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To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), 

we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and 

phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue 

samples. Genomic analyses identified a distinct molecular subgroup associated with genomic 

instability. Integration of proteogenomic measurements uniquely identified protein dysregulation 

of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-

related metabolism, protein translation processes, and phospho-signaling modules. To assess the 

degree of immune infiltration in individual tumors, we identified microenvironment cell signatures 

that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. 

This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact 

of genomic alterations and provides evidence for rational treatment selection stemming from 

ccRCC pathobiology.

Graphical Abstract

In Brief

Comprehensive proteogenomic characterization in 103 treatment-naive clear cell renal cell 

carcinoma patient samples highlights tumor-specific alterations at the proteomic level that are 

unrevealed by transcriptomic profiling and proposes a revised subtyping scheme based on 

integrated omics analysis.
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INTRODUCTION

Renal cell carcinoma (RCC) is among the top ten most commonly diagnosed cancers 

worldwide (Siegel et al., 2018). Clear cell renal cell carcinoma (ccRCC) is the predominant 

histology of renal cell carcinoma, representing 75% of all cases and the majority of cancer-

associated deaths (Hsieh et al., 2017). To understand the underlying molecular alterations 

that drive ccRCC oncogenesis, The Cancer Genome Atlas (TCGA) has performed extensive 

genomic, epigenomic, and transcriptomic profiling, identifying discriminating features of 

ccRCC that include loss of various tumor suppressor genes (Creighton et al., 2013; Ricketts 

et al., 2018). Aberrant dysregulation of the VHL gene is a nearly universal founding event. 

Subsequent genomic alterations involving PBRM1, SETD2, KDM5C, or BAP1 are required 

for disease progression and are associated with aggressive phenotypes (Hakimi et al., 2013; 

Kapur et al., 2013). These studies have highlighted the value of molecular characterization, 

in addition to histological assessment, to stratify ccRCC patients, while identifying genomic 

features unique to ccRCC tumorigenesis (Chen et al., 2016a).

Historically, ccRCC has been considered resistant to conventional chemotherapy and 

radiotherapy, with surgical resection as the primary treatment for localized tumors (Blanco 

et al., 2011; Diamond et al., 2015). Despite several Food and Drug Administration (FDA)-

approved agents that target cellular pathways prioritized by genomic analyses, response of 

ccRCC patients to these treatments has been limited (Hsieh et al., 2018a). These results 

illustrate the complexity of tumorigenesis processes and suggest that genomic, epigenomic, 

and transcriptomic profiling alone may be insufficient to interrogate this cancer type fully 

for identifying effective curative treatments. In this study, the Clinical Proteomics Tumor 

Analysis Consortium (CPTAC) has performed a comprehensive proteogenomic 

characterization of treatment-naive tumors and paired normal adjacent tissues (NATs) to 

elucidate the impact of genomic alterations driving phenotypic perturbations and to delineate 

the mechanisms of ccRCC pathobiology for prospective exploration of personalized, 

precision-based clinical care.

RESULTS

Proteogenomic Analyses of Tumor and NAT Specimens

In this study, 110 treatment-naive RCC and 84 paired-matched NAT samples were analyzed 

using a proteogenomic approach wherein each tissue was homogenized via 

cryopulverization and aliquoted to facilitate genomic, transcriptomic, and proteomic 

analyses on the same tissue sample (STAR Methods). Patient characteristics, including age, 

gender, race, and tumor grade and stage, were recorded for all cases and summarized in 

Table S1. Proteomics and phosphoproteomics analyses identified a total of 11,355 proteins 

and 42,889 phosphopeptides, respectively, of which 7,150 proteins and 20,976 

phosphopeptides were quantified across all samples (STAR Methods). To enable multi-

omics data integration and proteogenomic analysis, whole genome sequencing (WGS), 

whole exome sequencing (WES), and total RNA sequencing (RNA-seq) were performed for 

all 110 tumor samples, while 107 tumor samples had quality DNA methylation profiling 

data (Figure S1A; Table S1). NAT samples with mRNA of sufficient quality were subjected 

to total RNA-seq (n = 75). One NAT sample that displayed discordant proteogenomic 
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profiles was found to contain significant histological evidence of tumor tissue and was 

excluded from downstream analyses (Figure S1A; Table S1). In addition to the initial 

pathological diagnosis, we leveraged the molecular information available for RCCs by 

TCGA and others to verify further the histological classification of tumor samples (STAR 

Methods; Creighton et al., 2013; Davis et al., 2014; Mehra et al., 2016, 2018; Linehan et al., 

2016). Sample-wise assessment of genomic profiles identified seven tumors with molecular 

aberrations atypical for ccRCC, such as lacking the characteristic bi-allelic loss of tumor 

suppressor genes on 3p (Figures S1B–S1D; Table S2). While these seven non-ccRCC 

samples and their corresponding NATs (n = 3) were excluded from most subsequent 

analyses, the non-ccRCC samples served as useful controls to highlight ccRCC-specific 

features. Overall, data from 103 ccRCC and 80 NAT tissue samples (with RNA-seq profiles 

available for 72 samples) were examined for comprehensive proteogenomic characterization 

(Table S1).

Genomic Landscape of the CPTAC ccRCC Cohort

Our study represents a large WGS analysis of ccRCC, revealing arm-level loss of 

chromosome 3p as the most frequent event (93%), followed by chromosome 5q gain (54%), 

chromosome 14q loss (42%), chromosome 7 gain (34%), and chromosome 9 loss (21%) 

(Figure 1A; Table S2). Strikingly, we observed fourteen tumors in our cohort displayed 

extensive CNVs across all chromosomes, indicating a high degree of genomic instability. A 

molecular subset with these characteristics was not identified in the initial TCGA ccRCC 

study, possibly due to the limited number of tumors examined via WGS (Creighton et al., 

2013). Moreover, a recent pan-cancer analysis of three common RCC subtypes and studies 

investigating ccRCC tumor ploidy via an intra-tumor heterogeneity approach showed a 

significant association between high genome aneuploidy and poor prognosis (Chen et al., 

2016a; Turajlic et al., 2018a, 2018b), which is consistent with the enrichment of 

genomically instable high grade tumors identified in our study (Figure 1A).

A previous report identified chromosome translocation as a mechanism of concurrent 3p loss 

and 5q gain in ccRCC (Mitchell et al., 2018). Utilizing the WGS data in our study, we 

investigated the frequency and types of chromosomal rearrangements present in our cohort. 

We observed that 61% of ccRCC cases displayed one or more translocation events, 

predominantly involving the chromosome 3p locus and chromosomes 5 (20%), 2 (11%), and 

8 (7%) among others (Figure 1B; Table S2). The novel chromosome t(3:2) rearrangement, 

largely observed in cases with concurrent 3p loss and 2q gain, was the second most common 

translocation event and was nearly mutually exclusive with t(3:5) (Figure 1B). We also 

detected chromosomal inversion within chromosome 3 (n = 2) that resulted in concurrent 3q 

gain and 3p loss (Figure 1B). A previous study suggested chromothripsis as a likely 

mechanism of concurrent 3p loss and 5q gain in ccRCC (Mitchell et al., 2018); we noted a 

similar genomic feature of oscillating copy number patterns near the breakpoint (data not 

shown). In addition, 3p loss of heterozygosity (LOH) was observed in six tumors (Table S2). 

In total, 102 of 103 ccRCC tumors in the CPTAC cohort showed evidence of 3p 

dysregulation.
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The profile of somatic mutations in the CPTAC ccRCC cohort was reflective of that 

previously described by TCGA (Creighton et al., 2013). Dysregulation of VHL was the most 

frequent alteration and was observed in 85% of tumors. PBRM1, BAP1, KDM5C, and 

SETD2 followed with mutation rates of 43%, 17%, 18%, and 16%, respectively (Figure 1C). 

We further examined the impact of mutation and methylation of these genes on their 

respective levels of mRNA and protein. Overall, inactivating genomic events resulted in 

reduced expression of mRNA and protein (Figure 1C), indicating loss-of-function and 

supporting the classification of these genes as ccRCC tumor suppressors (Frew and Moch, 

2015; Liao et al., 2015). Unique to SETD2 was the relationship of gene inactivation due to 

t(3:2), with a higher frequency of mutations and reduced protein expression relative to other 

translocation events involving chromosome 3p (Figures S1E and S1F). Investigation into the 

rate of mutation co-occurrence revealed that VHL mutations were associated with the 

presence of other mutations (PBRM1, BAP1, SETD2, and KDM5C), while PBRM1 
mutations were associated with mutation of SETD2 and KDM5C but not BAP1 (Figure 

S1G). These results support a model of branched evolution in ccRCC and the largely mutual 

exclusivity of somatic mutations involving PBRM1 and BAP1 (Gerlinger et al., 2014; 

Turajlic et al., 2018a).

Increased methylation of promoter CpG islands contributes to an oncogenic phenotype 

(Baylin and Jones, 2011). Querying DNA methylation status of CpG positions with a 

previously reported CpG island methylator phenotype (CIMP) marker panel specific for 

ccRCC (Arai et al., 2012), we classified tumors in our cohort into CIMP− (negative) and 

CIMP+ (positive) categories (Figure S1H). We identified 36 tumors (34%) with CIMP+ 

status, which was associated with higher grade (p < 9.0 e–05) and stage (p < 0.001), and 

higher frequency of genomic instability (p < 0.004) (Figure 1A; Table S2).

Integrated Proteogenomic Analyses of Genomic Alterations

Genomic alterations can impact mRNA and protein abundance at the same locus (cis-

effects), as well as other loci (trans-effects). Through integration of mRNA, protein, and 

phosphopeptide levels, we identified genomic alterations preserved through transcriptional, 

translational, and post-translational levels (cis-effect cascades), prioritizing gene targets 

associated with tumor grade and differential abundance between tumors and NATs (Figures 

2A, S2A, and S2B; Table S3). Examples of identified CNV cis-cascades included SQSTM1 
(5q35.3), OSBPL3 (7p15.3), and GOLPH3 (5q13.3), previously associated with PI3K-

mTOR signaling (Creighton et al., 2013; Lehto and Olkkonen, 2003; Scott et al., 2009). We 

also identified a cis-cascade involving the multifunctional transcription factor YY1 
(14q32.2), which is a stabilizer of HIF-1α, co-repressor of HIF-2α activity, and inhibitor of 

MYC function (Austen et al., 1998; Petrella and Brinckerhoff, 2009; Wu et al., 2013). The 

latter observation suggests a mechanism whereby YY1 loss links the HIF-2α signaling with 

MYC expression in ccRCC (Gordan et al., 2008). Investigation into methylation events 

proximal to VHL identified three genes, VGLL4 (3p25.2), PLCL2 (3p24.3), and IQSEC1 
(3p25.2) with associated cis-regulated effects (Figure S2C). Methylation of PLCL2 and 

IQSEC1 has been noted previously (Dmitriev et al., 2014); however, methylation of VGLL4 
has not been reported. Its functional role inhibiting YAP-induced cell proliferation (Zhang et 

al., 2014b) may represent another tumor suppressor gene in ccRCC. Interestingly, unique to 
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IQSEC1, we found that gene methylation was associated with reduced protein and 

phosphorylation levels, but not mRNA. This distinctive feature of methylation affecting 

protein but not mRNA expression was also observed in several other genes, including 

BCL9L (11q23.3) and AHDC1 (1p35.3) (Figure S2C; Table S3), and may indicate a post-

translational regulatory mechanism.

