

Article

Machine Learning Band Gaps of Doped-TiO₂ Photocatalysts from Structural and Morphological Parameters

Yun Zhang* and Xiaojie Xu*

Cite This: ACS Omega 2020, 5, 15344–15352		Read Online		
ACCESS	Metrics & More		International Article Recommendations	

ABSTRACT: Titanium dioxide (TiO_2) photocatalysts in the form of thin films are of great interest due to their tunable optical band gaps, E_g 's, which are promising candidates for applications of visible-light photocatalytic activities. Previous studies have shown that processing conditions, dopant types and concentrations, and different combinations of the two have great impacts on structural, microscopic, and optical properties of TiO₂ thin films. The lattice parameters and surface area are strongly correlated with E_g values, which are conventionally simulated and studied through first-principle models, but these models require significant computational resources, particularly in complex situations involving codoping and various surface areas. In this study, we develop the Gaussian process regression model for predictions of anatase TiO₂ photocatalysts with E_g 's between 2.280 and 3.250 eV. Our model demonstrates a high correlation coefficient of 99.99% between predicted E_g 's and their experimental values and high prediction accuracy as reflected through the prediction root-mean-square error and mean absolute error being 0.0012 and 0.0010% of the average experimental E_g respectively. This modeling method is simple and straightforward and does not require a lot of parameters, which are advantages for applications and computations.

1. INTRODUCTION

Titanium dioxide, TiO_2 , shows great promises in several environmental applications due to its distinct properties over other materials, such as the nontoxicity, low cost, ease of preparation, water insolubility, superior acid resistance, and superhydrophilicity.¹ Examples of application areas include the air purification, water treatment, renewable energy processes, solar cells, and conversion of CO₂ to hydrocarbons.^{2–6} Among TiO₂ polymorphs, anatase TiO₂ is preferred over brookite and rutile because it has a higher surface energy of its {001} facets and better photocatalytic activities and is more stable than the other two forms. However, anatase TiO₂ has a relatively wide band gap (~3.20 eV), which only allows the material to absorb UV light. As UV light only accounts for merely 5% of solar photons, the large band gap of TiO₂ limits the quantum yield in light-to-energy conversion.^{7–10}

One effective way to modify the band gap of anatase TiO_2 is chemical doping with foreign elements. Different elements, metals and nonmetals, affect the band gap in different ways. Metal ions, such as Zr, Cr, and W, are reported to inhibit the anatase-to-rutile phase transformation.^{11,12} Transition metals, such as Cu, and rare-earth metals, such as La, lead to the lattice deformation and the formation of oxygen vacancies, resulting in an impurity state in the TiO_2 band gap, which improves the absorption of visible light by narrowing the band gap.^{13,14} Nonmetal doping, such as the nitrogen incorporation into the TiO_2 lattice or on its surface, has been reported to benefit the improvement of photoefficiency under UV/visible light.¹ Both single doping and codoping methods have been applied to the $\rm TiO_2$ photocatalyst fabrication by incorporating various elements into the crystal structure. $^{10,13-24}$ The addition of foreign elements results in lattice distortions and changes in the E_{σ} due to electronegativities, ionic radius differences, and introductions of impurity states.²⁵ In addition to chemical doping, various preparation methods of TiO₂ photocatalysts can influence the band gap narrowing differently. Typical fabrication methods include the coprecipitation, sol-gel process, spray pyrolysis, hydrothermal process, low-temperature solvothermal method, and plasma treatment.^{13,18,20,21} Processing parameters, including but not limited to the precursor materials, substrate temperature, deposition rate, and annealing temperature, affect the crystal structure and microstructure significantly. As a result, lattice parameters and the surface area are changed upon different combinations of synthesis steps.^{1,25-29} Previous research has demonstrated that the photocatalytic activity of TiO₂ strongly depends on its phase structure, crystallinity, and morphology.^{30,31} Among various phases of TiO₂, anatase is reported to have a better photocatalytic activity than the other two polymorphs.³² A good crystallinity is required to achieve the formation of an optimal amount of electron traps, which affects

