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ABSTRACT: Titanium dioxide (TiO2) photocatalysts in the form of thin films are of great interest due to their
tunable optical band gaps, Eg’s, which are promising candidates for applications of visible-light photocatalytic
activities. Previous studies have shown that processing conditions, dopant types and concentrations, and different
combinations of the two have great impacts on structural, microscopic, and optical properties of TiO2 thin films.
The lattice parameters and surface area are strongly correlated with Eg values, which are conventionally simulated
and studied through first-principle models, but these models require significant computational resources,
particularly in complex situations involving codoping and various surface areas. In this study, we develop the
Gaussian process regression model for predictions of anatase TiO2 photocatalysts’ energy band gaps based on the
lattice parameters and surface area. We explore 60 doped-TiO2 anatase photocatalysts with Eg’s between 2.280 and
3.250 eV. Our model demonstrates a high correlation coefficient of 99.99% between predicted Eg’s and their
experimental values and high prediction accuracy as reflected through the prediction root-mean-square error and
mean absolute error being 0.0012 and 0.0010% of the average experimental Eg, respectively. This modeling
method is simple and straightforward and does not require a lot of parameters, which are advantages for
applications and computations.

1. INTRODUCTION

Titanium dioxide, TiO2, shows great promises in several
environmental applications due to its distinct properties over
other materials, such as the nontoxicity, low cost, ease of
preparation, water insolubility, superior acid resistance, and
superhydrophilicity.1 Examples of application areas include the
air purification, water treatment, renewable energy processes,
solar cells, and conversion of CO2 to hydrocarbons.2−6 Among
TiO2 polymorphs, anatase TiO2 is preferred over brookite and
rutile because it has a higher surface energy of its {001} facets
and better photocatalytic activities and is more stable than the
other two forms. However, anatase TiO2 has a relatively wide
band gap (∼3.20 eV), which only allows the material to absorb
UV light. As UV light only accounts for merely 5% of solar
photons, the large band gap of TiO2 limits the quantum yield in
light-to-energy conversion.7−10

One effective way to modify the band gap of anatase TiO2 is
chemical doping with foreign elements. Different elements,
metals and nonmetals, affect the band gap in different ways.
Metal ions, such as Zr, Cr, and W, are reported to inhibit the
anatase-to-rutile phase transformation.11,12 Transition metals,
such as Cu, and rare-earth metals, such as La, lead to the lattice
deformation and the formation of oxygen vacancies, resulting in
an impurity state in the TiO2 band gap, which improves the
absorption of visible light by narrowing the band gap.13,14

Nonmetal doping, such as the nitrogen incorporation into the
TiO2 lattice or on its surface, has been reported to benefit the
improvement of photoefficiency under UV/visible light.1 Both
single doping and codoping methods have been applied to the

TiO2 photocatalyst fabrication by incorporating various
elements into the crystal structure.10,13−24 The addition of
foreign elements results in lattice distortions and changes in the
Eg due to electronegativities, ionic radius differences, and
introductions of impurity states.25 In addition to chemical
doping, various preparation methods of TiO2 photocatalysts can
influence the band gap narrowing differently. Typical fabrication
methods include the coprecipitation, sol−gel process, spray
pyrolysis, hydrothermal process, low-temperature solvothermal
method, and plasma treatment.13,18,20,21 Processing parameters,
including but not limited to the precursor materials, substrate
temperature, deposition rate, and annealing temperature, affect
the crystal structure and microstructure significantly. As a result,
lattice parameters and the surface area are changed upon
different combinations of synthesis steps.1,25−29 Previous
research has demonstrated that the photocatalytic activity of
TiO2 strongly depends on its phase structure, crystallinity, and
morphology.30,31 Among various phases of TiO2, anatase is
reported to have a better photocatalytic activity than the other
two polymorphs.32 A good crystallinity is required to achieve the
formation of an optimal amount of electron traps, which affects
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Table 1. Experimental Data and Predictionsa