Next, we focused on identifying cellular processes correlated with cis- and trans-effects 

driven by major CNV or mutation events in ccRCC and identified multiple pathways that 

were disparate or commonly dysregulated among distinct genomic alterations (Figures 2B 

and S2D; Table S3). Loss of chromosome 3p was associated with upregulation of hypoxic 

signaling, cell-cycle regulation and glycolysis, downregulation of oxidative phosphorylation 

(OXPHOS), fatty acid metabolism, and the TCA cycle. Increased expression of HIF-1α and 

HIF-2α is a mechanism for upregulating hypoxic signaling upon VHL loss (Guo et al., 

2011; Krieg et al., 2000). In cancer cells, HIF1 signaling alters mitochondrial activity and 

drives a metabolic shift from OXPHOS to glycolysis (Papandreou et al., 2006). Investigation 

of trans-effects involving chromosome 3p genes revealed that VHL mutations resulted in 

dysregulation of similar pathways as 3p loss including downregulation of metabolic 

pathways and upregulation of G1/S cell-cycle transition and interferon-α response. PBRM1 
mutations drove downregulation of OXPHOS and upregulation of G2/M cell-cycle 

transition, mitogen-activated protein kinase (MAPK) signaling, and focal adhesion 

pathways. BAP1 mutations were associated with upregulation of protein translation 

pathways and interferon-γ signaling, with the latter feature also associated with SETD2 
mutations (Figure S2D; Table S3). KD5MC mutations shared a similar trans-effect profile as 

3p locus/VHL loss, including downregulation of select metabolic pathways and increased 

cell-cycle regulation. 5q gain resulted in increased mTORC1 and MYC signaling, while gain 

of 7p drove increased protein translation and epithelial mesenchymal transition (EMT) 

(Figure 2B). 9p loss, which includes the tumor suppressor CDKN2A, was associated with 

upregulation of translation initiation, mTOR and MYC signaling, consistent with loss of 

CDKN2A and MYC activation previously reported in ccRCC progression (Bailey et al., 

2017). Loss of 14q, involving the potential tumor suppressors NDRG2 (14q11.2) and HIF1A 
(14q23.2) (Lusis et al., 2005; Shen et al., 2011), displayed decreased WNT signaling 

expression and upregulation of MYC signaling, N-linked glycosylation, and interferon-γ 
response. We detected a high percentage of CIMP+ tumors with 14q loss (75%) (Figure 1C). 

CIMP+ tumors shared a similar trans-effect profile, including increased MYC signaling and 

protein translation, with a unique signature associated with increased OXPHOS and 

decreased focal adhesion (Figure 2B; Table S3).

Correlation of Transcriptome and Proteome Expression

To understand the regulatory relationship between transcriptomic and proteomic processes, 

we calculated gene-wise (inter-sample) and sample-wise (intra-sample) correlation of 7,027 

mRNA-protein pairs for the 103 ccRCC tumors and 72 NATs. NATs displayed a median 

gene-wise correlation value of 0.34, while tumors displayed a higher median value of 0.43, 

which is similar to previous studies investigating colorectal and high grade serous ovarian 

cancers (Figure 3A; Table S4; Zhang et al., 2014a, 2016). For ccRCC tumors and NATs, 

74% and 52% of mRNA-protein pairs had significant positive Spearman correlations, 

Clark et al. Page 6

Cell. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively (Figure 3A; Benjamini-Hochberg adjusted p < 0.01), with OXPHOS, 

spliceosome, and ribosome pathways poorly correlated in tumors. In NATs, the 

housekeeping activities of the spliceosome and ribosome displayed a distinct correlation 

pattern, representing a differentially regulated axis to maintain cellular homeostasis (Komili 

and Silver, 2008).

Examination of sample-wise mRNA-protein correlation indicated a lower median sample-

wise correlation for tumor samples (0.44) than for NAT samples (0.52), which had lower 

variance (Figures 3B and S3A; Benjamini-Hochberg adjusted p < 0.001). Adjusting for 

tumor purity (STAR Methods), we detected a trend of higher sample-wise correlation in 

tumors associated with clinical features such as higher grade (p = 0.006), chromosome 14 

loss (p = 0.0006), and BAP1 mutations (p = 0.00004) (Figure 3B; Table S4). Linking high 

sample correlation to increased protein translation, we identified a concordant increase of 

ribosome and translation factor protein expression (Figure 3C). Delineating a mechanism of 

increased ribosome biogenesis via Pol I transcription regulation (Pelletier et al., 2018), we 

detected a corresponding increase of protein expression for MYC-targets and mTORC1 

signaling genes (p < 0.05), increased mRNA levels of the Pol I transcription activator, ECT2 

(p < 0.05), and decreased mRNA levels for the Pol I transcription inhibitor, FGF13, in 

tumors with high sample-wise correlation compared to those with low sample-wise 

correlation (Figure 3C). In contrast, corresponding NATs did not display differences 

between the tumor-based classifications of high/low sample-wise correlation or express 

differential levels of ribosome and translation-related proteins (Figures 3C, S3B, and S3C). 

Interestingly, there was a concerted shift of discordant ribosome protein-mRNA levels in 

tumors (Figure 3C). However, the dysregulated mechanisms that contribute to the 

uncoupling of ribosomal mRNA and protein expression in tumors are less clear, suggesting 

the importance of protein evidence when evaluating ribosome biogenesis as a therapeutic 

target for intervention in ccRCC (Devlin et al., 2016).

Proteogenomic Alterations of ccRCC Compared to NATs

Visualization of the abundance of identified proteins by principal component analysis (PCA) 

and hierarchical clustering showed clear discrimination between ccRCC (n = 103) and NAT 

samples (n = 80) (Figures 4A and S4A). In total, 820 proteins showed significant differential 

expression in a group comparison of tissue samples (log2 fold-change >1; Benjamini-

Hochberg adjusted p < 0.05), with 565 proteins downregulated and 255 upregulated in 

ccRCC tumors relative to NATs (Figure S4B; Table S5). Enrichment analysis revealed 

immune response, EMT, and multiple signaling pathways (hypoxia, glycolysis, and mTOR) 

to be upregulated in tumors, and TCA cycle, fatty acid metabolism, and OXPHOS to be 

downregulated (adjusted p < 0.05; Figure 4B). Select cellular pathways were maintained 

even when accounting for tissue heterogeneity in both tumors and NAT samples (Table S5). 

ccRCC tumors are characterized by particular genomic alterations that have resulted in their 

classification as a metabolic disease (Wettersten et al., 2017), which prompted us to identify 

and annotate differentially abundant mRNA transcripts and proteins involved in cellular 

metabolism (Figure 4C; Table S4). Proteins in the glycolysis pathway and their cognate 

mRNAs were upregulated in this analysis, whereas proteins associated with OXPHOS were 

downregulated. A non-linear correlation has been previously observed between metabolic 
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mRNA levels and corresponding glycolytic and OXPHOS metabolites in ccRCC (Hakimi et 

al., 2016). Analyzing the differential abundances of mRNA and protein levels between 

tumors and NAT revealed a prominent uncoupling of OXPHOS mRNA and protein 

expression that was disparate from other cellular pathways (Figures 4C–4E and S4C), which 

reflects the regulation of select OXPHOS components at the translational level (Richman et 

al., 2016). Together, these results show that the functional consequences of the Warburg 

effect are not fully captured at the transcriptional level, which could impact the clinical use 

of transcription-based metabolic signatures for prognosis of ccRCC (Creighton et al., 2013).

Phosphoproteomic Analysis of Kinase and Substrate Regulatory Pathways

Phosphorylation impacts multiple cellular processes, with site occupancy tightly regulated 

by the activity of kinases and phosphatases on their respective substrates (Ubersax and 

Ferrell, 2007). We analyzed differential phosphopeptide abundance between 80 tumor/NAT 

paired tissues to stratify phospho-substrates corresponding to different kinases and their 

inhibitors, and identified CDK1 and MAPK1 (ERK2) as two highly ranked phospho-

substrate events in most tumors. (Figure 5A; Table S6). A more comprehensive investigation 

of the cell-cycle regulatory network using phosphosite abundance revealed that 

phosphorylated substrates associated with S-phase entry/progression (CDK7-MCM2) and 

the G2/M checkpoint (WEE1-CDK1) were elevated across the majority of tumors (Figure 

5A). The G2/M checkpoint is the final safeguard of genomic fidelity prior to mitosis; our 

data support a mechanism of G2-stalling that prevents mitotic arrest-induced apoptosis in 

tumors (Bucher and Britten, 2008), evidenced by elevated levels of the inhibitory CDK1-

Y15 phosphorylation, especially in more aggressive tumors (p < 0.05) (Figure S5B). 

Comprehensive examination of the signaling network involving MAPK1 revealed increased 

protein and phospho-peptide expression of the upstream receptor tyrosine kinase epidermal 

growth factor receptor (EGFR) in almost all tumors, while vascular endothelial growth 

factor (VEGF) receptors such as FLT and KDR were more selectively expressed and 

phosphorylated in tumors (Figures 5A and S5A). Additionally, we inferred activated 

signaling from elevated substrate phosphosite occupancy. This analysis indicated that 

activation of the EGFR/VEGF downstream signaling pathways MAPK/ERK and AKT-

mTOR converged on the downstream substrate EIF4EBP1 (Figures 5A and 5B), an 

important regulator of protein translation (She et al., 2010). This observation of cell 

signaling redundancy may explain the limited clinical response of ccRCC patients to mTOR-

targeted therapies such as everolimus and temsirolimus (Kwiatkowski et al., 2016), 

suggesting that combinational therapy targeting both mTOR and MAPK/ERK pathways may 

be a more effective approach. In addition, activation of mTOR signaling via the 

phosphorylation of the mTORC1 subunit, AKT1S1 (Vander Haar et al., 2007), was observed 

in phosphoproteomic analysis but was not captured at the transcriptomic level (Figure S5C), 

highlighting the added value of phosphoproteomics in integrative analyses. Independent of 

EGFR-mediated MAPK/AKT signaling, PKM phosphorylation was highly ranked in 

approximately half of our ccRCC tumor cohort and associated with lower tumor grade (p < 

0.05) (Figures 5A and S5B), reflecting a secondary, EGFR-mediated mechanism of 

glycolytic reprogramming in a subset of ccRCC tumors (Lim et al., 2016).
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Leveraging differential phosphopeptide abundance across all tumor samples, we identified 

several phosphopeptide co-expression networks including two modules (cell cycle and 

angiogenesis) that were independent of global proteomic and transcriptomic profiles 

(Figures 5C, 5D, and S5D–S5G; Table S6). The cell-cycle module included multiple cell-

cycle checkpoint proteins involved in the G1/S-phase transition (CDKN1B, SKP2), S-phase 

regulatory elements (MCM4, MCM6), and the G2/M phase (CDK1, TK1, CDC20) (Figure 

S5D), with phosphorylation of CDC20 representing another mechanism of mitotic-arrest 

(Hein and Nilsson, 2016). Interestingly, we observed tumors with genomic instability that 

correlated with this module, as well as phospho-events involved in DNA damage response 

(e.g., FANCD2, PSME3, CLSPN, and BRCA1) (Figures 5D and S5D), representing a 

mechanism by which a subset of tumors engage cellular processes in response to loss of 

genomic fidelity. The angiogenesis module included multiple elements associated with 

VEGF-response (ELK3, ERG), Notch-associated signaling (LDB2, SOX18), and 

vasculature development (PECAM-1, CCM2L) (Figure S5E). This module was inversely 

correlated with BAP1 and chromosome 14 loss and associated with lower-grade tumors 

(Figure S5G). Our phosphoproteomic analysis thus identified multiple signal transduction 

pathways activated in tumors and provided evidence for expanding treatment selection 

beyond the current FDA-approved therapies targeting VEGF and mTOR (Figure 5B; Hsieh 

et al., 2018b).