 Received:
 March 30, 2020

 Accepted:
 June 8, 2020

 Published:
 June 16, 2020

ACS Omega

http://pubs.acs.org/journal/acsodf

Table 1. Experimental Data and Predictions^a

sample	a (Å)	c (Å)	surface area (m^2/g)	E_{g} (eV)	prediction	reference
pure TiO ₂	3.7650	9.4860	43.00	3.122	3.12198	21
1.0% Cu-3.5% In-TiO ₂	3.7760	9 4620	85.00	3.087	3.08695	21
5 mol % Cu-doped TiO. $(700^{\circ}C)$	3.7700	6.0190	110.70	2,430	2,43004	15
5 mol % Cu-doped TiO ₂ ($f00^{\circ}$ C)	3 7960	9 4310	150.90	2.510	2.51004	15
5 mol % Cu 15 mol % Zr co doped TiO (700 °C)	3.8340	11 4420	127.20	2.310	2.31004	15
5 mol % Cu, 15 mol % Zr co-doped TiO_2 (700 °C)	3.8340	10,000	127.20	2.280	2.28003	15
undered TiO	3.8080	0.6200	146.07	2.320	2.32003	13
$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2$	3.7900	9.0300	140.07	2.930	2.94999	20
S-doped ΠO_2 (K ₂ S ₂ O ₈ / $\Pi = 0.25$)	3.7800	9.5900	183.45	2.850	2.84999	20
S-doped ΠO_2 ($K_2 S_2 O_8 / \Pi = 0.5$)	3.7900	9.5800	216.22	2.830	2.83001	20
	3.7740	9.4480	44.80	3.230	3.22994	10
$S_{0.05}/11O_2$	3.7750	9.5480	48.60	2.950	2.95000	10
$S_{0.05}V_{0.001}/TiO_2$	3.7770	9.4610	64.40	2.810	2.81002	10
$S_{0.05}Fe_{0.001}/TiO_2$	3.7820	9.6670	66.60	2.880	2.88001	10
$S_{0.05}Zn_{0.001}/TiO_2$	3.7930	9.4140	61.80	3.230	3.22997	10
undoped-TiO ₂	3.7848	9.4826	216.00	3.110	3.10996	19
V-doped TiO ₂	3.7882	9.4949	203.00	2.910	2.91000	19
N-doped TiO ₂	3.7917	9.4868	181.00	2.920	2.91999	19
V,N co-doped TiO ₂	3.7996	9.4976	172.00	2.760	2.76000	19
pure TiO ₂	3.7860	9.5260	80.37	3.180	3.17999	13
N-TiO ₂	3.7850	9.4710	96.49	2.900	2.90003	13
La-TiO ₂	3.7800	9.5180	89.42	3.020	3.02000	13
N/La-TiO ₂	3.7860	9.4780	116.25	2.840	2.84001	13
undoped-TiO ₂	3.7760	9.4860	51.30	2.910	2.91001	18
Ce-doped TiO ₂ , "C _{0.03} T ₁ "	3.7740	9.4540	63.52	2.720	2.72002	18
Ce-doped TiO ₂ , "C ₀₀₁ T ₁ "	3.7720	9.4420	67.43	2.670	2.67002	18
Ce-doped TiO ₂ , " $C_{0.05}T_1$ "	3.7710	9.4500	60.14	2.700	2.70002	18
Ce.Si co-doped TiO ₂ , "C _{0.01} $T_1S_{0.05}$ "	3.7700	9.4570	102.41	2.650	2.65006	18
Ce,Si co-doped TiO ₂ , "C _{0.01} T_1S_0 s"	3.7600	9.4620	164.48	2.510	2.51005	18
Ce.Si co-doped TiO ₂ . "Cool T_1S_1 "	3.7600	9.4810	168.54	2.710	2,70997	18
Ce-doped TiO ₂ , "Coort,"	3,7580	9.4420	53.57	2.82.0	2.82001	18
undoped-TiO ₂ $(475 °C)$	3.8220	10.6100	71.40	3.210	3.20997	14
$Ce(2\%)Co(4\%) - TiO_{2}(600 \ ^{\circ}C)$	3 8060	11 1800	43.60	3 200	3 19997	14
$Ce(2\%)Co(4\%) - TiO_2(000 °C)$	3,8130	10,0000	39.80	3 180	3 17997	14
undoned-TiO.	3 7760	9 3410	85.93	3 2 2 0	3 2 1 9 9 6	24
1% Nh doped TiO	3.7760	9.3410	150.61	3.220	3.21990	24
1% No-doped 110_2	3.7800	9.3470	67.70	2.080	3.24990	17
put 10_2	3.7700	9.4800	106.27	2.980	2.97994	17
Ag-doped $\Pi O_2(400 \text{ C})$	3.7822	9.3023	78.40	2.430	2.43000	17
Ag-doped ΠO_2 (S00 °C)	3.7770	9.3010	/8.40	2.510	2.51009	17
Ag-doped $110_2 (600 \text{ C})$	3.7760	9.4860	29.33	2.540	2.54004	17
Ag-doped $110_2 (700 ^{\circ}\text{C})$	3./822	9.5023	1.93	2.590	2.59002	1/
undoped-11 O_2	3.7945	9.5079	37.90	3.180	3.17997	16
1 wt % Mn-doped TiO ₂	3.7945	9.4860	52.59	3.100	3.10000	16
5 wt % Mn-doped TiO ₂	3.7956	9.4993	80.77	2.700	2.70002	16
10 wt % Mn-doped TiO ₂	3.7922	9.4546	95.19	2.700	2.70003	16
20 wt % Mn-doped TiO ₂ (TMA400)	3.7762	9.4681	212.71	2.450	2.45003	16
20 wt % Mn-doped TiO ₂ (TMB400)	3.7808	9.4720	203.00	2.500	2.50004	16
20 wt % Mn-doped TiO ₂ (TMN400)	3.8014	9.4105	205.36	2.550	2.55003	16
pure TiO ₂	3.7835	9.4907	86.11	3.180	3.18000	22
0.05 wt % W-doped TiO ₂	3.7858	9.4862	88.14	3.190	3.18997	22
0.1 wt % W-doped TiO ₂	3.7858	9.4817	86.08	3.120	3.12004	22
0.5 wt % W-doped TiO ₂	3.7813	9.4773	91.71	3.180	3.17996	22
1 wt % W-doped TiO ₂	3.7835	9.4817	88.18	3.190	3.18998	22
pure TiO ₂	3.7850	9.5021	59.00	3.220	3.21998	23
0.1 mol % Sn-doped TiO ₂	3.7864	9.4958	66.00	3.200	3.19999	23
0.5 mol % Sn-doped TiO ₂	3.7863	9.4927	75.00	3.180	3.18000	23
1 mol % Sn-doped TiO ₂	3.7866	9.4915	87.00	3.210	3.20997	23
3 mol % Sn-doped TiO ₂	3.7878	9.4884	106.00	3.190	3.18996	23
2.0% In-TiO ₂	3.7630	9.4740	62.00	3.186	3.18597	21
3.5% In-TiO ₂	3.7680	9.4620	98.00	3.195	3.19494	21
5.0% In-TiO ₂	3.7920	9.4360	123.00	3.217	3.21696	21
minimum	3.7580	6.0190	1.93	2.280	2.28005	