sample a (Å) c (Å) surface area (m2/g) Eg (eV) prediction reference

pure TiO2 3.7650 9.4860 43.00 3.122 3.12198 21
1.0% Cu−3.5% In−TiO2 3.7760 9.4620 85.00 3.087 3.08695 21
5 mol % Cu-doped TiO2 (700°C) 3.7700 6.0190 110.70 2.430 2.43004 15
5 mol % Cu-doped TiO2 (600°C) 3.7960 9.4310 150.90 2.510 2.51004 15
5 mol % Cu, 15 mol % Zr co-doped TiO2 (700 °C) 3.8340 11.4420 127.20 2.280 2.28005 15
5 mol % Cu, 15 mol % Zr co-doped TiO2 (600 °C) 3.8080 10.0000 156.60 2.320 2.32005 15
undoped-TiO2 3.7900 9.6300 146.07 2.950 2.94999 20
S-doped TiO2 (K2S2O8/Ti = 0.25) 3.7800 9.5900 183.45 2.850 2.84999 20
S-doped TiO2 (K2S2O8/Ti = 0.5) 3.7900 9.5800 216.22 2.830 2.83001 20
pure TiO2 3.7740 9.4480 44.80 3.230 3.22994 10
S0.05/TiO2 3.7750 9.5480 48.60 2.950 2.95000 10
S0.05V0.001/TiO2 3.7770 9.4610 64.40 2.810 2.81002 10
S0.05Fe0.001/TiO2 3.7820 9.6670 66.60 2.880 2.88001 10
S0.05Zn0.001/TiO2 3.7930 9.4140 61.80 3.230 3.22997 10
undoped-TiO2 3.7848 9.4826 216.00 3.110 3.10996 19
V-doped TiO2 3.7882 9.4949 203.00 2.910 2.91000 19
N-doped TiO2 3.7917 9.4868 181.00 2.920 2.91999 19
V,N co-doped TiO2 3.7996 9.4976 172.00 2.760 2.76000 19
pure TiO2 3.7860 9.5260 80.37 3.180 3.17999 13
N−TiO2 3.7850 9.4710 96.49 2.900 2.90003 13
La−TiO2 3.7800 9.5180 89.42 3.020 3.02000 13
N/La−TiO2 3.7860 9.4780 116.25 2.840 2.84001 13
undoped-TiO2 3.7760 9.4860 51.30 2.910 2.91001 18
Ce-doped TiO2, “C0.03T1” 3.7740 9.4540 63.52 2.720 2.72002 18
Ce-doped TiO2, “C0.01T1” 3.7720 9.4420 67.43 2.670 2.67002 18
Ce-doped TiO2, “C0.05T1” 3.7710 9.4500 60.14 2.700 2.70002 18
Ce,Si co-doped TiO2, “C0.01T1S0.05” 3.7700 9.4570 102.41 2.650 2.65006 18
Ce,Si co-doped TiO2, “C0.01T1S0.5” 3.7600 9.4620 164.48 2.510 2.51005 18
Ce,Si co-doped TiO2, “C0.01T1S1” 3.7600 9.4810 168.54 2.710 2.70997 18
Ce-doped TiO2, “C0.005T1” 3.7580 9.4420 53.57 2.820 2.82001 18
undoped-TiO2 (475 °C) 3.8220 10.6100 71.40 3.210 3.20997 14
Ce(2%)Co(4%)−TiO2 (600 °C) 3.8060 11.1800 43.60 3.200 3.19997 14
Ce(2%)Co(4%)−TiO2 (700 °C) 3.8130 10.0000 39.80 3.180 3.17997 14
undoped-TiO2 3.7760 9.3410 85.93 3.220 3.21996 24
1% Nb-doped TiO2 3.7860 9.3470 150.61 3.250 3.24996 24
pure TiO2 3.7760 9.4860 67.70 2.980 2.97994 17
Ag-doped TiO2(400 °C) 3.7822 9.5023 106.37 2.450 2.45006 17
Ag-doped TiO2 (500 °C) 3.7770 9.5010 78.40 2.510 2.51009 17
Ag-doped TiO2 (600 °C) 3.7760 9.4860 29.33 2.540 2.54004 17
Ag-doped TiO2 (700 °C) 3.7822 9.5023 1.93 2.590 2.59002 17
undoped-TiO2 3.7945 9.5079 37.90 3.180 3.17997 16
1 wt % Mn-doped TiO2 3.7945 9.4860 52.59 3.100 3.10000 16
5 wt % Mn-doped TiO2 3.7956 9.4993 80.77 2.700 2.70002 16
10 wt % Mn-doped TiO2 3.7922 9.4546 95.19 2.700 2.70003 16
20 wt % Mn-doped TiO2 (TMA400) 3.7762 9.4681 212.71 2.450 2.45003 16
20 wt % Mn-doped TiO2 (TMB400) 3.7808 9.4720 203.00 2.500 2.50004 16
20 wt % Mn-doped TiO2 (TMN400) 3.8014 9.4105 205.36 2.550 2.55003 16
pure TiO2 3.7835 9.4907 86.11 3.180 3.18000 22
0.05 wt % W-doped TiO2 3.7858 9.4862 88.14 3.190 3.18997 22
0.1 wt % W-doped TiO2 3.7858 9.4817 86.08 3.120 3.12004 22
0.5 wt % W-doped TiO2 3.7813 9.4773 91.71 3.180 3.17996 22
1 wt % W-doped TiO2 3.7835 9.4817 88.18 3.190 3.18998 22
pure TiO2 3.7850 9.5021 59.00 3.220 3.21998 23
0.1 mol % Sn-doped TiO2 3.7864 9.4958 66.00 3.200 3.19999 23
0.5 mol % Sn-doped TiO2 3.7863 9.4927 75.00 3.180 3.18000 23
1 mol % Sn-doped TiO2 3.7866 9.4915 87.00 3.210 3.20997 23
3 mol % Sn-doped TiO2 3.7878 9.4884 106.00 3.190 3.18996 23
2.0% In−TiO2 3.7630 9.4740 62.00 3.186 3.18597 21
3.5% In−TiO2 3.7680 9.4620 98.00 3.195 3.19494 21
5.0% In−TiO2 3.7920 9.4360 123.00 3.217 3.21696 21
minimum 3.7580 6.0190 1.93 2.280 2.28005
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the photocatalytic efficiency. Lattice deformation caused by
nonequilibrium crystal growth and chemical doping affects the
electronic structure by modifying orbital hybridization and
introducing additionally available electrons for conduction.33,34