Characterization of Immune Infiltration in ccRCC

To gain insight into features of immune infiltration in ccRCC, we analyzed the 

transcriptomic profiles of 103 tumors and 72 NATs and deconvoluted immune, stromal, and 

microenvironmental cell gene signatures using xCell (Aran et al., 2017). These molecularly 

based cell-type classifications were supported by histopathological assessment, DNA 

promoter methylation-based deconvolution analysis, and ESTIMATE analysis (Yoshihara et 

al., 2013), with the latter showing a Pearson correlation higher than 0.75 between protein 

and mRNA data for immune- and stromal-derived signatures (Figures S6A and S6B; Table 

S7). ESTIMATE generated RNA-seq stromal and immune signatures in this cohort were 

comparable to those observed in TCGA ccRCC and Genotype-Tissue Expression (GTEx) 

kidney-cortex datasets (Figure S6C). Consensus clustering of the cell signatures identified 

two NAT subtypes with distinct enrichment of cell signatures relative to ccRCC tumor 

tissues and four ccRCC tumor subtypes (Figure 6A). The latter were discriminated by the 

presence or absence of specific cell types related to immune (CD8+ T cells, macrophages, 

dendritic cells) and stromal (fibroblast, endothelial) signatures. Adopting general features of 

immune-based groupings described previously (Chen and Mellman, 2017) and incorporating 

transcriptomic and proteomic features, we defined four tumor subtypes in this ccRCC 

cohort: (1) CD8+ inflamed, (2) CD8− inflamed, (3) VEGF immune desert, and (4) metabolic 

immune desert (Figures 6B and S6D; Table S7). These subtypes were characterized by 

unique genomic alterations and tumor microenvironment (TME) signatures and 

discriminating signaling pathways that could be leveraged to predict therapeutic response 

(Figures 6B, 6C, and 6E).

CD8+ inflamed tumors were characterized by a high degree of CD8+ T cell infiltration (t test 

adjusted p < 0.05) (Figure S6D), increased expression of the immune evasion markers PD1, 
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PD-L1, PD-L2, and CTLA4 (t test adjusted p < 0.05), and high frequency of chromosome 14 

loss (chi-square test p < 0.05) (Figures 6A–6C). Corresponding to the elevated CD8+ T cell 

presence was a higher frequency of BAP1 mutations, a feature previously associated with 

increased immune infiltration in a kidney cancer xenograft model (Wang et al., 2018b). 

Proteomic analysis showed upregulation of CD38 expression and pathways involved in 

antigen processing/presentation (APM) and interferon-γ signaling (Fisher’s exact test 

adjusted p < 0.05) (Figures 6B and S6E; Table S7). Phosphoproteomic analysis confirmed 

active interferon-γ signaling via elevated phosphorylation of the downstream effector 

STAT1 (t test adjusted p < 0.05) (Figure 6B). Interferon-γ signaling has been shown to 

regulate PD-L1 expression in cancer cells (Chen et al., 2012; Garcia-Diaz et al., 2017), and 

the combination of increased CD38 protein and mRNA signature (PD-L1, PD-L2, and 

CTLA4) associated with T cell exhaustion are representative of multiple mechanisms of 

immune evasion in this tumor type, with implications for immune checkpoint therapy (Chen 

et al., 2018; Sade-Feldman et al., 2018).

CD8− inflamed tumors were characterized by an innate immune signature, evidenced by 

dendritic and macrophage cells in the TME compared to the VEGF and metabolic immune 

desert groups and by increased complement and coagulation cascade protein expression 

(Fisher’s exact test adjusted p < 0.05) (Figures 6A, 6B, and S6D; Table S7). A fibroblast 

signature that included elevated PDGFRA, extracellular matrix (ECM) and EMT-associated 

protein abundance, and expression of cancer associated fibroblasts (CAFs) features (POSTN 

protein and gene FAP mRNA) (t test adjusted p < 0.05) was a unique feature of the CD8− 

inflamed tumor subtype (Figures 6A, 6B, and S6E; Shiga et al., 2015; Ziani et al., 2018). 

Together, these associated pathways are representative of TME-tumor crosstalk, with PDGF 

signaling driving fibroblast recruitment and activation, and CAFs subsequently inducing an 

EMT-phenotype in tumors (Gascard and Tlsty, 2016; Seppä et al., 1982). Interestingly, PD-
L2 mRNA levels were elevated independent of PD-L1 expression (Figure 6B), suggesting a 

CAF-mediated mechanism of T cell death via PD-L2 antigen presentation (Lakins et al., 

2018). Independently, increased mRNA expression of ENTPD1 (CD39) and NT5E (CD73) 

in the CD8− inflamed tumor subtype could signal an adenosine-rich TME (Antonioli et al., 

2013), further contributing to CD8+ T cell exclusion in these tumors (Figures 6B and S6D).

CD8− inflamed tumors and VEGF immune desert tumors shared several features including 

an elevated stromal score (t test adjusted p < 0.05) and enrichment of endothelial cells (t test 

adjusted p < 0.05 – VEGF immune desert) (Figures 6A and 6B; Table S7). Interestingly, 

these tumor subtypes had a higher frequency of chromosome 7 gain and lower frequency of 

chromosome 14 loss, with the latter feature inversely correlated with endothelial cell 

presence (Figures 6A and 6C). Although angiogenic signaling was elevated in both subtypes 

(Fisher’s exact test adjusted p < 0.05), angiogenesis and platelet degranulation were higher 

in CD8− inflamed tumors (Fisher’s exact test adjusted p < 0.05) and corresponded to 

upregulation of the PDGF-related signaling pathway (Table S7). In contrast, higher 

expression of SUMOylation (protein level) and Wnt/β-catenin, RAP1, and Notch signaling 

pathways (mRNA level) were observed in VEGF immune desert tumors and corresponded to 

the highest endothelial cell signature (t test adjusted p < 0.05) (Figures 6B and S6E). The 

differential expression of VEGFR1 (FLT1) (t test adjusted p < 0.05) and multiple 

angiogenic-related signaling pathways may be representative of distinct mechanisms of 
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endothelial cell recruitment and tumor vasculature formation between the two subtypes 

(Birdsey et al., 2015; Cao, 2013; Chrzanowska-Wodnicka, 2013; Hellström et al., 2007; 

Zhou et al., 2018; Zhu et al., 2017).

Metabolic immune desert tumors displayed low immune, stromal, and microenvironment 

scores (t test adjusted p < 0.05), an elevated MYC target mRNA signature (Fisher’s exact 

test adjusted p < 0.05), increased mTOR signaling (Fisher’s exact test adjusted p < 0.05), 

and a unique metabolic profile that included elevated mitochondrial, OXPHOS, glycolysis 

protein expression (Fisher’s exact test p < 0.05), and PKM mRNA expression (t test adjusted 

p < 0.05) (Figures 6B and S6E; Table S7). Previous reports have established a relationship 

between HIF-2α and MYC-induced transcription in renal carcinomas (Gordan et al., 2007a, 

2008), with MYC regulation of metabolism functioning in concert with and independent of 

HIF-1 signaling (Gordan et al., 2007b). Further contributing to this unique metabolism 

signature was the increased expression of PRDX4 (t test adjusted p < 0.05) (Figure 6B), 

which has been shown to impair the binding of HIF-1α/2α to the hypoxia response element 

in select glycolytic genes (SLC2A3, PDK3, GPI) (Luo et al., 2016). The minimal presence 

of any immune cells in metabolic immune desert tumors is particularly striking and supports 

the hypothesis that a hypoxic, nutrient-poor microenvironment can be immunosuppressive 

(Anderson et al., 2017; Mgrditchian et al., 2014).

This analysis discriminated four subtypes of ccRCC and linked unique cellular pathways to 

observed TME compositions, with select protein features validated using an orthogonal mass 

spectrometry approach (Figures 6A, 6E, and S6D; Table S7). We hypothesized that the 

delineated molecular signatures may predict patient responses to select therapies and 

survival. To examine the former, we characterized tumors within each subtype using two 

gene signatures that have been previously associated with patient response to immune 

checkpoint and anti-VEGF therapies (T-effector [Teff] and angiogenesis [Angio]), 

respectively (McDermott et al., 2018). CD8+ inflamed tumors displayed an elevated Teff 

signature relative to other tumor types, while VEGF immune desert tumors displayed an 

elevated Angio signature (Figure S6F). The remaining two subtypes displayed a minimal 

Teff signature but had a moderate Angio signature, suggesting a potential response to 

therapeutics targeting VEGF signaling. Leveraging the gene signatures from our subtypes, 

we explored the TCGA dataset and observed similar distribution patterns of tumor grade and 

CD8+ T cell, endothelial, and fibroblast cell composition (Figures 6D and S6G; Table S7). 

Patient stratification based on the four subtypes revealed that VEGF immune desert tumors 

were associated with improved patient survival, while CD8+ Inflamed tumors were 

associated with poor patient outcome (log-rank test adjusted p < 0.05) (Figure S6H). The 

latter result reflects the aggregation of multiple features in the CD8+ Inflamed subtype that 

are considered as poor prognosticators in ccRCC, including higher frequency of BAP1 
mutations (chi-square test adjusted p < 0.05), increased proportion of higher grade tumors, 

and increased PD-1/PD-L1 expression (t test adjusted p < 0.05). We did not detect an 

association of tumor mutational burden or neoantigen load with any of these immune 

subtypes (Table S7), confirming previous reports that indicate that these features do not 

correlate with ccRCC prognosis (Matsushita et al., 2016; McDermott et al., 2018).

Clark et al. Page 11

Cell. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proteome Inter-Tumoral Heterogeneity of ccRCC

Tumor grade is an important prognosticator in ccRCC, which is often associated with 

higher-stage and larger tumors (Ishigami et al., 2014). Multivariate analysis integrating 

clinical features and CPTAC “omics” data found that numerous genes within each data type 

were associated with immune and stromal scores and with tumor grade (Benjamini-

Hochberg adjusted p < 0.10; Figure S7A). Further investigation of these genes revealed 

distinct pathways associated with tumor grade. In high-grade tumors, translation, mTOR 

signaling, and EMT were increased at the mRNA and protein levels. Other cellular pathways 

displayed disparate upregulation at the transcriptomic and proteomic levels. For example, 

increased mRNA levels were associated with cell-cycle regulation and DNA repair, while 

increased OXPHOS and N-linked glycosylation were detected only at the protein level 

(Figures 7A and S7B; Table S5). In contrast, low-grade tumors displayed increased 

expression of receptor tyrosine kinase, RAS, MAPK, Notch, and RAP1 cell signaling 

pathways at both the mRNA and protein levels (Wilcoxon rank-sum test, Benjamini-

Hochberg adjusted p < 0.01; Figures 7A and S7B; Table S5). Low-grade tumors showed 

increased protein expression of transcription-related processes (e.g., chromatin 

reorganization) that was not captured at the transcript level (Wilcoxon rank-sum test, 

Benjamini-Hochberg adjusted p < 0.01; Figure 7A; Table S5). The divergence of cellular 

processes between high- and low-grade tumors reflects the disparate tumoral needs, with 

higher grade tumors upregulating mechanisms to adapt to increased genomic alterations and 

a changing tumor microenvironment.

To determine ccRCC inter-tumor heterogeneity of the CPTAC cohort, we constructed an 

unbiased proteomic grouping of ccRCC. Three major proteomic ccRCC groups emerged 

from this analysis (ccRCC1-3), which were discriminated by seven major protein clusters 

(Figure 7B; Table S5). Tumors in ccRCC2 had a higher degree of protein expression 

associated with innate immunity and platelet degranulation (adjusted p < 0.05), while those 

in ccRCC3 displayed increased protein expression associated with glycolysis, mTOR 

signaling, and hypoxia (adjusted p < 0.05). ccRCC2 and ccRCC3 were associated with lower 

tumor grade (p < 0.01 and p < 0.02, respectively), while only ccRCC2 was associated with 

lower stage (p < 0.001). Tumors in ccRCC1 presented with higher grade (p < 0.001) and 

stage (p < 0.01), characterized by elevated adaptive immune response, N-linked 

glycosylation, OXPHOS protein expression, and fatty acid metabolism (adjusted p < 0.05). 