Article

ACS Omega

http://pubs.acs.org/journal/acsodf

Article

Table 1. continued

sample	a (Å)	c (Å)	surface area $\left(m^2/g\right)$	$E_{\rm g}~({\rm eV})$	prediction	reference
mean	3.7843	9.5220	101.17	2.910	2.90962	
median	3.7842	9.4860	86.56	2.935	2.93499	
maximum	3.8340	11.4420	216.22	3.250	3.24996	
standard deviation	0.0141	0.5906	53.67	0.285	0.28542	
correlation coefficient with $E_{\rm g}$	0.76%	10.59%	-34.18%		99.99%	
^{<i>a</i>"E_g (eV)" and "prediction" represent the experime}	ental and GPR	predicted ban	d gaps, respectively, wh	nich are visua	lized in Figure	3.

3.4 Eg (eV) Energy Band Gap, Eg (Ev) 3.2 200 Experimental Energy Band Gap, Surface Area (m^2/g) 3 3 150 2.8 100 2.8 50 2.6 2.6 Experimental 0 12 2.4 3.85 2.4 10 3.8 8 2.2 – 3.74 6 3.76 c(Å)3.75 3.78 3.8 3.82 3.84 a(Å)a(A)Experimental Energy Band Gap, Eg (eV) Experimental Energy Band Gap, Eg (eV) 3.4 3.4 3.2 3.2 3 3 2.8 2.8 2.6 2.6 2.4 2.4 2.2 2.2 6 7 8 9 10 11 12 0 50 100 150 200 250 Surface Area (m^2/g) $c(\mathring{A})$

Figure 1. Data visualization.

the photocatalytic efficiency. Lattice deformation caused by nonequilibrium crystal growth and chemical doping affects the electronic structure by modifying orbital hybridization and introducing additionally available electrons for conduction.^{33,34} Both the crystallinity and lattice deformation can be characterized by lattice parameters. Furthermore, other crystal defects, such as residual strain, impurities, dislocation densities, and defect energy, have significant influences on band gap structures and are correlated with surface morphology, which can be characterized by the surface area.^{35,36} High surface areas also promote quantum confinement effects in the semiconductor space charge and surface reaction, which greatly increase the photocatalytic efficiency.³⁷ For example, N-doped TiO₂ obtained by the reduction-nitridation method via the nonthermal plasma treatment is more favorable than the simple nitridation treatment, as the former promotes Ns doping and narrows the band gap more efficiently.³⁸ Further, the recombination of photogenerated electron-hole pairs limits the photocatalytic activity. Some research has been carried out

to reduce the recombination rate of the photoelectron-hole pairs and increase the interfacial charge-transfer efficiency. The surface microstructure, mainly characterized by the surface area, shows additional influences on photocatalyst quality and optical performance. The surface area is correlated with the residual strain, dislocation density, crystallinity, defect energy, impurities, and other structural defects and is shown to contribute to the band gap of TiO_2 structures.^{35,36} Hence, with various synthesis methods and dopant selection, combination possibilities of TiO₂ with the tunable $E_{\rm g}$ are enormous. It is, therefore, of great importance to investigate correlations among the tunability of the E_{e} , lattice parameters, and the surface area. Qualitative analysis on the effect of dopant types and levels on the E_g of TiO₂ photocatalysts has been conducted through experiments.^{10,13-24} Quantitative analysis through thermodynamics models and first-principle models has been utilized to aid the understanding of the optical performance of these materials and facilitate the tuning of doped-TiO₂ E_g .^{39,40} However, these models require a significant amount of data inputs, such as

Figure 2. Model performance and training data sizes. When the training data set size is between 30 and 57, 2000 random subsamples are drawn without replacements from the whole sample for model training. When the training data set size is 58, 59, or 60, $_{60}C_{58}$, $_{60}C_{59}$, or $_{60}C_{60}$ subsamples are drawn without replacements from the whole sample based on exhaustive sampling for model training. Each trained model based on a certain subsample is used to score the whole sample and obtain the associated model performance. The GPR here uses the exponential kernel and constant basis function, with standardized predictors. Given a model performance measure, box plots show the median, 25th percentile, and 75th percentile. The whiskers extend to the most extreme values (i.e., ± 2.7 standard deviation coverage) not considered as outliers, and the outliers are plotted using the "+" symbol.

variables for equations of state and orbital configurations, which can only be obtained by extensive measurements. The requirement of computational power also increases significantly when it comes to the codoping situation.

