance

higher than 80% (400−800 nm). Especially, the transmittances
of the coatings prepared with G1, G2, and G3 are higher than
94.0% at 800 nm.
The FT-IR spectra of the coatings prepared with G0, G1,

G2, and G3, G1, and thiol silicone resin are given in Figure 4.
As can be seen from the FT-IR spectra of the coatings cured
for 30 s, the characteristic stretching vibration absorption peak
of =C−H at 3074 cm−1 and that of C=C in the allyl group at
1627 cm−1 of allyl-terminated hyperbranched polycarbosilanes

disappeared. The tiny characteristic absorption peak of thiol
groups at about 2550 cm−1 in the thiol silicone resin also
vanished. The characteristic absorption peak of Si−O−Si at
1040 cm−1 and stretching vibration absorption peak of Si−CH3
at 2966 cm−1 were obviously in existence. These results imply
that the coatings can be cured perfectly for only 30 s.
As can be seen from the TGA curves of the coatings

prepared with G0, G1, G2, and G3 shown in Figure 5a, the
mass residues of these coatings at 800 °C under an atmosphere
of N2 are higher than 50 wt %. The starting thermal
decomposition temperature (Td5) of these coatings is higher
than 236 °C; especially, Td5 of the coating prepared with G1 is
as high as 371.1 °C. The relatively lower Td5 of the coatings

Table 4. Influence of Generations of Hyperbranched
Polycarbosilanesa

entry

generation of
hyperbranched
polycarbosilanes

curing
degree/%

pencil
hardness

surface
water
contact

angle/deg
water

absorption/%

1 G0 99.6 4 H 104.8 0.02
2 G1 99.6 8 H 105.3 0.01
3 G2 89.7 5 H 105.5 0.01
4 G3 75.6 <6 B 95.1 0.01

aConditions: R/Si and thiol content of thiol silicone resin are 1.4 and
0.004 mol g−1, respectively. n(thiol):n(allyl) = 1.4:1. The coatings
were cured for 30 s.

Figure 2. Transmittance of the coatings prepared with G0, G1, G2,
and G3. Conditions: R/Si and thiol content of thiol silicone resin are
1.4 and 0.004 mol g−1, respectively. n(thiol):n(allyl) = 1.4:1. The
coatings were cured for 30 s.

Figure 3. Photos of coatings prepared with G0, G1, G2, and G3. G0,
G1, G2, and G3 stand for the coatings prepared with G0, G1, G2, and
G3, respectively.

Figure 4. FT-IR spectra of the silicone coatings prepared, G1, and the
thiol silicone resin with R/Si and thiol content of 1.4 and 0.004 mol
g−1, respectively.

Figure 5. TGA (a) and DTG (b) curves of the coatings prepared with
G0, G1, G2, and G3.
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prepared with G3 may be attributed to the lowest curing
degree. The coatings prepared in this work exhibit superior
thermal stability to those UV-cured materials with Td5 in the
range of 189−273.5 °C reported previously.25,26

According to the DTG curves of these coatings shown in
Figure 5b, the temperatures at which the maximum
degradation speed took place (Tmax) for these coatings are
about 391 °C. The excellent thermal stability for coatings
prepared with G0, G1, and G2 can be proven that the thermal
degradation process can be divided into two stages: fast
degradation stage (320−425 °C) and carbonization stage
(438−585 °C). By contrast, thermal degradation of the coating
prepared with G3 can be divided into three stages: in addition
to fast degradation stage and carbonization stage mentioned,
there is an initiated degradation stage (122−308 °C), which
might be due to the remaining allyl groups after the thiol-ene-
initiated curing reaction for steric hindrance.

■ CONCLUSIONS

A class of UV-cured transparent solvent-free silicone coatings
with high hardness, low water absorption, and fairly high
transmittance were prepared from allyl-terminated hyper-
branched polycarbosilanes and thiol silicone resins. The
features for fabrication of the UV-cured silicone coatings
were discussed. When n(thiol):n(allyl) = 1.4:1 and G1 is cured
with the thiol silicone resin with R/Si and thiol content of 1.4
and 0.004 mol g−1 for 30 s, the coatings obtained have a pencil
hardness of 9 H, water absorption no more than 0.04 wt %,
transmittance higher than 94%, and Td5 as high as 371.1 °C.
By comparison with those UV-cured materials reported
previously, the coatings prepared in this work exhibit higher
pencil hardness and superior thermal stability.