Tumors in ccRCC3 displayed a higher frequency of PBRM1 mutations (p < 0.05), whereas 

those in ccRCC1 had a higher frequency of BAP1 mutations (p < 0.0001), CIMP+ status (p < 

0.007), and genomic instability (p < 0.0001) (Figure 7B). As highlighted in our immune 

analysis, ccRCC tumors had variable TME compositions, with immune and stromal 

signatures impacting observed protein expression patterns (Figure S7A). The distribution of 

the immune subtypes across the proteomic groupings contributed to the discriminating gene 

clusters described in Figure 7B that were also delineated in the immune-based subtyping of 

ccRCC (Figure 6B), capturing the more dominant molecular signatures of CD8+ inflamed 

(interferon-γ signaling), CD8− inflamed (platelet degranulation), and VEGF immune desert 

(hypoxic signaling) tumors, which had a higher prevalence in ccRCC1 (p < 5.0 e–07), 

ccRCC2 (p < 6.0 e–05), and ccRCC3 (p < 0.0001), respectively.
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DISCUSSION

This comprehensive proteogenomic characterization of ccRCC provides insight into the 

differential impact of underlying genomic and epigenomic events on the transcriptome, 

proteome, and phosphoproteome. The integration of chromosome-level alterations and 

comparative, multi-level profiling of treatment-naive tumors and NATs connects genomic 

aberrations to active mechanisms that drive ccRCC tumorigenesis. The identification of a 

subset of ccRCC patients who display genomic instability could have clinical utility that 

warrants further investigation, as this group may have worse prognosis and benefit from 

continual surveillance post-treatment. The trans-effects of chromosome 3p fully capture the 

dysregulated VHL/HIF-1 axis that is a hallmark of ccRCC, while the widespread 

translocation events involving chromosome 3 observed in this study and others (Mitchell et 

al., 2018; Pavlovich et al., 2003) portray ccRCC as a disorder defined by genomic 

rearrangements.

Our analysis supports and elaborates on the metabolic shift that occurs within ccRCC 

tumors, illustrated at the protein level by the upregulation of glycolysis and the 

corresponding downregulation of the Krebs cycle and the electron transport chain 

(OXPHOS) associated with the Warburg effect. Notably, the downregulation of components 

of the Krebs cycle and the majority of the nuclear-encoded OXPHOS proteins were not 

observed at the mRNA level and would have not been reported by RNA-seq analysis alone. 

This finding is significant, as recent large-scale ccRCC studies have focused on mRNA 

expression data to depict the metabolic shift in ccRCC and have evaluated transcriptomic 

signatures to stratify patients with more aggressive disease (Chen et al., 2016a; Creighton et 

al., 2013). HIF1-signaling has been shown to decrease OXPHOS activity through multiple 

mechanisms (Hervouet et al., 2008; Papandreou et al., 2006). Interestingly, our proteomic 

analysis and previous metabolic profiling of ccRCC show evidence of late-stage tumors 

upregulating the OXPHOS pathway relative to earlier-stage tumors (Hakimi et al., 2016) and 

may reflect the dysregulation of HIF-1α expression resulting from 14q loss or the aberrant 

methylation profiles associated with CIMP+ status. The maintenance of OXPHOS 

transcription levels similar to those seen in normoxic cells may provide a mechanism for 

rapid induction of OXPHOS activity when it is advantageous to fulfill tumor energy 

requirements. This hypothesis warrants deeper exploration and expanded investigation in 

other cancer types.

Current first-line therapies for advanced ccRCC target VEGF and mTOR (Escudier et al., 

2007a, 2007b; Hudes et al., 2007; Motzer et al., 2007, 2008; Sternberg et al., 2010), with 

ongoing exploration of immune checkpoint inhibitors (Atkins and Tannir, 2018). Through 

investigation of transcriptomic, proteomic, and phosphoproteomic signatures of treatment-

naive tumors, we propose a rational stratification of ccRCC patients for personalized 

therapeutic interventions. Immune-based subtyping of ccRCC tumors via deconvolution of 

cell composition identified TME and cellular pathways that delineated patients who 

displayed a pro-angiogenic phenotype from those with an immune-evasive phenotype. With 

evidence demonstrating the lack of efficacy of anti-VEGF therapy in patients with elevated 

levels of immune checkpoint signatures (Hara et al., 2017; Shin et al., 2015) and preliminary 

clinical studies showing encouraging results when treating RCC using PD-1/CTLA4-
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targeting therapies (Motzer et al., 2018), it is vital to identify theranostic markers to improve 

patient outcome and overall survival. However, mechanisms that drive the observed 

differences in TME signatures warrant further exploration. Our results support recent reports 

that tumor mutational burden or neoantigen load may not be associated with immune 

infiltration or response to immune checkpoint therapy in ccRCC (Matsushita et al., 2016; 

McDermott et al., 2018), although alternative explanations, such as endogenous retroviral 

expression, were not examined in our study (Panda et al., 2018; Smith et al., 2018). 

Independent of current first-line regimens and immune checkpoint inhibition, the ubiquitous 

activation of EGFR and downstream signaling cascades (MAPK1), as well as cell-cycle 

checkpoint regulation (WEE1-CDK1) revealed by our phosphoproteomic analysis, provide 

additional therapeutic targets that have been evaluated extensively in other cancer types but 

minimally in ccRCC (Ascierto et al., 2013; Huang et al., 2008; Matheson et al., 2016; 

Ravaud et al., 2008). Application to ccRCC would be especially important given our 

identification of a subset of ccRCC tumors that are predicted or shown to be immune 

checkpoint/VEGF non-responders (Beuselinck et al., 2015; Maroto et al., 2017) that may 

benefit from therapies that activate anti-tumor T cell expansion (Naing et al., 2018) or 

combinatorial therapeutic approaches, such as concurrent cell-cycle checkpoint and mTOR 

inhibition.

Overall, this study reveals unique biological insights that are gained only when combining 

complementary proteomic and genomic analyses that link the functional consequences of 

genomic aberrations with proteomic outcomes. The integration of comprehensive genomic, 

epigenomic, transcriptomic, proteomic, and phosphoproteomic measurements for tumors 

and corresponding NATs provides an invaluable bioinformatic resource for the deeper 

examination of ccRCC tumorigenesis. Our multi-level “omics” analysis identifies underlying 

molecular mechanisms that are not fully captured at the genomic and transcriptomic levels 

and defines proteomic, phosphoproteomic, and immune signatures necessary to stratify 

ccRCC patients, with the goal of developing rational therapeutic interventions.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for 

resources should be directed to and will be fulfilled by the Lead Contact, Hui Zhang 

(huizhang@jhu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—A total of 110 participants, with an age range of 30-90, were included 

in this study. This cohort contained males (n = 81) and females (n = 29) and reflects the 

gender distribution of clear cell renal cell carcinoma (ccRCC) (Creighton et al., 2013). Only 

histopathologically defined adult ccRCC tumors were only included in the analysis. 

Institutional review boards at each Tissue Source Site (TSS) reviewed protocols and consent 

documentation, in adherence to Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

guidelines.
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Clinical Data Annotation—Clinical data were obtained from TSS and aggregated by the 

Biospecimen Core Resource (BCR, Van Andel Research Institute (Grand Rapids, MI)). Data 

forms were stored as Microsoft Excel files (.xls). Clinical data can be accessed and 

downloaded from the CPTAC Data Portal at https://cptac-data-portal.georgetown.edu/cptac/

documents/S044_CPTAC_CCRCC_Discovery_Cohort_Clinical_Data_r1_Sept2018.xlsx. 

Patients with any prior history of other malignancies within twelve months or any systemic 

treatment (chemotherapy, radiotherapy, of immune-related therapy) were excluded from this 

study. Demographics, histopathologic information, and treatment details were collected and 

summarized in Table S1. The characteristics of the CPTAC ccRCC cohort reflect the general 

incidence of ccRCC (Creighton et al., 2013), including patient age distributions [30-49 

(17.4%), 50-69 (60.6%), and > 70 (22.0%)], grade distributions [G1 (5.5%), G2 (48.6%), G3 

(37.6%), and G4 (8.3%)], and stage distributions [I (46.8%), II (11.9%), III (30.3%), and IV 

(11.0%)].

METHOD DETAILS

Specimen Acquisition—The tumor, adjacent normal tissue and whole blood samples 

used in this manuscript were prospectively collected for the CPTAC project. Biospecimens 

were collected from newly-diagnosed patients with ccRCC who were undergoing surgical 

resection and had received no prior treatment for their disease, including radiotherapy or 

chemotherapy. All cases had ccRCC histology but were collected regardless of histologic 

grade or surgical stage. Cases were then graded using the Fuhrman Nuclear Grading System 

and staged using the AJCC cancer staging system 7th edition (Edge et al., 2010). Tumors 

specimens weighed between 125 and 3,000 mg. For most cases, three to four tumor 

specimens were collected. Each tissue specimen endured cold ischemia for 30 minutes or 

less prior to freezing in liquid nitrogen. The specimens were collected with an average total 

ischemic time of fifteen minutes from resection/collection to freezing. Specimens were 

either flash-frozen in liquid nitrogen or embedded in optimal cutting temperature (OCT) 

medium, with histologic sections obtained from top and bottom portions for review. Each 

case was reviewed by a board-certified pathologist to confirm the assigned pathology. The 

top and bottom sections were required to contain an average of 80% tumor cell nuclei with 

less than 20% necrosis. Specimens were shipped overnight from the TSS to the BCR using a 

cryoport that maintained an average temperature of less than −140°C. At the BCR, the 

specimens were confirmed by pathology qualification and prepared for genomic, 

transcriptomic, and proteomic analyses. Selected specimens were cryopulverized, and 

material was aliquoted for subsequent molecular characterization. Genomic DNA and total 

RNA were extracted and sent to the genome characterization centers (GCC). The DNA 

sequencing and methylation analyses were performed at the Broad Institute (Cambridge, 

MA) and RNA sequencing was performed at the University of North Carolina (Chapel Hill, 

NC). Material for proteomic analyses was sent to the Proteomic Characterization Center 

(PCC) at Johns Hopkins Medical Institutions of Johns Hopkins University (Baltimore, MD)

Genomic and Transcriptomic Sample Preparation and Data Acquisition

Sample Processing for Genomic DNA and total RNA Extraction: Our study sampled a 

single site of the primary tumor. All DNA and RNA were isolated using a co-isolation 

protocol in which nucleic acids were isolated from the same cryopulverized aliquot that was 
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used for both proteomics and genomics. Tumor samples were from surgical resections due to 

the requirement to process a minimum of 125mg of tumor issue and 50mg of adjacent 

normal tissue. RNA and DNA were extracted from tumor and adjacent normal specimens 

using QIAGEN’s QIAsymphony DNA Mini Kit and QIAsymphony RNA Kit. Genomic 

DNA was also isolated from peripheral blood (3-5 mL) to serve as matched benign reference 

material. The Qubit dsDNA BR Assay Kit was used with the Qubit® 2.0 Fluorometer to 

determine the concentration of dsDNA in an aqueous solution. A sample that passed quality 

control and produced sufficient DNA yield various genomic assays was sent for genomic 

characterization. RNA quality was quantified using the NanoDrop 8000 and quality was 

assessed using Agilent Bioanalyzer. A sample that passed RNA quality control and had a 

minimum RNA integrity Number (RIN) score of 8 was subjected to RNA sequencing.

Whole Exome Sequencing Methods

Library Construction: Library construction was performed as described in Fisher et al. 

(2011), with the following modifications: initial genomic DNA input into shearing was 

reduced from 3 μg to 250 ng in 50 μL of solution. For adaptor ligation, Illumina paired end 

adapters were replaced with palindromic forked adapters obtained from Integrated DNA 

Technologies, with unique dual-indexed molecular barcode sequences to facilitate 

downstream pooling. Kapa HyperPrep reagents were used in a 96-reaction kit format for end 

repair/A-tailing, adaptor ligation, and library enrichment PCR. In addition, during the post-

enrichment SPRI cleanup, elution volume was reduced to 30 μL to maximize library 

concentration followed by a vortexing step to maximize the amount of template eluted.