Both the crystallinity and lattice deformation can be
characterized by lattice parameters. Furthermore, other crystal
defects, such as residual strain, impurities, dislocation densities,
and defect energy, have significant influences on band gap
structures and are correlated with surface morphology, which
can be characterized by the surface area.35,36 High surface areas
also promote quantum confinement effects in the semi-
conductor space charge and surface reaction, which greatly
increase the photocatalytic efficiency.37 For example, N-doped
TiO2 obtained by the reduction-nitridation method via the
nonthermal plasma treatment is more favorable than the simple
nitridation treatment, as the former promotes Ns doping and
narrows the band gap more efficiently.38 Further, the
recombination of photogenerated electron-hole pairs limits
the photocatalytic activity. Some research has been carried out

to reduce the recombination rate of the photoelectron−hole
pairs and increase the interfacial charge-transfer efficiency. The
surface microstructure, mainly characterized by the surface area,
shows additional influences on photocatalyst quality and optical
performance. The surface area is correlated with the residual
strain, dislocation density, crystallinity, defect energy, impur-
ities, and other structural defects and is shown to contribute to
the band gap of TiO2 structures.35,36 Hence, with various
synthesis methods and dopant selection, combination possibil-
ities of TiO2 with the tunable Eg are enormous. It is, therefore, of
great importance to investigate correlations among the
tunability of the Eg, lattice parameters, and the surface area.
Qualitative analysis on the effect of dopant types and levels on
the Eg of TiO2 photocatalysts has been conducted through
experiments.10,13−24 Quantitative analysis through thermody-
namics models and first-principle models has been utilized to aid
the understanding of the optical performance of these materials
and facilitate the tuning of doped-TiO2 Eg.

39,40 However, these
models require a significant amount of data inputs, such as

Table 1. continued

sample a (Å) c (Å) surface area (m2/g) Eg (eV) prediction reference

mean 3.7843 9.5220 101.17 2.910 2.90962
median 3.7842 9.4860 86.56 2.935 2.93499
maximum 3.8340 11.4420 216.22 3.250 3.24996
standard deviation 0.0141 0.5906 53.67 0.285 0.28542
correlation coefficient with Eg 0.76% 10.59% −34.18% 99.99%

a“Eg (eV)” and “prediction” represent the experimental and GPR predicted band gaps, respectively, which are visualized in Figure 3.