■ EXPERIMENTS

Materials. 3-Trimethoxysilylpropanethiol, ether, and tetra-
hydrofuran (THF) were from Beijing HWRK Chem. Co., Ltd.
Ether and THF were distilled over potassium for 24 h before
use. Dimethyl diethoxysilane, methyl trimethoxysilane, meth-
yltrichlorosilane, and trichlorosilane (TCS) were the products
of Shanghai Jiancheng Industry and Trade Co., Ltd.
Ammonium chloride, magnesium sulfate anhydrous, and
toluene were purchased from Sinopharm Chemical Reagent
Co., Ltd., China. 3-Bromopropene, magnesium powder, and
iodine were purchased from Adamas Reagent Co., Ltd.
(Shanghai), Shanghai Lingfeng Chemical Reagent Co., Ltd.,
and TCI (Shanghai) Chemical Industrial Development Co.,
Ltd., respectively. Spiere’s platinum catalyst with a platinum
concentration of 8000 ppm was prepared by our group. Thiol
silicone resins with various thiol contents and R/Si were
synthesized according to ref 18, and the thiol contents were
calculated according to the 1H-NMR spectrum shown in
Figure S3.
Preparation of Allyl-Terminated Hyperbranched

Polycarbosilanes. Allyl-terminated hyperbranched polycar-
bosilanes were synthesized according to ref 27 (Figure S4), the
1H-NMR and 13C-NMR spectra of which are shown in Figures
S5 and S6, respectively. The MALDI-TOF-MS analysis of
products is summarized in Table S1.
Preparation of the UV-Cured Transparent Solvent-

Free Silicone Coatings. As shown in Scheme S1, the solvent-
free silicone coatings with thickness about 0.5 mm were
prepared by dropping the mixtures in the middle of glass slides

followed by spin-coating under a rotate speed of 3000 r/s for
30 s and then curing by UV with a laser wavelength of 365 nm
and radiation intensity of 10.6 mW cm−2 (ZB1000, Changzhou
Zibo Electron Technology Co., Ltd., the distance of the glass
slides to the light is 20 cm). The thickness of the coatings was
controlled by taking a mixture of equal mass onto the glass
slides.

Characterization. NMR analysis was carried out using a
400 MHz Bruker AVANCE AV400 spectrometer in CDCl3
without tetramethylsilane. Fourier transform infrared (FT-IR)
analysis was performed using a Nicolet 700 spectrometer
(Nicolet Co., Ltd., America). MALDI-TOF-MS analysis was
carried out using a Voyager DE RESIN MALDI-TOF-MS
(Applied Biosystems, USA) using a mixture of 2,5-dihydrox-
ybenzoic acid in tetrahydrofuran (0.078 mg mL−1) and sodium
trifluoroacetate in tetrahydrofuran (0.068 mg mL−1) with a 1:1
mass ratio as the matrix. The samples were dissolved in THF
(10 mg mL−1), and the solution of samples and matrix were
mixed according to a 1:7 mass ratio. The transmittance spectra
of samples were measured using a Unico UV 4802 UV/vis
spectrophotometer (Unico Instrument Co., Ltd., Shanghai).
The pencil hardness was measured with a BGD 562 pencil
hardness meter (Zhenwei Testing Machinery Co. Ltd.,
Jiangdu, China) according to GBT6739-2006. Thermogravi-
metric analysis (TGA) was carried out using a TG 209C
apparatus (Germany) at a heating rate of 10 °C min−1 under a
N2 atmosphere. Differential scanning calorimetry (DSC)
analysis was conducted using a DSC Q100 apparatus with a
carrier gas flow rate of 20 mL min−1 under a nitrogen
atmosphere. The curing degrees, water absorptions, and
surface water contact angles were measured according to refs
18, 27, and 28.
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