In-solution Hybrid Selection: Following library construction, products were pooled into 

groups of up to 96 samples. Hybridization and capture were performed using the relevant 

components of Illumina’s Nextera Exome Kit and following the manufacturer’s 

recommended protocol, with a few exceptions. First, all libraries within a library 

construction plate were pooled prior to hybridization. Second, to facilitate automation the 

Midi plate from Illumina’s Nextera Exome Kit was replaced with a skirted PCR plate. All 

hybridization and capture steps were automated utilizing the Agilent Bravo liquid handling 

system.

Preparation of Libraries for Cluster Amplification and Sequencing: After post-capture 

enrichment, library pools were quantified by qPCR using a kit obtained from KAPA 

Biosystems with probes specific to the ends of the adapters. The assay was automated on the 

Agilent Bravo liquid handling system. Based on qPCR quantification, libraries were 

normalized to 2 nM.

Cluster Amplification and Sequencing: Cluster amplification of DNA libraries was 

performed according to the manufacturer’s protocol (Illumina) using exclusion amplification 

chemistry and flowcells. Flowcells were sequenced utilizing Sequencing-by-Synthesis 

chemistry. The flowcells are then analyzed using RTA v.2.7.3 or a later version. Each pool of 

whole exome libraries was sequenced on paired 76-cycle runs with two eight-cycle index 

reads across the number of lanes necessary to meet coverage for all libraries in the pool. 

Pooled libraries were processed using HiSeq4000 as paired end runs to achieve a minimum 
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of 150x on-target coverage per library. The raw Illumina sequence data were demultiplexed 

and converted to FASTQ files, and adaptor and low-quality sequences were trimmed. The 

raw reads were mapped to the hg38 human reference genome. The validated Binary 

Alignment Map (BAM) files were used for downstream analysis and variant calling. FASTQ 

files of all reads were then uploaded to the Genomic Data Commons (GDC) repository.

Whole Genome Sequencing, PCR-Free

Preparation of Libraries for Cluster Amplification and Sequencing: Input genomic 

DNA (350 ng in 50 μL) was acoustically sheared using a Covaris focused-ultrasonicator 

(~385 bp fragment range). Following shearing, an additional size selection was performed 

using a SPRI cleanup. Library preparation was performed using KAPA Hyper Prep without 

amplification module (KAPA Biosystems) with palindromic forked adapters containing 

unique eight-base index sequences embedded within the adaptor (Integrated DNA 

Technologies). Libraries were quantified using quantitative PCR (KAPA Biosystems), with 

probes specific to the ends of the adapters. The assay was automated on the Agilent Bravo 

liquid handling system. Based on qPCR quantification, libraries were normalized to 1.7 nM 

and pooled into 24-plexes.

Cluster Amplification and Sequencing (HiSeqX): Sample pools were combined with 

HiSeqX Cluster Amp Regents EPX1, EPX2 and EPX3 into single wells on a strip tube using 

the Hamilton Starlet Liquid Handling system. Cluster amplification of the templates was 

performed according to the manufacturer’s protocol (Illumina) with the Illumina cBot. 

Flowcells were sequenced for a minimum of 15x coverage on HiSeqX utilizing sequencing-

by-synthesis to produce 151 base pair paired-end reads. Outputs from Illumina software 

were processed by the Picard data-processing pipeline to yield BAM files containing 

demultiplexed, aggregated aligned reads. All sample information tracking was performed by 

automated LIMS messaging. FASTQ files of all reads were then uploaded to the GDC.

Illumina Infinium MethylationEPIC BeadChip Array: The MethylationEPIC array uses 

an eight-sample version of the Illumina BeadChip that captures > 850,000 methylation sites 

per sample. 250 ng of DNA was used for bisulfite conversion using the Infinium 

MethylationEPIC BeadChip Kit. The EPIC array includes sample plating, bisulfite 

conversion, and methylation array processing. After scanning, the data were processed 

through an automated genotype calling pipeline, generating raw idat files and a sample 

sheet. For 109 out of the 110 samples, a sufficient amount of material was obtained to 

perform methylation profiling. Two out of the 109 samples showed a missing rate greater 

than 95% and were excluded from all downstream analyses.

RNA Sequencing

Quantitation and Quality Assessment QC of total RNA Samples: All RNA analytes were 

assayed for RNA integrity, concentration, and fragment size. Samples for total RNA-seq 

were quantified on a TapeStation system (Agilent). Samples with RINs > 8.0 were 

considered to be of high quality and were processed further.
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Total RNA-seq Library Construction: Total RNA-seq libraries were generated using 300 

ng of total RNA, analyzed using the TruSeq Stranded Total RNA Library Prep Kit with 

Ribo-Zero Gold and bar-coded with individual tags following the manufacturer’s 

instructions (Illumina). Libraries were prepared on an Agilent Bravo Automated Liquid 

Handling System. Quality control was performed at every step, and the libraries were 

quantified using a TapeStation system.

Total RNA Sequencing: Indexed RNA-seq libraries were sequenced using the HiSeq4000 

platform to generate a minimum of 120 million paired end reads (75 base pairs) per library 

with a target of greater than 90% mapped reads. The sequence data were demultiplexed and 

converted to FASTQ files, and adaptor and low-quality sequences were quantified/trimmed. 

Samples were then assessed for quality by mapping reads to the hg38 reference genome, 

estimating the total number of reads that mapped, assessing the amount of RNA that mapped 

to coding regions, the amount of rRNA in the sample, the number of genes expressed, and 

the relative expression of housekeeping genes. Samples that passed the quality criteria were 

then clustered with other expression data from similar and distinct tumor types to confirm 

expected expression patterns, including pathological status (i.e., normal adjacent versus 

tumor tissue) and tissue-origin specificity. FASTQ files of all reads were then uploaded to 

the GDC repository.

Proteomic Sample Preparation and Data Acquisition

Sample Processing for Protein Extraction and Tryptic Digestion: All samples for the 

current study were prospectively collected as described above and processed for mass 

spectrometric (MS) analysis at the PCC. Tissue lysis and downstream sample preparation for 

global proteomic and phosphoproteomic analysis were carried out as previously described 

(Mertins et al., 2018). Approximately 25-120 mg of each cryopulverized renal tumor tissues 

or NATs were homogenized separately in an appropriate volume of lysis buffer (8 M urea, 

75 mM NaCl, 50 mM Tris, pH 8.0, 1 mM EDTA, 2 μg/mL aprotinin, 10 μg/mL leupeptin, 1 

mM PMSF, 10 mM NaF, Phosphatase Inhibitor Cocktail 2 and Phosphatase Inhibitor 

Cocktail 3 [1:100 dilution], and 20 mM PUGNAc) by repeated vortexing. Lysates were 

clarified by centrifugation at 20,000 x g for 10 min at 4°C, and protein concentrations 

determined by BCA assay (Pierce). Lysates were diluted to a final concentration of 8 mg/mL 

with lysis buffer, and 800 μg of protein was reduced with 5 mM dithiothreitol (DTT) for 1 h 

at 37°C and subsequently alkylated with 10 mM iodoacetamide for 45 min at RT (room 

temperature) in the dark. Samples were diluted 1:3 with 50 mM Tris-HCl (pH 8.0) and 

subjected to proteolytic digestion with LysC (Wako Chemicals) at 1 mAU:50 μg enzyme-to-

substrate ratio for 2 h at RT, followed by the addition of sequencing-grade modified trypsin 

(Promega) at a 1:50 enzyme-to-substrate ratio and overnight incubation at RT. The digested 

samples were then acidified with 50% trifluoroacetic acid (TFA, Sigma) to a pH value of 

approximately 2.0. Tryptic peptides were desalted on reversed-phase C18 SPE columns 

(Waters) and dried using a Speed-Vac (Thermo Scientific).

TMT Labeling of Peptides: Tandem-mass-tag (TMT) quantitation utilizes reporter ion 

intensities to determine protein abundance and facilitate quantitative proteomic analysis 

(Ross et al., 2004). Previously, CPTAC used two major LC-MS/MS-based methods for 
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quantitative proteomics: label-free quantification (LFQ) and isobaric tag for relative and 

absolute quantitation (iTRAQ) for proteogenomic characterization of colorectal, breast, and 

ovarian cancers (Mertins et al., 2016; Zhang et al., 2014a, 2016). Inherent benefits of 

isobaric tag approaches over LFQ for protein quantitation include decreasing peptide/protein 

quantification differences attributed to variation in instrument performance, reducing the 

number “missing values,” and facilitating integrated measurements of global protein and 

post-transcriptional modifications (PTM) levels (Hogrebe et al., 2018; Thompson et al., 

2003). Recent developments in isobaric tag technology have enabled an increase in the 

number of independent samples that can be analyzed in parallel, thereby, increasing 

throughput and facilitating deeper quantification of respective proteomes (McAlister et al., 

2012; Werner et al., 2012). Desalted peptides from each sample were labeled with 10-plex 

TMT (Tandem Mass Tag) reagents (Thermo Fisher Scientific). Peptides (300 μg) from each 

ccRCC and NAT sample were dissolved in 300 μL of 50 mM HEPES, pH 8.5 solution. Five 

milligrams of TMT reagent was dissolved in 256 μL of anhydrous acetonitrile, and 123 μL 

of each TMT reagent was added to the corresponding aliquot of peptides. After 1 h 

incubation at RT, the reaction was quenched by acidification with 50% TFA to pH < 3. A 

reference sample was created by pooling an aliquot from individual ccRCC tumors and NAT 

samples (90 tumors and 72 NATs, representing ~90% of the sample cohort), labeled with the 

TMT-131 reagent, and included in all TMT 10-plexes as a pooled reference channel. Two 

internal quality control (QC) samples, a single, independently-acquired chromophobe renal 

cell carcinoma (chRCC) tumor sample and an NCI-7 Cell Line Panel sample (Clark et al., 

2018), were prepared and interspersed among all TMT 10-plex sets. 110 ccRCC tumor and 

84 NAT samples with eight chromophobe QC aliquots and five NCI-7 QC aliquots were co-

randomized to 23 TMT 10-plex sets. The sample-to-TMT channel mapping is shown in 

https://cptac-data-portal.georgetown.edu/cptac/documents/

S044_CPTAC_CCRCC_Discovery_Cohort_Specimens_r1_Sept2018.xlsx . Following 

labeling, peptides were mixed according to the sample-to-TMT channel mapping, 

concentrated and desalted on reversed-phase C18 SPE columns (Waters) and dried using a 

Speed-Vac (Thermo Scientific).

Peptide Fractionation by Basic Reversed-phase Liquid Chromatography (bRPLC): To 

reduce the likelihood of peptides co-isolating and co-fragmenting in these highly complex 

samples, we employed extensive, high-resolution fractionation via basic reversed-phase 

liquid chromatography (bRPLC). Previous reports indicate that this approach can reduce the 

incidence of isobaric reporter ion ratio distortion effects, which would impact downstream 

quantitation (Ow et al., 2011; Rauniyar and Yates, 2014). The desalted, TMT-labeled 

samples were reconstituted in 900 μL of 20 mM ammonium formate (pH 10) and 2% 

acetonitrile (ACN) and loaded onto a 4.6 mm x 250 mm RP Zorbax 300 A Extend-C18 

column with 3.5 μm size beads (Agilent). Peptides were separated at a flow-rate of 1mL/min 

using an Agilent 1200 Series HPLC instrument via bHPLC with Solvent A (2% ACN, 5 mM 

ammonium formate, pH 10) and a non-linear gradient of Solvent B (90% ACN, 5 mM 

ammonium formate, pH 10) as follows: 0% Solvent B (9 min), 6% Solvent B (4 min), 6% to 

28.5% Solvent B (50 min), 28.% to 34% Solvent B (5.5 min), 34% to 60% Solvent B (13 

min), and holding at 60% Solvent B for 8.5 min. Collected fractions were concatenated into 

24 fractions by combining four fractions that are 24 fractions apart (i.e., combining fractions 
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#1, #25, #49, and #73; #2, #26, #50, and #74; and so on); a 5% aliquot of each of the 24 

fractions was used for global proteomic analysis, dried in a Speed-Vac, and resuspended in 

3% ACN/0.1% formic acid prior to ESI-LC-MS/MS analysis. The remaining sample was 

utilized for phosphopeptide enrichment.