Figure 1. Data visualization.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c01438
ACS Omega 2020, 5, 15344−15352

15346

https://pubs.acs.org/doi/10.1021/acsomega.0c01438?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01438?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01438?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01438?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c01438?ref=pdf


variables for equations of state and orbital configurations, which
can only be obtained by extensive measurements. The
requirement of computational power also increases significantly
when it comes to the codoping situation.
In this work, the Gaussian process regression (GPR) model is

developed to elucidate the statistical relationship among the
lattice parameters, a (Å) and c (Å), surface area, and energy band
gap for doped-TiO2 anatase photocatalysts. Among the three
descriptors, lattice parameters are structural parameters as direct
representatives of the phase structure and crystallinity, and the
surface area is the morphological parameter. Empirical studies
show that crystal defects introduced by doping, such as foreign
ions at substitutional or interstitial lattice positions, can shift the
band gap toward the visible-light region. Depending on ionic
radii, electronegativities, and valence, however, specific types
and extents of crystal defects are difficult to estimate.
Experimentally, crystal defects require significant amounts of
analytical work to characterize, which eventually may be used as
inputs into further theoretical work. First-principle simulations
calculate the probability of each type of defects and their effects
on the band gap tuning based on known atomic interactions, but
these methods are known to be susceptible of underestimations
of Eg values, particularly when the TiO2 lattices are doped with
transition metals.41,42 Besides, effects of the morphological
parameter, the surface area, on Eg values are difficult to
incorporate into first-principle simulations. Although a high
surface area is generally preferred, it is hard to quantify the
required surface area while also considering lattice deformation

in a practical application. Our GPR model, however, avoids
depending on quantum mechanics theories for calculations,
which may be susceptible to over- or underestimations due to
unknown atomic interactions. In this method, the known
experimental lattice parameters are used as macroscopic
descriptors to find the relationship with experimentally
measured Eg values. The model generalizes well in the presence
of a few descriptive features, where intelligent algorithms are
able to learn and recognize the patterns. This modeling
approach demonstrates a high degree of accuracy and stability,
contributing to efficient and low-cost estimations of the energy
band gap of anatase TiO2 and understandings of which are based
on the lattice parameters and surface area. As one of the
computational intelligence techniques, the GPR model has
already been utilized in other materials systems to predict
significant physical parameters in different fields of applica-
tions.43−45 This model can serve as a guideline for searching for
anatase TiO2 with tunable Eg when a specific range of band gaps
is required for a practical application. It can also be used as part
of machine learning to aid understandings of the effects of crystal
structures and morphology on the optical performance of TiO2

photocatalysts.
The remaining of this work is organized as follows. Section 2

describes the data. Section 3 presents and discusses results, and
Section 4 concludes. Section 5 contains details of the GPR
model.

Figure 2.Model performance and training data sizes.When the training data set size is between 30 and 57, 2000 random subsamples are drawn without
replacements from the whole sample for model training. When the training data set size is 58, 59, or 60, 60C58, 60C59, or 60C60 subsamples are drawn
without replacements from the whole sample based on exhaustive sampling for model training. Each trained model based on a certain subsample is
used to score the whole sample and obtain the associated model performance. The GPR here uses the exponential kernel and constant basis function,
with standardized predictors. Given a model performance measure, box plots show the median, 25th percentile, and 75th percentile. The whiskers
extend to the most extreme values (i.e.,±2.7 standard deviation coverage) not considered as outliers, and the outliers are plotted using the “+” symbol.
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2. DESCRIPTION OF DATA SET
The experimental data used, shown in Table 1 (columns 1−5),
are obtained from the literature.10,13−24 The data set covers a
wide range of anatase TiO2 that are prepared through different
synthesis methods and doped with various elements. A total of
60 TiO2 photocatalysts with the energy band gap, Eg, ranging
from 2.280 to 3.250 eV are explored. The lattice parameters, a
(Å) and c (Å), andmeasured surface area are used as descriptors.
Eg values are calculated using the Tauc relationship13,22 after
acquiring the transmittance data by the UV−vis spectrometer in
each reference in Table 1. Data visualization in Figure 1 reveals
nonlinear relationships, which are modeled through the GPR.