In this work, the Gaussian process regression (GPR) model is developed to elucidate the statistical relationship among the lattice parameters, a (Å) and c (Å), surface area, and energy band gap for doped-TiO₂ anatase photocatalysts. Among the three descriptors, lattice parameters are structural parameters as direct representatives of the phase structure and crystallinity, and the surface area is the morphological parameter. Empirical studies show that crystal defects introduced by doping, such as foreign ions at substitutional or interstitial lattice positions, can shift the band gap toward the visible-light region. Depending on ionic radii, electronegativities, and valence, however, specific types and extents of crystal defects are difficult to estimate. Experimentally, crystal defects require significant amounts of analytical work to characterize, which eventually may be used as inputs into further theoretical work. First-principle simulations calculate the probability of each type of defects and their effects on the band gap tuning based on known atomic interactions, but these methods are known to be susceptible of underestimations of E_g values, particularly when the TiO₂ lattices are doped with transition metals.^{41,42} Besides, effects of the morphological parameter, the surface area, on E_g values are difficult to incorporate into first-principle simulations. Although a high surface area is generally preferred, it is hard to quantify the required surface area while also considering lattice deformation

in a practical application. Our GPR model, however, avoids depending on quantum mechanics theories for calculations, which may be susceptible to over- or underestimations due to unknown atomic interactions. In this method, the known experimental lattice parameters are used as macroscopic descriptors to find the relationship with experimentally measured E_g values. The model generalizes well in the presence of a few descriptive features, where intelligent algorithms are able to learn and recognize the patterns. This modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and low-cost estimations of the energy band gap of anatase TiO₂ and understandings of which are based on the lattice parameters and surface area. As one of the computational intelligence techniques, the GPR model has already been utilized in other materials systems to predict significant physical parameters in different fields of applications.^{43–45} This model can serve as a guideline for searching for anatase TiO_2 with tunable E_g when a specific range of band gaps is required for a practical application. It can also be used as part of machine learning to aid understandings of the effects of crystal structures and morphology on the optical performance of TiO₂ photocatalysts.

The remaining of this work is organized as follows. Section 2 describes the data. Section 3 presents and discusses results, and Section 4 concludes. Section 5 contains details of the GPR model.

Figure 3. Experimental vs predicted E_g . The final GPR model is built using the whole sample with the exponential kernel, constant basis function, and standardized predictors. It has a log-likelihood of -3.5784, $\hat{\beta}$ of 2.8382, $\hat{\sigma}$ of 0.0029, $\hat{\sigma}_1$ of 0.2896, and $\hat{\sigma}_f$ of 0.2939. Detailed numerical predictions are listed in Table 1 (column 6).

2. DESCRIPTION OF DATA SET

The experimental data used, shown in Table 1 (columns 1–5), are obtained from the literature.^{10,13–24} The data set covers a wide range of anatase TiO₂ that are prepared through different synthesis methods and doped with various elements. A total of 60 TiO₂ photocatalysts with the energy band gap, E_g , ranging from 2.280 to 3.250 eV are explored. The lattice parameters, *a* (Å) and *c* (Å), and measured surface area are used as descriptors. E_g values are calculated using the Tauc relationship^{13,22} after acquiring the transmittance data by the UV–vis spectrometer in each reference in Table 1. Data visualization in Figure 1 reveals nonlinear relationships, which are modeled through the GPR.

3. RESULTS AND DISCUSSION

3.1. Computational Methodology. MATLAB is utilized for computations and simulations in this work. The relationship between model performance and training data sizes is investigated in Figure 2, which shows the benefit of training the GPR using all observations. The stability of the GPR approach is confirmed by bootstrap analysis in Section 3.3.

3.2. Prediction Accuracy. Metal ions, such as Sn^{4+} , Zr^{4+} , and Cu^{2+} , are incorporated into the anatase structure by the substitution of Ti^{4+} due to similar ionic radii, while Ag^+ is favorably stabilized at an interstitial site. Nonmetal ions, such as N and S, are incorporated into the lattice and coexisted at both substitutional and interstitial sites. Changes in lattice parameters depend on ionic radii, electronegativities, valence, and incorporation mechanisms. On one hand, these crystal defects allow additional electronic levels to be created in the band structure, which effectively narrow the band gap, shift the absorption edge to the visible region, and enhance photocatalytic efficiency. On the other hand, excess additions of some dopants, such as N, may lead to the formation of the oxygen vacancy and Ti^{3+} due to charge imbalance, which increase the

charge carrier recombination and hinder conversion efficiency. Hence, codoping is carried out to maintain the charge balance through charge compensation, add new electronic levels, suppress the recombination of charge carriers, and further increase photocatalytic efficiency. Besides, dopants also have an influence on the stability of the anatase phase and surface area. For example, dopants, such as Zr, Ag, W, Ce, and Nb, are found to inhibit the anatase-to-rutile phase transformation, while Mn, Cu, and Co are found to promote it. During the TiO₂ synthesis, the high-temperature calcination is usually carried out to achieve high crystallinity, which, however, might lead to extensive grain coarsening and surface area reductions. Additions of dopants that inhibit the phase transformation to structure help stabilize the anatase phase at elevated processing temperature, hinder grain growth, decrease crystallite sizes, and thus increase the surface area. A high surface area indicates increased structural defects on the surface, such as unsaturated surface cations and surface hydroxyl groups, which favor the simultaneous absorption of organic molecules and enhance the photocatalytic efficiency. It should be pointed out that effects of modified lattices and surface areas on band gap tuning and photocatalytic properties are synergistic. There is no linear or monotonic relationship between lattice parameters, surface areas, and band gaps. In this work, the developed model is able to learn and capture the synergistic effects of the structure and morphology on E_g values.