Enrichment of Phosphopeptides by Fe-IMAC: The remaining 95% of the sample was 

further concatenated before being subjected to phosphopeptide enrichment using 

immobilized metal affinity chromatography (IMAC) as previously described (Mertins et al., 

2013). In brief, Ni-NTA agarose beads were used to prepare Fe3+-NTA agarose beads, and 

300 mg of peptides were reconstituted in 80% ACN/0.1% trifluoroacetic acid and incubated 

with 10 μL of the Fe3+-IMAC beads for 30 min. Samples were then centrifuged, and the 

supernatant containing unbound peptides was removed. The beads were washed twice and 

then transferred onto equilibrated C-18 Stage Tips with 80% ACN/0.1% trifluoroacetic acid. 

Tips were rinsed twice with 1% formic acid and eluted from the Fe3+-IMAC beads onto the 

C-18 Stage Tips with 70 μL of 500 mM dibasic potassium phosphate, pH 7.0 a total of three 

times. C-18 Stage Tips were then washed twice with 1% formic acid, followed by elution of 

the phosphopeptides from the C-18 Stage Tips with 50% ACN/0.1% formic acid twice. 

Samples were dried down and resuspended in 3% ACN/0.1% formic acid prior to ESI-LC-

MS/MS analysis.

ESI-LC-MS/MS for Global Proteome and Phosphoproteome Analysis: Global proteome 

and phosphoproteome fractions were analyzed using the same instrumentation and 

methodology. Peptides (~0.8 μg) were separated on an Easy nLC 1200 UHPLC system 

(Thermo Scientific) on an in-house packed 20 cm x 75 mm diameter C18 column (1.9 mm 

Reprosil-Pur C18-AQ beads (Dr. Maisch GmbH); Picofrit 10 mm opening (New Objective)). 

The column was heated to 50°C using a column heater (Phoenix-ST). The flow rate was 

0.200 μl/min with 0.1% formic acid and 2% acetonitrile in water (A) and 0.1% formic acid, 

90% acetonitrile (B). The peptides were separated with a 6%–30% B gradient in 84 min and 

analyzed using the Thermo Fusion Lumos mass spectrometer (Thermo Scientific). 

Parameters were as follows: MS1: resolution – 60,000, mass range – 350 to 1800 m/z, RF 

Lens – 30%, AGC Target 4.0e5, Max IT – 50 ms, charge state include - 2-6, dynamic 

exclusion – 45 s, top 20 ions selected for MS2; MS2: resolution-50,000, high-energy 

collision dissociation activation energy (HCD)-37, isolation width (m/z) – 0.7, AGC Target – 

2.0e5, Max IT – 105 ms.

ESI-LC-MS/MS for Global Proteome Data-Independent Acquisition 
Analysis: Unlabeled, digested peptide material from individual tissue samples (ccRCC and 

NAT) was spiked with index Retention Time (iRT) peptides (Biognosys) and subjected to 

data-independent acquisition (DIA) analysis. Peptides (~0.8 μg) were separated on an Easy 

nLC 1200 UHPLC system (Thermo Scientific) on an in-house packed 20 cm x 75 μm 

diameter C18 column (1.9 μm Reprosil-Pur C18-AQ beads (Dr. Maisch GmbH); Picofrit 10 

μm opening (New Objective)). The column was heated to 50°C using a column heater 

(Phoenix-ST). The flow rate was 0.200 μl/min with 0.1% formic acid and 3% acetonitrile in 

water (A) and 0.1% formic acid, 90% acetonitrile (B). The peptides were separated with a 

7%–30% B gradient in 84 mins and analyzed using the Thermo Fusion Lumos mass 
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spectrometer (Thermo Scientific). The DIA segment consisted of one MS1 scan (350-1650 

m/z range, 120K resolution) followed by 30 MS2 scans (variable m/z range, 30K 

resolution). Additional parameters were as follows: MS1: RF Lens – 30%, AGC Target 

4.0e5, Max IT – 50 ms, charge state include - 2-6; MS2: isolation width (m/z) – 0.7, AGC 

Target - 2.0e5, Max IT – 120 ms.

Spectral Library generation for Data-Independent Acquisition Analysis: For spectral 

library generation, an aliquot (2 μg) of unlabeled, digested peptide material from individual 

tissue samples (ccRCC and NAT) was pooled and subjected to bRPLC as previously 

described. Collected fractions were concatenated into eight fractions by combining twelve 

fractions that are eight fractions apart (i.e., combining fractions #1, #9, #17, #25, #33, #41, 

#49, #57, #65, #73, #81, and #89; #2, #18, #26, #34, #42, #58, #66, #74, #82, and #90; and 

so on); dried down in a Speed-Vac, resuspended in 3% ACN, 0.1% formic acid, and was 

spiked with index Retention Time (iRT) peptides (Biognosys) prior to ESI-LC-MS/MS 

analysis. Parameters were the same as previously described for ESI-LC-MS/MS for Global 

Proteome and Phosphoproteome Analysis with a high-energy collision dissociation 

activation energy (HCD) – 34.

Genomic Data Processing

Harmonized Somatic Variant Calling: Details regarding somatic variant calling performed 

by the GDC are available at: https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/

DNA_Seq_Variant_Calling_Pipeline/, https://gdc.cancer.gov/about-gdc/variant-calling-gdc. 

The University of Michigan aligned FASTQ files to the GRCh38 references, including 

alternate haplotypes. Variant calling was performed using VarDict (germline & somatic) and 

Strelka2 (somatic). Variant callers were run with default settings, but custom filters were 

applied. Strelka was used to generate the primary somatic call-set. Variants called by Strelka 

had to be either (FILTER = = “PASS”) or meet the following threshold criteria: allele 

frequency in the tumor > 0.05, allele frequency in the normal < 0.01, at least five variant 

reads, depth in normal > 50, Somatic Evidence Score (EVS) > 90th percentile of overall 

EVS distribution. These calls were supplemented by variants called confidently (FILTER = 

= “PASS” and manual review) by VarDict in genes recurrently mutated in ccRCC: VHL, 
PBRM1, BAP1, SETD2, KDM5C, PTEN, MTOR, TP53, PIK3CA, ARID1A, STAG2, 
KDM6A, KMT2C, KMT2D. This strategy improved sensitivity in ccRCC-mutated genes 

without sacrificing the accuracy of variant calls genome wide. Washington University in St. 

Louis called somatic variants using four tools: Strelka2, Mutect2, VarScan2.3.8, and 

Pindel0.2.5. SNVs and indels from the four tools were then merged with SNVs identified by 

the University of Michigan and GDC pipelines using the following strategy: SNVs called by 

any two callers among Mutect2, VarScan2.3.8, and Strelka2 and indels called by any two 

callers among MUTECT2, VarScan2.3.8, Strelka2, and Pindel 0.2.5. For the merged SNVs 

and indels, we applied a cut-off of 14X and 8X coverage for tumor and normal respectively. 

SNVs and indels were filtered using a minimal variant allele frequency (VAF) of 0.05 in 

tumors and a maximal VAF of 0.02 in normal tissues. Any SNV within 10 bps of an indel 

identified in the same tumor sample was filtered.
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Structural Variant Analysis: Structural variants (SVs) and indels were called from the 

whole-genome mapped paired-end sequencing reads by Manta (Chen et al., 2016b) with the 

default record- and sample-level filters. Record-level filters included a QUAL score < 20; 

somatic variant quality score < 30; depth greater than 3x the median chromosome depth near 

one or both variant breakends; for variants significantly larger than the paired read fragment 

size, no paired reads support the alternate allele in any sample). Sample-level filters included 

a Genotype Quality <15. This approach optimizes the analysis of somatic variation in tumor/

normal sample pairs. The paired and split-read evidence was combined during the SV 

discovery and scoring to improve accuracy but did not require split-reads or successful 

breakpoint assemblies to report a variant in cases where there is strong evidence otherwise. 

Calls were prioritized with three confidence levels based on whether the read evidence 

included spanning read pairs (level 1: no spanning read pairs, only split-reads; level 2: one 

spanning read pair with or without split-reads; level 3: two or more spanning read pairs with 

or without split-reads) (Table S2). We mainly focused on levels 2 and 3 SVs with spanning 

read pair evidence. We extracted the chr3 translocation events from the SV calls and 

calculated the prevalence of each chr3 translocation types.

We used an independent structural variant calling method LUMPY to validate the 

translocation events (Layer et al., 2014), selecting the LUMPY Express mode for automated 

breakpoint detection by using the default parameters. LUMPY Express expected BWA-

MEM aligned BAM files as input and automatically parsed sample, library, and read group. 

Before running LUMPY, we extracted the split and discordant read-pairs based on the 

whole-genome mapped paired-end sequencing reads of each sample, which were needed by 

LUMPY. The VCF output file contained the number of supporting reads for each SV event. 

For those translocation events that were also detected in LUMPY supported by spanning 

reads, we labeled them ‘Yes’ in the Validated_by_LUMPY column (Table S2) indicating 

that they were validated.

Methylation Analysis: Raw data from Illumina’s EPIC methylation array were made 

available by GCCs as IDAT files from the CPTAC consortium. The methylation analysis was 

performed using the cross-package workflow “methylationArrayAnalysis” (https://

master.bioconductor.org/packages/release/workflows/html/methylationArrayAnalysis.html) 

available on Bioconductor. In brief, the raw data files (IDAT files) were processed to obtain 

the methylated (M) and unmethylated (U) signal intensities for each locus. The processing 

step included an unsupervised functional normalization step that has been previously 

implemented for Illumina 450K methylation arrays (Fortin et al., 2014). A detection p value 

was also calculated for each locus, and this p value captured the quality of detection at the 

locus with respect to negative control background probes included in the array. Loci having 

common SNPs (with MAF >0.01), as per dbSNP build 132 through 147 via snp132 through 

snp147 common tracks at the UCSC Browser, were removed from further analysis. Beta 

values were calculated as M/(M+U), which is equal to the fraction methylated at each locus. 

Beta values of loci with detection p value > 0.01 were assigned NA in the output file. All 

loci were annotated with the annotation information file ‘MethylationEPIC_v-1-0_B2.csv’ 

from the zip archive ‘infinium-methylationepic-v1-0-b2-manifest-file-csv.zip’ (https://
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www.illumina.com) through the Bioconductor 

IlluminaHumanMethylationEPICanno.ilm10b2.hg19 package.

Classification of Samples with CpG Island Methylator Phenotype (CIMP): To classify 

the tumor samples into CpG island methylator phenotypes (CIMP+ and CIMP−), we 

performed hierarchical clustering of the methylation data using CpG probes previously 

established to distinguish these epigenetic states in ccRCC (Arai et al., 2012). The 

parameters used for the hierarchical clustering were “Euclidean” for distance, “complete” 

for method, and “none” for scale. The resulting two clusters were verified using the 

histopathological stage data and well-known gene methylation markers (Shenoy et al., 

2015). The CIMP+ group was enriched with late-stage tumors and the CIMP+/− differential 

marker genes were recapitulated based on our classification (Figure S1H; Table S2).