3. RESULTS AND DISCUSSION
3.1. Computational Methodology. MATLAB is utilized

for computations and simulations in this work. The relationship
between model performance and training data sizes is
investigated in Figure 2, which shows the benefit of training
the GPR using all observations. The stability of the GPR
approach is confirmed by bootstrap analysis in Section 3.3.
3.2. Prediction Accuracy. Metal ions, such as Sn4+, Zr4+,

and Cu2+, are incorporated into the anatase structure by the
substitution of Ti4+ due to similar ionic radii, while Ag+ is
favorably stabilized at an interstitial site. Nonmetal ions, such as
N and S, are incorporated into the lattice and coexisted at both
substitutional and interstitial sites. Changes in lattice parameters
depend on ionic radii, electronegativities, valence, and
incorporation mechanisms. On one hand, these crystal defects
allow additional electronic levels to be created in the band
structure, which effectively narrow the band gap, shift the
absorption edge to the visible region, and enhance photo-
catalytic efficiency. On the other hand, excess additions of some
dopants, such as N, may lead to the formation of the oxygen
vacancy and Ti3+ due to charge imbalance, which increase the

charge carrier recombination and hinder conversion efficiency.
Hence, codoping is carried out to maintain the charge balance
through charge compensation, add new electronic levels,
suppress the recombination of charge carriers, and further
increase photocatalytic efficiency. Besides, dopants also have an
influence on the stability of the anatase phase and surface area.
For example, dopants, such as Zr, Ag, W, Ce, and Nb, are found
to inhibit the anatase-to-rutile phase transformation, while Mn,
Cu, and Co are found to promote it. During the TiO2 synthesis,
the high-temperature calcination is usually carried out to achieve
high crystallinity, which, however, might lead to extensive grain
coarsening and surface area reductions. Additions of dopants
that inhibit the phase transformation to structure help stabilize
the anatase phase at elevated processing temperature, hinder
grain growth, decrease crystallite sizes, and thus increase the
surface area. A high surface area indicates increased structural
defects on the surface, such as unsaturated surface cations and
surface hydroxyl groups, which favor the simultaneous
absorption of organic molecules and enhance the photocatalytic
efficiency. It should be pointed out that effects of modified
lattices and surface areas on band gap tuning and photocatalytic
properties are synergistic. There is no linear or monotonic
relationship between lattice parameters, surface areas, and band
gaps. In this work, the developed model is able to learn and
capture the synergistic effects of the structure and morphology
on Eg values.
The final GPR model is detailed in Figure 3, which shows a

good alignment between predicted and experimental data. The
correlation coefficient (CC), root-mean-square error (RMSE),
and mean absolute error (MAE) are 99.99%, 0.00003442
(0.0012% of the average experimental Eg), and 0.00002872
(0.0010% of the average experimental Eg), respectively,
representing good prediction performance.

Figure 3. Experimental vs predicted Eg. The final GPR model is built using the whole sample with the exponential kernel, constant basis function, and
standardized predictors. It has a log-likelihood of −3.5784, β̂ of 2.8382, σ̂ of 0.0029, σ̂l of 0.2896, and σ̂f of 0.2939. Detailed numerical predictions are
listed in Table 1 (column 6).
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3.3. Prediction Stability. Given the relatively small sample
size (see Table 1) used, the prediction stability of the GPR is
assessed through bootstrap analysis in Figure 4, which shows
that the modeling approach maintains high CCs, low RMSEs,
and low MAEs over the bootstrap samples. This result suggests
that the GPR might be generalized for Eg modeling of anatase
TiO2 based on larger samples.
3.4. Prediction Sensitivity. Table 2 shows that the

exponential kernel is generally the optimal choice among
kernels considered. With the exponential kernel, prediction
results are not sensitive to choices of basis functions except for
the case of the empty basis function. Given the exponential
kernel, the constant basis function is selected as the final
specification for its simplicity, which usually is a benefit to model
generalization, and its slight better performance as compared to
more complicated basis functions, such as linear and pure
quadratic.

4. CONCLUSIONS

In this study, we develop the Gaussian process regression (GPR)
model for predictions of anatase TiO2 photocatalysts’ energy
band gaps, Eg’s, based on the lattice parameters and surface area.
Our model demonstrates a high correlation coefficient of
99.99% between predicted Eg’s and their experimental values. In
addition, the model shows high prediction accuracy as reflected
through the prediction root-mean-square error and mean
absolute error being 0.0012 and 0.0010% of the average
experimental Eg, respectively. Finally, model performance is
illustrated to be stable. These results suggest that the GPR
should be useful to model and understand relationships between
structural and morphological parameters and Eg’s. This
modeling method is simple and straightforward and does not
require a lot of parameters, which are advantages for applications
and computations. The model can be applied to a wide range of
undoped and doped-TiO2 made by various synthesis methods
and utilized to facilitate design and understandings of multi-
doped TiO2 photocatalysts with tunable Eg’s.