The final GPR model is detailed in Figure 3, which shows a good alignment between predicted and experimental data. The correlation coefficient (CC), root-mean-square error (RMSE), and mean absolute error (MAE) are 99.99%, 0.00003442 (0.0012% of the average experimental E_g), and 0.00002872 (0.0010% of the average experimental E_g), respectively, representing good prediction performance.

Figure 4. Bootstrap analysis of GPR prediction stability. Five thousand bootstrap samples are drawn with replacements from the whole sample. Each bootstrap sample is used to train the GPR based on the exponential kernel, constant basis function, and standardized predictors and obtain the associate model performance. The histograms show distributions of CC, RMSE, and MAE over the 5000 bootstrap samples, whose averages are 99.99%, 0.00002320, and 0.00001782, respectively.

Table 2. GPR Prediction Sensitivities to Choices of Kernels and Basis Function	15 ⁴
--	-----------------

kernel	basis function	CC (%)	RMSE	RMSE/sample mean (%)	MAE	MAE/sample mean (%)
exponential	constant	99.99	0.00003442	0.0012	0.00002872	0.0010
exponential	empty	82.38	0.17850737	6.1343	0.15125528	5.1978
exponential	linear	99.99	0.00003472	0.0012	0.00002926	0.0010
exponential	pure quadratic	99.99	0.00003554	0.0012	0.00002975	0.0010
squared exponential	constant	71.48	0.21057940	7.2364	0.18170821	6.2443
matern 5/2	constant	99.99	0.00007681	0.0026	0.00005651	0.0019
rational quadratic	constant	99.98	0.00630021	0.2165	0.00459014	0.1577
a a a a a						

^aThe final GPR model is based on the exponential kernel and constant basis function, with standardized predictors.

3.3. Prediction Stability. Given the relatively small sample size (see Table 1) used, the prediction stability of the GPR is assessed through bootstrap analysis in Figure 4, which shows that the modeling approach maintains high CCs, low RMSEs, and low MAEs over the bootstrap samples. This result suggests that the GPR might be generalized for E_g modeling of anatase TiO₂ based on larger samples.

3.4. Prediction Sensitivity. Table 2 shows that the exponential kernel is generally the optimal choice among kernels considered. With the exponential kernel, prediction results are not sensitive to choices of basis functions except for the case of the empty basis function. Given the exponential kernel, the constant basis function is selected as the final specification for its simplicity, which usually is a benefit to model generalization, and its slight better performance as compared to more complicated basis functions, such as linear and pure quadratic.

4. CONCLUSIONS

In this study, we develop the Gaussian process regression (GPR) model for predictions of anatase TiO₂ photocatalysts' energy band gaps, E_{g} 's, based on the lattice parameters and surface area. Our model demonstrates a high correlation coefficient of 99.99% between predicted E_g 's and their experimental values. In addition, the model shows high prediction accuracy as reflected through the prediction root-mean-square error and mean absolute error being 0.0012 and 0.0010% of the average experimental E_{g} , respectively. Finally, model performance is illustrated to be stable. These results suggest that the GPR should be useful to model and understand relationships between structural and morphological parameters and E_{σ} 's. This modeling method is simple and straightforward and does not require a lot of parameters, which are advantages for applications and computations. The model can be applied to a wide range of undoped and doped-TiO₂ made by various synthesis methods and utilized to facilitate design and understandings of multidoped TiO₂ photocatalysts with tunable E_g 's.

5. PROPOSED METHODOLOGY

5.1. Brief Description of Gaussian Process Regression. GPRs are nonparametric kernel-based probabilistic models. Consider a training data set, $\{(x_i, y_i); i = 1, 2, ..., n\}$ where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$, from an unknown distribution. A trained GPR predicts values of the response variable y^{new} given an input matrix x^{new} .

Recall a linear regression model, $y = x^T\beta + \varepsilon$, where $\varepsilon \sim N(0, \sigma^2)$. A GPR aims at explaining *y* by introducing latent variables, $l(x_i)$ where i = 1, 2, ..., n, from a Gaussian process such that the joint distribution of $l(x_i)s$ is Gaussian and explicit basis functions, *b*. The covariance function of $l(x_i)$ captures the smoothness of *y*, and basis functions project *x* into a feature space of dimension *p*.

A GP is defined by the mean and covariance. Let m(x) = E(l(x)) be the mean function and k(x, x') = Cov [l(x), l(x')] the covariance function and consider now the GPR model, $y = b(x)^{T}\beta + l(x)$, where $l(x) \sim \text{GP}(0, k(x, x'))$ and $b(x) \in \mathbb{R}^{p}$. k(x, x') is often parameterized by the hyperparameter, θ , and thus might be written as $k(x, x'|\theta)$. In general, different algorithms estimate β , σ^{2} , and θ for model training and would allow specifications of *b* and *k* as well as initial values for parameters.