Copy-Number Analysis: Copy-number analysis was performed jointly leveraging both 

whole-genome sequencing (WGS) and whole-exome sequencing data of the tumor and 

germline DNA, using CNVEX (https://github.com/mctp/cnvex). CNVEX uses whole-

genome aligned reads to estimate coverage within fixed genomic intervals and whole-

genome and whole-exome variant calls to compute B-allele frequencies (BAFs) at variable 

positions (we used VarDict germline calls). Coverages were computed in 10kb bins, and the 

resulting log coverage ratios between tumor and normal samples were adjusted for GC bias 

using weighted LOESS smoothing across mappable and non-blacklisted genomic intervals 

within the GC range 0.3-0.7, with a span of 0.5 (the target and configuration files are 

provided with CNVEX). The adjusted log coverage-ratios (LR) and BAFs were jointly 

segmented by a custom algorithm based on Circular Binary Segmentation (CBS). 

Alternative probabilistic algorithms were implemented in CNVEX, including algorithms 

based on recursive binary segmentation (RBS) (Gey and Lebarbier, 2008), and dynamic 

programming (Bellman, 1961), as implemented in the R-package jointseg (Pierre-Jean et al., 

2015). For the CBS-based algorithm, first LR and mirrored BAF were independently 

segmented using CBS (parameters alpha = 0.01, trim = 0.025) and all candidate breakpoints 

collected. The resulting segmentation track was iteratively “pruned” by merging segments 

that had similar LR, BAFs, and short lengths. For the RBS- and DP-based algorithms, joint-

breakpoints were “pruned” using a statistical model selection method (Lebarbier, 2005). For 

the final set of CNV segments, we chose the CBS-based results as they did not require 

specifying a prior number of expected segments (K) per chromosome arm, were robust to 

unequal variances between the LR and BAF tracks, and provided empirically the best fit to 

the underlying data. The resulting segmented copy-number profiles were then subject to 

joint inference of tumor purity and ploidy and absolute copy number states, implemented in 

CNVEX, which is most similar to the mathematical formalism of ABSOLUTE (Carter et al., 

2012) and PureCN (Riester et al., 2016). Briefly, the algorithm inputs the observed log-ratios 

(of 10kb bins) and BAFs of individual SNPs. LRs and BAFs are assigned to their joint 

segments and their likelihood is determined given a particular purity, ploidy, absolute 

segment copy number, and number of minor alleles. To identify candidate combinations with 

a high likelihood, we followed a multi-step optimization procedure that includes grid-search 

(across purity-ploidy combinations), greedy optimization of absolute copy numbers, and 

maximum-likelihood inferences of minor allele counts. Following optimization, CNVEX 
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ranks candidate solutions. Because the copy-number inference problem can have multiple 

equally likely solutions, further biological insights are necessary to choose the most 

parsimonious result. The solutions have been reviewed by independent analysts following a 

set of guidelines. Solutions implying whole-genome duplication must be supported by at 

least one large segment that cannot be explained by a low-ploidy solution, inferred purity 

must be consistent with the variant-allele-frequencies of somatic mutations, and large 

homozygous segments are not allowed. Clonal loss or LOH of 3p is very likely in ccRCC, 

whereas near-haploid and very high ploidy solutions are unlikely.

Classification of Samples with Genome instability: To classify the tumor samples into 

genome instability+ samples and genome stability-samples, we calculated the proportion of 

genome altered (PGA), which is defined as the length of all segments that have copy number 

(as inferred by CNVEX) different from C = 2 K = 1; i.e., diploid heterozygous divided by 

the total length of the genome. The resulting PGA score isabimodal distribution with one 

peak < 25% and the other peak near 100%. We dichotomized the samples into two genome 

instability categories using a cutoff of 0.85, which has the local minimal density separating 

two peaks. The genome instability+ group was enriched with late-stage tumors and the 

CIMP+/− differential marker genes were recapitulated based on our classification (Figure 

1C; Table S2).

Transcriptomic Data Processing—Transcriptomic data were analyzed as described 

previously (Robinson et al., 2017), using the Clinical RNA-seq Pipeline (CRISP) developed 

at University of Michigan (https://github.com/mcieslik-mctp/crisp-build). Briefly, raw 

sequencing data were trimmed, merged using BBMap, and aligned to GRCh38 using STAR. 

The resulting BAM files were analyzed for expression using feature counts against a 

transcriptomic reference based on Gencode 26. The resulting gene-level counts for protein-

coding genes were transformed into FPKMs using edgeR.

Proteomic Data Processing

Protein database searching and quantification of global and phosphoproteomic 
data: Raw mass spectrometry files were converted into open mzML format using the 

msconvert utility of the Proteowizard software suite. MS/MS spectra were searched using 

the MSFragger database search tool (Kong et al., 2017) against a CPTAC harmonized 

RefSeq protein sequence database appended with an equal number of decoy sequences. For 

the analysis of whole proteome data, MS/MS spectra were searched using a precursor-ion 

mass tolerance of 20 ppm, fragment mass tolerance of 20 ppm, and allowing C12/C13 

isotope errors (−1/0/1/2/3). Cysteine carbamidomethylation (+57.0215) and lysine TMT 

labeling (+229.1629) were specified as fixed modifications, and methionine oxidation 

(+15.9949), N-terminal protein acetylation (+42.0106), and TMT labeling of peptide N 

terminus and serine residues were specified as variable modifications. The search was 

restricted to fully tryptic peptides, allowing up to two missed cleavage sites. For the analysis 

of phosphopeptide enriched data, the set of variable modifications also included 

phosphorylation (+79.9663) of serine, threonine, and tyrosine residues.
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The search results were further processed using the Philosopher pipeline (https://github.com/

Nesvilab/philosopher). Whole proteome and phosphopeptide-enriched datasets were 

processed separately but using the same pipeline steps, except when noted. First, MSFragger 

output files (in pepXML format) were processed using PeptideProphet (Keller et al., 2002) 

(with the high–mass accuracy binning and semi-parametric mixture modeling options) to 

compute the posterior probability of correct identification for each peptide to spectrum 

match (PSM). In the case of the phosphopeptide-enriched dataset, PeptideProphet files were 

additionally processed using PTMProphet (Deutsch et al., 2015) to localize the 

phosphorylation sites. The resulting pepXML files from PeptideProphet (or PTMProphet) 

from all 23 TMT 10-plex experiments were then processed together to assemble peptides 

into proteins (protein inference) and to create a combined file (in protXML format) of high 

confidence protein groups. Corresponding peptides were assigned to each group. The 

combined protXML file and the individual PSM lists for each TMT 10-plex were further 

processed using Philosopher filter command as follows. Each peptide was assigned either as 

a unique peptide to a particular protein group or assigned as a razor peptide to a single 

protein group that had the most peptide evidence. The protein groups assembled by 

ProteinProphet (Nesvizhskii et al., 2003) were filtered to 1% protein-level False Discovery 

Rate (FDR) using the chosen FDR target-decoy strategy and the best peptide approach 

(allowing both unique and razor peptides) and applying the picked FDR strategy (Savitski et 

al., 2015). In each TMT 10-plex, the PSM lists were filtered using astringent, sequential 

FDR strategy, retaining only those PSMs with PeptideProphet probability of 0.9 or higher 

(which in these data corresponded to less than 1% PSM-level FDR) and mapped to proteins 

that also passed the global 1% protein-level FDR filter. For each PSM that passed these 

filters, MS1 intensity of the corresponding precursor-ion was extracted using the 

Philosopher label-free quantification module based on the moFF method (Argentini et al., 

2016) (using 10 p.p.m mass tolerance and 0.4 min retention time window for extracted ion 

chromatogram peak tracing). In addition, for all PSMs corresponding to a TMT-labeled 

peptide, ten TMT reporter ion intensities were extracted from the MS/MS scans (using 0.002 

Da window) and the precursor ion purity scores were calculated using the intensity of the 

sequenced precursor ion and that of other interfering ions observed in MS1 data (within a 

0.7 Da isolation window). All supporting information for each PSM, including the accession 

numbers and names of the protein/gene selected based on the protein inference approach 

with razor peptide assignment and quantification information (MS1 precursor-ion intensity 

and the TMT reporter ion intensities) was summarized in the output PSM.tsv files, one file 

for each TMT 10-plex experiment. The PSM.tsv files were further processed using TMT-

Integrator (https://github.com/Nesvilab/TMT-Integrator) to generate summary reports at the 

gene and protein level and, for phosphopeptide enriched data, also at the peptide and 

modification site levels. In the quantitation step, TMT-Integrator used as input the PSM 

tables generated by the Philosopher pipeline as described above and created integrated 

reports with quantification across all samples at each level. First, PSM from PSM.tsv files 

were filtered to remove all entries that did not pass at least one of the quality filters, such as 

PSMs with (a) no TMT label; (b) missing quantification in the Reference sample; (c) 

precursor-ion purity less than 50%; (d) summed reporter ion intensity (across all ten 

channels) in the lower 5% percentile of all PSMs in the corresponding PSM.tsv file (2.5% 

for phosphopeptide enriched data); (e) peptides without phosphorylation (for 
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phosphopeptide enriched data). In the case of redundant PSMs (i.e., multiple PSMs in the 

same MS run sample corresponding the same peptide ion), only the single PSM with the 

highest summed TMT intensity was retained for subsequent analysis. Both unique and razor 

peptides were used for quantification, while PSMs mapping to common external 

contaminant proteins (that were included in the searched protein sequence database) were 

excluded. Next, in each TMT 10-plex experiment, for each PSM the intensity in each TMT 

channel was log2 transformed, and the reference channel intensity (pooled reference sample) 

was subtracted from that for the other nine channels (samples), thus converting the data into 

log2-based ratio to the reference scale (referred to as ‘ratios’ below). After the ratio-to-

reference conversion, the PSMs were grouped on the basis of a predefined level (gene, 

protein, and also peptide and site-level for phosphopeptide enriched data; see below for 

details). At each level, and in each sample, the interquartile range (IQR) algorithm was 

applied to remove the outliers in the corresponding PSM group. The first quantile (Q1), the 

third quantile (Q3), and the interquartile range (IQR, i.e., Q3-Q1) of the sample ratios were 

calculated, and the PSMs with ratios outside of the boundaries of Q1-1.5*IQR and 

Q3+1.5*IQR were excluded. Then, the median was calculated from the remaining ratios to 

represent the ratio for each sample, at every level. In the next step, the ratios were 

normalized using the median absolute deviation (MAD). Briefly, independently at each level 

of data summarization (gene, protein, peptide, or site), given the p by n table of ratios for 

entry j in sample i, Rij, the median ratio Mi = median(Rij, j = 1,…,p), and the global median 

across all n samples, M0 = median(Mi, i = 1,…,n), were calculated. The ratios in each 

sample were median centered, Rij
C = Rij − Mi. The median absolute deviation of centered 

values in each sample, MADi = median abs Rij
C , j = 1…p  was calculated along with the 

global absolute deviation, MAD0 = median MADi, i = 1, …, n . All ratios were then scaled to 

derive the final normalized measures: Rij
N = Rij

C/MADi × MAD0 + M0. As a final step, the 

normalized ratios were converted back to the absolute intensity scale using the estimated 

intensity of each entry (at each level, gene/protein/peptide/site) in the Reference sample. The 

Reference Intensity of entry I measured in TMT 10-plex k (k = 1,…q), REFik, was estimated 

using the weighted sum of the MS1 intensities of the top three most intense peptide ions 

(Ning et al., 2012) quantified for that entry in the TMT 10-plex k. The weighting factor for 

each PSM was taken as the proportion of the reference channel TMT intensity to the total 

summed TMT channel intensity. The overall Reference Intensity for entry i was then 

computed as REFi = Mean(REFik, k = 1,…,q). In doing so, the missing intensity values (i.e., 

no identified and/or quantified PSMs in a particular TMT 10-plex experiment) were imputed 

with a global minimum intensity value. The final abundance (intensity) of entry i in sample j 

(log2 transformed) was computed as Aij = Rij
N + log2 REFi . The ratio and intensity tables 

described above were calculated separately for each level (gene and protein for whole 

proteome, and also peptide and site-level for phosphopeptide enriched data). PSMs were 

grouped as follows. At the gene level, all PSMs were grouped based on the gene symbol of 

the corresponding protein to which they were assigned as either unique or razor peptides. In 

the protein tables, identified proteins that mapped to the same gene were kept as separate 

entries. To generate peptide-level and site-level tables, additional post-processing was 

applied to generate all non-conflicting phosphosite configurations using a strategy similar to 
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that described in Huang et al. (2017). In doing so, confidently localized sites were defined as 

sites with PTMProphet localization probability of 0.9 or higher. The same peptide sequences 

but with different site configurations, i.e., different site localization configurations or 

peptides with unlocalized sites, were retained as separate entries in the site-level tables. In 

the peptide-level tables, different site-level configurations were combined into a single 

peptide-level index, grouping PSMs with all site configurations together if they 

corresponded to the same peptide sequence. The tutorial describing all steps of the analysis, 

including specific input parameter files, command-line option, and all software tools 

necessary to replicate the results are available at https://github.com/Nesvilab.