Figure 4. Bootstrap analysis of GPR prediction stability. Five thousand bootstrap samples are drawn with replacements from the whole sample. Each
bootstrap sample is used to train the GPR based on the exponential kernel, constant basis function, and standardized predictors and obtain the
associate model performance. The histograms show distributions of CC, RMSE, and MAE over the 5000 bootstrap samples, whose averages are
99.99%, 0.00002320, and 0.00001782, respectively.

Table 2. GPR Prediction Sensitivities to Choices of Kernels and Basis Functionsa

kernel basis function CC (%) RMSE RMSE/sample mean (%) MAE MAE/sample mean (%)

exponential constant 99.99 0.00003442 0.0012 0.00002872 0.0010
exponential empty 82.38 0.17850737 6.1343 0.15125528 5.1978
exponential linear 99.99 0.00003472 0.0012 0.00002926 0.0010
exponential pure quadratic 99.99 0.00003554 0.0012 0.00002975 0.0010
squared exponential constant 71.48 0.21057940 7.2364 0.18170821 6.2443
matern 5/2 constant 99.99 0.00007681 0.0026 0.00005651 0.0019
rational quadratic constant 99.98 0.00630021 0.2165 0.00459014 0.1577

aThe final GPR model is based on the exponential kernel and constant basis function, with standardized predictors.
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5. PROPOSED METHODOLOGY
5.1. Brief Description of Gaussian Process Regression.

GPRs are nonparametric kernel-based probabilistic models.
Consider a training data set, {(xi, yi); i = 1, 2, ..., n} where ∈ xi

d

and ∈ yi , from an unknown distribution. A trained GPR
predicts values of the response variable ynew given an inputmatrix
xnew.
Recall a linear regression model, y = xTβ + ε, where ε ∼ N(0,

σ2). A GPR aims at explaining y by introducing latent variables,
l(xi) where i = 1, 2, ..., n, from a Gaussian process such that the
joint distribution of l(xi)s is Gaussian and explicit basis
functions, b. The covariance function of l(xi) captures the
smoothness of y, and basis functions project x into a feature
space of dimension p.
A GP is defined by the mean and covariance. Let m(x) =

E(l(x)) be the mean function and k(x, x′) = Cov [l(x), l(x′)] the
covariance function and consider now the GPR model, y =
b(x)Tβ + l(x), where l(x)∼GP(0, k(x, x′)) and ∈ b x( ) p. k(x,
x′) is often parameterized by the hyperparameter, θ, and thus
might be written as k(x, x′|θ). In general, different algorithms
estimate β, σ2, and θ for model training and would allow
specifications of b and k as well as initial values for parameters.
The current study explores four kernel functions, namely

exponential, squared exponential, matern 5/2, and rational
quadratic, whose specifications are listed in eqs 1−eqs 1,
respectively, where σl is the characteristic length scale defining
how far apart x’s can be for y’s to become uncorrelated, σf is the

signal standard deviation, = − −r x x x x( ) ( )i j
T

i j , and α is a

positive-valued scale-mixture parameter. Note that σl and σf
should be positive. This could be enforced through θ such that
θ1 = log σl and θ2 = log σf.
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Similarly, four basis functions are investigated here, namely,
empty, constant, linear, and pure quadratic, whose specifications
are listed in eqs 5−eqs 5, respectively, where B = (b(x1), b(x2), ...,
b(xn))

T, X = (x1, x2, ..., xn)
T, and
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= ×B In 1 (6)
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To estimate β, σ2, and θ, the marginal log-likelihood function in
eq 9 is to be maximized, where K(X,X|θ) is the covariance

function matrix given by
∂ ∂ ∂ ∂
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The algorithm first computes β̂ (θ, σ2), maximizing the log-
likelihood function with respect to β given θ and σ2. It then
obtains the β-profiled likelihood, log {P(y|X, β̂(θ, σ2), θ, σ2)},
which is to be maximized over θ and σ2 to compute their
estimates.
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(9)

5.2. Performance Evaluation. Performance of the
proposed GPR models is evaluated using the root-mean-square
error (RMSE), mean absolute error (MAE), and correlation
coefficient (CC) in eqs 10−eq 9, respectively, where n is the
number of data points, ai

exp and ai
est are the ith (i = 1, 2, ..., n)

experimental and estimated energy band gap, and aexp and aest

are their averages.
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