The current study explores four kernel functions, namely exponential, squared exponential, matern 5/2, and rational quadratic, whose specifications are listed in eqs 1–eqs 1, respectively, where σ_l is the characteristic length scale defining how far apart *x*'s can be for *y*'s to become uncorrelated, σ_f is the signal standard deviation, $r = \sqrt{(x_i - x_j)^T (x_i - x_j)}$, and α is a positive-valued scale-mixture parameter. Note that σ_l and σ_f should be positive. This could be enforced through θ such that $\theta_1 = \log \sigma_l$ and $\theta_2 = \log \sigma_f$.

$$k(x_i, x_j | \theta) = \sigma_f^2 \exp\left(-\frac{r}{\sigma_l}\right)$$
(1)

$$k(x_{i}, x_{j}|\theta) = \sigma_{f}^{2} \exp\left[-\frac{1}{2} \frac{(x_{i} - x_{j})^{\mathrm{T}}(x_{i} - x_{j})}{\sigma_{l}^{2}}\right]$$
(2)

$$k(x_i, x_j | \theta) = \sigma_f^2 \left(1 + \frac{\sqrt{5}r}{\sigma_l} + \frac{5r^2}{3\sigma_l^2} \right) \exp\left(-\frac{\sqrt{5}r}{\sigma_l}\right)$$
(3)

$$k(x_i, x_j | \theta) = \sigma_f^2 \left(1 + \frac{r^2}{2\alpha \sigma_l^2} \right)^{-\alpha}$$
(4)

Similarly, four basis functions are investigated here, namely, empty, constant, linear, and pure quadratic, whose specifications are listed in eqs 5–eqs 5, respectively, where $B = (b(x_1), b(x_2), ..., b(x_n))^T$, $X = (x_1, x_2, ..., x_n)^T$, and

$$X^{2} = \begin{pmatrix} x_{11}^{2} & x_{12}^{2} & \dots & x_{1d}^{2} \\ x_{21}^{2} & x_{22}^{2} & \dots & x_{2d}^{2} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1}^{2} & x_{n2}^{2} & \dots & x_{nd}^{2} \end{pmatrix}$$

B =empty matrix (5)

 $B = I_{n \times 1} \tag{6}$

 $B = [1, X] \tag{7}$

$$B = [1, X, X^2]$$
(8)

To estimate β , σ^2 , and θ , the marginal log-likelihood function in eq 9 is to be maximized, where $K(X,X|\theta)$ is the covariance

function matrix given by
$$\begin{pmatrix} k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_n) \\ k(x_2, x_1) & k(x_2, x_2) & \dots & k(x_2, x_n) \\ \vdots & \vdots & \vdots & \vdots \\ k(x_n, x_1) & k(x_n, x_2) & \dots & k(x_n, x_n) \end{pmatrix}$$

The algorithm first computes $\hat{\beta}$ (θ , σ^2), maximizing the loglikelihood function with respect to β given θ and σ^2 . It then obtains the β -profiled likelihood, log { $P(y|X, \hat{\beta}(\theta, \sigma^2), \theta, \sigma^2)$ }, which is to be maximized over θ and σ^2 to compute their estimates.

$$\log P(y|X, \beta, \theta, \sigma^{2})$$

$$= -\frac{1}{2} \{ (y - B\beta)^{T} [K(X, X|\theta) + \sigma^{2}I_{n}]^{-1} (y - B\beta) \}$$

$$-\frac{n}{2} \log 2\pi - \frac{1}{2} \log |K(X, X|\theta) + \sigma^{2}I_{n}|$$
(9)

5.2. Performance Evaluation. Performance of the proposed GPR models is evaluated using the root-mean-square error (RMSE), mean absolute error (MAE), and correlation coefficient (CC) in eqs 10–eq 9, respectively, where *n* is the number of data points, a_i^{exp} and a_i^{ext} are the *i*th (i = 1, 2, ..., n) experimental and estimated energy band gap, and \overline{a}^{exp} and \overline{a}^{ext} are their averages.

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (a_i^{\exp} - a_i^{\exp})^2}$$
 (10)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |a_i^{exp} - a_i^{est}|$$
(11)

$$CC = \frac{\sum_{i=1}^{n} (a_i^{\exp} - \overline{a^{\exp}})(a_i^{est} - \overline{a^{est}})}{\sqrt{\sum_{i=1}^{n} (a_i^{\exp} - \overline{a^{\exp}})^2 \sum_{i=1}^{n} (a_i^{est} - \overline{a^{est}})^2}}$$
(12)

AUTHOR INFORMATION

Corresponding Authors

- Yun Zhang North Carolina State University, Raleigh, North Carolina 27695, United States; Ocid.org/0000-0002-9464-1751; Email: yzhang43@ncsu.edu
- Xiaojie Xu North Carolina State University, Raleigh, North Carolina 27695, United States; Email: xxu6@ncsu.edu

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c01438

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

There is no funding received for this study.

REFERENCES

(1) Devi, L. G.; Kavitha, R. Review on modified N-TiO₂ for green energy applications under UV/visible light: selected results and reaction mechanisms. *RSC Adv.* **2014**, *4*, 28265–28299.

(2) Bahnemann, D. Photocatalytic water treatment: solar energy applications. *Sol. Energy* **2004**, *77*, 445–459.

(3) Hay, S. O.; Obee, T.; Luo, Z.; Jiang, T.; Meng, Y.; He, J.; Murphy, S. C.; Suib, S. The viability of photocatalysis for air purification. *Molecules* **2015**, *20*, 1319–1356.

(4) Li, K.; Peng, B.; Peng, T. Recent advances in heterogeneous photocatalytic CO_2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

(5) Roose, B.; Pathak, S.; Steiner, U. Doping of TiO_2 for sensitized solar cells. *Chem. Soc. Rev.* **2015**, *44*, 8326–8349.

(6) Parkin, I. P.; Palgrave, R. G. Self-cleaning coatings. J. Mater. Chem. 2005, 15, 1689–1695.

(7) Guo, W.; Kirste, R.; Bryan, Z.; Bryan, I.; Gerhold, M.; Collazo, R.; Sitar, Z. Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: A way towards light extraction efficiency enhancement of III-nitride based light emitting diodes. J. Appl. Phys. **2015**, 117, No. 113107.

(8) Sheikhi, M.; Guo, W.; Dai, Y.; Cui, M.; Hoo, J.; Guo, S.; Xu, L.; Liu, J.; Ye, J. Mechanism of Improved Luminescence Intensity of Ultraviolet Light Emitting Diodes (UV-LEDs) Under Thermal and Chemical Treatments. *IEEE Photonics J.* **2019**, *11*, 1–8.

(9) Janczarek, M.; Kowalska, E. On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems. *Catalysts* **2017**, *7*, No. 317.

(10) Lin, Y.-H.; Tseng, T.-K.; Chu, H. Photo-catalytic degradation of dimethyl disulfide on S and metal-ions co-doped TiO₂ under visible-light irradiation. *Appl. Catal.*, A **2014**, 469, 221–228.

(11) Hanaor, D. A.; Sorrell, C. C. Review of the anatase to rutile phase transformation. *J. Mater. Sci.* **2011**, *46*, 855–874.

(12) Ohtsuka, Y.; Fujiki, Y.; Suzuki, Y. Impurity effects on anataserutile transformation. *J. Jpn. Assoc. Mineral. Petrol. Econ. Geol.* **1982**, 77, 117–124.

(13) Yu, L.; Yang, X.; He, J.; He, Y.; Wang, D. One-step hydrothermal method to prepare nitrogen and lanthanum co-doped TiO_2 nanocrystals with exposed {0 0 1} facets and study on their photocatalytic activities in visible light. *J. Alloys Compd.* **2015**, 637, 308–314.

(14) Ilkhechi, N. N.; Alijani, M.; Kaleji, B. K. Optical and structural properties of TiO_2 nanopowders with Co/Ce doping at various temperature. *Opt. Quantum Electron.* **2016**, *48*, No. 148.

(15) Ilkhechi, N. N.; Kaleji, B. K.; Salahi, E.; Hosseinabadi, N. Comparison of optical and structural properties of Cu doped and Cu/Zr co-doped TiO₂ nanopowders calcined at various temperatures. *J. Sol-Gel Sci. Technol.* **2015**, *74*, 765–773.

(16) Oseghe, E. O.; Ndungu, P. G.; Jonnalagadda, S. B. Synthesis of mesoporous Mn/TiO_2 nanocomposites and investigating the photocatalytic properties in aqueous systems. *Environ. Sci. Pollut. Res.* **2015**, 22, 211–222.

(17) Lei, X.; Xue, X.; Yang, H. Preparation and characterization of Agdoped TiO₂ nanomaterials and their photocatalytic reduction of Cr (VI) under visible light. *Appl. Surf. Sci.* **2014**, *321*, 396–403.

(18) Hao, C.; Li, J.; Zhang, Z.; Ji, Y.; Zhan, H.; Xiao, F.; Wang, D.; Liu, B.; Su, F. Enhancement of photocatalytic properties of TiO_2 nanoparticles doped with CeO_2 and supported on SiO_2 for phenol degradation. *Appl. Surf. Sci.* **2015**, 331, 17–26.

(19) Gu, D.-E.; Yang, B.-C.; Hu, Y.-D. V and N co-doped nanocrystal anatase TiO_2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. *Catal. Commun.* **2008**, *9*, 1472–1476.

(20) Niu, Y.; Xing, M.; Tian, B.; Zhang, J. Improving the visible light photocatalytic activity of nano-sized titanium dioxide via the synergistic effects between sulfur doping and sulfation. *Appl. Catal., B* **2012**, *115–116*, 253–260.

(21) Tahir, M.; Amin, N. S. Photocatalytic CO_2 reduction with H_2 as reductant over copper and indium co-doped TiO₂ nanocatalysts in a monolith photoreactor. *Appl. Catal., A* **2015**, *493*, 90–102.

(22) Oseghe, E. O.; Ndungu, P. G.; Jonnalagadda, S. B. Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid using W-doped TiO₂. J. Photochem. Photobiol, A **2015**, 312, 96–106.

(23) Rangel-Vázquez, I.; Del Angel, G.; Bertin, V.; González, F.; Vázquez-Zavala, A.; Arrieta, A.; Padilla, J.; Barrera, A.; Ramos-Ramirez, E. Synthesis and characterization of Sn doped TiO₂ photocatalysts: Effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid. J. Alloys Compd. 2015, 643, S144–S149.

(24) Kaleji, B. K.; Hosseinabadi, N.; Fujishima, A. Enhanced photocatalytic activity of TiO_2 nanostructured thin films under solar light by Sn and Nb co-doping. *J. Sol-Gel Sci. Technol.* **2013**, *65*, 195–203.

(25) Ismail, A. A.; Bahnemann, D. W. Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. *J. Mater. Chem.* **2011**, *21*, 11686–11707.

(26) Schwartz, J.; Koch, C. C.; Zhang, Y.; Liu, X. Formation of Bismuth Strontium Calcium Copper Oxide Superconductors. U.S. Patent US9773962B2 (2017). https://patents.google.com/patent/ US9773962B2/en (accessed May 19, 2020).

(27) Zhang, Y.; Johnson, S.; Naderi, G.; Chaubal, M.; Hunt, A.; Schwartz, J. High critical current density $Bi_2Sr_2CaCu_2O_x/Ag$ wire containing oxide precursor synthesized from nano-oxides. *Supercond. Sci. Technol.* **2016**, *29*, No. 095012.

(28) Zhang, Y.; Koch, C. C.; Schwartz, J. Formation of Bi₂Sr₂CaCu₂O _{*}/Ag multifilamentary metallic precursor powder-in-tube wires. *Supercond. Sci. Technol.* **2016**, *29*, No. 125005.

(29) Zhang, Y.; Koch, C. C.; Schwartz, J. Synthesis of $Bi_2Sr_2CaCu_2O_x$ superconductors via direct oxidation of metallic precursors. *Supercond. Sci. Technol.* **2014**, *27*, No. 055016.

(30) Li, F.; Li, X.; Hou, M.; Cheah, K.; Choy, W. Enhanced photocatalytic activity of Ce^{3+} -TiO₂ for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. *Appl. Catal., A* **2005**, 285, 181–189.

(31) Yu, J.; Jimmy, C. Y.; Leung, M. K.-P.; Ho, W.; Cheng, B.; Zhao, X.; Zhao, J. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. *J. Catal.* **2003**, *217*, 69–78.

(32) Ovenstone, J.; Yanagisawa, K. Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination. *Chem. Mater.* **1999**, *11*, 2770–2774.

(33) Yang, S.; Gao, L. Preparation of titanium dioxide nanocrystallite with high photocatalytic activities. *J. Am. Ceram. Soc.* **2005**, *88*, 968–970.

(34) Addamo, M.; Augugliaro, V.; Di Paola, A.; García-López, E.; Loddo, V.; Marci, G.; Molinari, R.; Palmisano, L.; Schiavello, M. Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO₂ catalysts. *J. Phys. Chem. B* **2004**, *108*, 3303–3310.

(35) Munir, S.; Shah, S. M.; Hussain, H.; et al. Effect of carrier concentration on the optical band gap of TiO_2 nanoparticles. *Mater. Des.* **2016**, *92*, 64–72.

(36) Zhou, J.; Xie, L. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry. *Appl. Opt.* **2011**, *50*, 379–386.

(37) Tian, G.; Fu, H.; Jing, L.; Xin, B.; Pan, K. Preparation and characterization of stable biphase TiO_2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. *J. Phys. Chem. C* **2008**, *112*, 3083–3089.

(38) Hu, S.; Li, F.; Fan, Z. Preparation of visible light responsive N doped TiO_2 via a reduction-nitridation procedure by nonthermal plasma treatment. *Appl. Surf. Sci.* **2011**, 258, 1249–1255.

(39) Zhou, Z.; Li, M.; Guo, L. A first-principles theoretical simulation on the electronic structures and optical absorption properties for O vacancy and Ni impurity in TiO_2 photocatalysts. *J. Phys. Chem. Solids* **2010**, 71, 1707–1712.

(40) Liu, L.-Y.; Zhang, Z.-X.; Gou, X.-F.; Yang, H.-X. Molecular modelling of the effect of loading rate on elastic properties of CNT-polyethylene nanocomposite and its interface. *Mater. Res. Express* **2020**, *6*, No. 1250d2.

(41) Ong, S. Materials Project. https://www.materialsproject.org/ wiki/index.php/GGA%2BU_calculations#cite_note-1 (2016; accessed May 19, 2020).

(42) Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+ U framework. *Phys. Rev. B* 2006, 73, No. 195107.

(43) Zhang, Y.; Xu, X. Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression. Comput. Mater. Sci. 2020, 179, No. 109583.

(44) Zhang, Y.; Xu, X. Machine learning the magnetocaloric effect in

(45) Zhang, Y.; Xu, X. Predicting the magnetocatoric creter in (45) Zhang, Y.; Xu, X. Predicting the thermal conductivity enhancement of nanofluids using computational intelligence. *Phys.* Lett. A 2020, 384, No. 126500.