Creation of a Patient-Specific Protein Sequence Database: The proteogenomic database 

tool pyQUILTS (Ruggles et al., 2016), available at http://quilts.fenyolab.org, was used to 

incorporate the germline and somatic SNVs and RNA-seq-predicted junctions into a 

searchable protein database. The human RefSeq protein database (downloaded 2018/06/29) 

was used as a reference for the hg38 proteome and genome.

Variant Peptide Identification and Neoantigen Prediction: NeoFlow (https://github.com/

bzhanglab/neoflow) was used for neoantigen prediction. Specifically, Optitype (Szolek et al., 

2014) was used to identify human leukocyte antigens (HLA) in the WES data. netMHCpan 

(Jurtz et al., 2017) was then used to predict HLA peptide binding affinity for somatic 

mutation-derived variant peptides with a length between 8-11 amino acids. The cutoff of 

IC50 binding affinity was set to 150 nM. HLA peptides with binding affinity higher than 150 

nM were removed. Variant identification was also performed at the mRNA and protein levels 

using RNA-seq data and MS/MS data, respectively. To identify variant peptides, we used a 

customized protein sequence database approach (Wang et al., 2012). Two different 

workflows were used. In the first workflow, we derived customized protein sequence 

databases from matched WES data and performed database searching using the customized 

databases for individual TMT experiments. We built a customized database for each TMT 

experiment based on somatic variants from WES data. Customprodbj (https://github.com/

bzhanglab/customprodbj) was used to construct customized databases. MS-GF+ was used to 

identify variant peptides for all global proteome and phosphorylation data. Results from MS-

GF+ were filtered with 1% FDR at PSM level. Remaining variant peptides were further 

filtered using PepQuery (http://www.pepquery.org) (Wen et al., 2019) with the p value cutoff 

≤ 0.01. Variant peptide spectra were annotated using PDV (http://www.zhang-lab.org/) (Li et 

al., 2019). In the second workflow, the RefSeq-based protein database used in the main 

analysis was trypsin digested in silico allowing up to one missed cleavage and treating N-

terminal methionine excision as a variable modification to produce two sets of N-terminal 

peptides (methionine excised and methionine retained). One additional missed cleavage was 

retained for peptides containing KP and RP amino acids. Isoleucine and leucine occurrences 

were set to leucine as they are indistinguishable during peptide sequencing. QUILT-derived, 

patient-specific protein FASTA files corresponding to all samples within a given TMT-plex 

were combined. From these files, a set of unique peptides was generated from each protein, 

and any of these peptides that occurred within the RefSeq database were removed. The result 

of this process was a protein FASTA file, in which every peptide present within the 

combined personalized QUILT FASTA that was not found within the RefSeq database was 
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retained for searching. The new customized databases were used to search each 

corresponding dataset against spectra previously classified as having a PeptideProphet score 

lower than 0.5. The new database searches were carried out using the MSFragger 

methodology described previously (Kong et al., 2017). Resulting PSMs were filtered, 

keeping only charge states 2, 3 and 4 and PSMs with delta mass between > −.05 and 2.5. 

After scoring all identifications with FDRs, the best PSM from each experiment was 

selected, generating quantitation tables of raw abundance and ratio to common reference. In 

global and phosphorylation-enriched datasets, post processing was completed to annotate 

misidentified novel peptides that are contained within UniProt Swiss-Prot (ret. 22 June 

2019) and to identify the patients from which each novel peptide was derived. In the 

phosphorylation-enriched dataset, a column (called isMatch) was added to check whether 

mutation sites overlap with novel peptide phosphorylation sites. The somatic variant 

peptides identified by either of the two workflows were used for downstream analysis.

Protein database searching and quantification of global data independent acquisition 
data: Raw mass spectrometry files from DIA (n = 194) and DDA (n = 8) platforms were 

processed using the DIA-Umpire (Tsou et al., 2015) based pipeline to generate a combined 

spectral library that integrated DDA and DIA search results. In brief, DIA data were first 

processed using DIA-Umpire to generate deconvoluted (pseudo-MS/MS) spectra. DDA and 

pseudo-MS/MS DIA spectra were then searched using the MSFragger (Kong et al., 2017) 

search engine against the same CPTAC harmonized RefSeq protein sequence database as for 

TMT data analysis (with an addition of the sequences of iRT peptides). The search was 

completed using tryptic peptides only, allowing up to two missed cleavages, allowing 

methionine oxidation and protein N-terminal acetylation as variable modifications, and 

cysteine carbamylation as a fixed modification. The search results were further processed 

using the Philosopher pipeline, including PeptideProphet and iProphet (run using the same 

settings as for TMT data as described above). Retention times of peptide identifications from 

all DIA and DDA runs were aligned to a single reference DIA run using high quality peptide 

identifications. ProteinProphet was run using all iProphet pepXML files (i.e., from all DIA 

and DDA runs) to generate a single combined protXML file, and the protein list was filtered 

to 1% protein-level FDR. PSMs identified in each individual data subset (DDA or DIA) 

were then filtered using the Philosopher filter utility to 1% peptide ion-level FDR separately 

in each subset. Only those PSMs that mapped to proteins in the 1% protein-level FDR 

filtered combined DDA plus DIA protein list were retained. These filtered PSMs, with 

aligned retention times, were used to generate two spectral libraries using SpectraST, one for 

DIA and one for DDA data subsets. The retention times were further transformed to the 

indexed retention time (iRT) scale using standard peptides spiked into the samples. The 

consensus MS/MS spectra were generated for each peptide ion, and the spectral libraries 

were refined to contain only selected peptide fragments using the spectrast2tsv script from 

the msproteomicstools resource (https://github.com/msproteomicstools), requiring a 

minimum of three and a maximum of six fragments per spectrum, fragment m/z values 

between 250 and 2000 Da only, and b and y ion types only, but allowing neutral losses of 

water or ammonia. The resulting DIA and DDA spectral libraries were combined. When the 

same peptide ion was present in both libraries, the DIA spectrum was selected for the 

combined library. The combined library was then converted to Spectronaut (Biognosys) 
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format for subsequent targeted re-extraction of quantification information. The combined 

spectrum library was loaded into Spectronaut, and targeted quantification was performed 

using default settings. For protein quantification, all abundances were calculated as the area 

under the extracted ion chromatogram (XIC) of all selected fragments that passed filtering. 

The data were filtered using the global protein-level FDR value of 1%, and proteins were 

quantified in each individual DIA run using peptides that passed the run-specific peptide ion 

q-value of 0.01. Protein abundances for select candidates (PECAM1, VEGFA, PKM, HLA-

C, C5, HLA-A, PGM1, HLA-B, POSTN, STAT1) were extracted and reported in Table S7. 

DIA expression matrix of select proteins (ccRCC-DIA_selected_proteins.csv) is available at 

https://cptac-data-portal.georgetown.edu/cptac/s/S050

Preprocessing of ccRCC proteomics data: Global protein and phosphosite abundances 

from 194 samples were measured in 23 TMT-10plexes in this experiment, which identified 

11,355 unique genes in global protein abundance along with 100,730 phosphosites. There 

were 18.4% data missing in global protein abundance with 7,150 genes completely 

observed. In the phosphoproteomic analyses, 67.5% of data was missing in phosphosite 

abundance, with 5,584 phosphosites from 2,443 genes completely observed. Before 

performing any downstream analysis, we applied batch correction on global and 

phosphoproteome abundance to remove the technical difference between different TMT 10-

plexes. An R tool, ComBat, with tumor/normal status adjustment was applied to remove 

batch effects (Johnson et al., 2007). To impute missing values, we used DreamAI (https://

github.com/WangLab-MSSM/DreamAI), an ensemble algorithm developed during the NCI-

CPTAC Dream Proteomics Imputation Challenge (https://www.synapse.org/#!

Synapse:syn8228304/wiki/413428). Only those phosphosites and proteins with a missing 

rate less than 50% were imputed. After imputation, the number of phosphosites deemed 

valid for downstream analyses was boosted to 26,814 (from 5,571 genes).

Sample labeling check of ccRCC dataset: Integrating multiple layers of omics data 

enhances our understanding of complex molecular mechanisms in biological systems. 

However, unintended errors in annotations and sample mislabeling often occur when 

generating and managing large-scale data (Alyass et al., 2015). Since integrative analysis 

based on erroneous data could lead to inaccurate scientific conclusions, a sample-labeling 

check is a critical QC step before integration. In this study, we performed a systematic QC 

procedure to confirm that all annotations in clinical information and sample names were 

consistent. We checked tissue annotations (tumor or normal), gender annotations (male or 

female), and sample matching among RNA-seq, proteomics and phosphorylation data.

1. Tissue Annotation. We performed PCA independently in RNA-seq, proteomics 

and phosphorylation data. As expected, normal and tumor tissues were well 

separated without exception, suggesting that tissue information is consistent with 

given annotation.

2. Gender Annotation. Expression of marker genes in X and Y chromosomes can 

help to infer gender of the samples from which they are analyzed (Staedtler et al., 

2013). After combining all normal and tumor RNA-seq samples, male- and 

female-annotated samples were compared on a t test. Two Y chromosome genes 
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(RPS4Y1 and DDX3Y) showed the strongest separation (t test p values = 6.1 × 

10−140 and 4.4 × 10−136 respectively). When using the expression of these two 

genes, genders agreed between annotation and expression in all samples. When a 

similar approach was applied to proteomics and phosphorylation data, the signal 

was less clear than in RNA-seq data. Hence, it proved difficult to check gender 

consistency using proteomics and phosphorylation data.

3. Sample Alignment. Although we assessed the accuracy of tissues and gender 

information, sample mislabeling could still occur by swapping, shifting, or 

duplicating two samples from the same tissue or genders. Therefore, it is 

necessary to confirm that complementary samples used in RNA-seq, proteomics, 

and phosphorylation analyses are from the same individuals. We applied a 

pairwise alignment procedure developed by us previously (Yoo et al., 2014) 

using all samples that compared global proteomics and phosphoproteomics, 

RNA-seq and global proteomics, and RNA-seq and phosphoproteomics. First, 

the top 500 cis genes were identified based on the correlation coefficient for each 

of proteomics-phosphorylation, RNA-seq-proteomics, and RNA-seq-

phosphorylation pair. Then the values of the 500 genes were rank-transformed to 

obtain a sample-wise similarity score. If a sample matches between two types of 

data, its sample similarity score should be higher than the score when compared 

to other cases, which have null distribution with mean 0. Using this approach, we 

confirmed that all 110 tumor and 84 normal tissues were perfectly matched 

between global proteomic and phosphoproteomic data. All tumor samples in 

RNA-seq were well matched with their corresponding global proteomic and 

phosphoproteomic data except for one normal sample, CPT0012090003, whose 

self-similarity score did not differ from scores corresponding to other samples 

(Figure S1A; Table S1). Indeed, the RNA expression of this sample did not 

match its proteomic profile (both global and phosphoprotein abundance). While 

this error could arise from either RNA-seq orglobal-proteomic/phosphorylation 

data since global proteomic and phosphorylation data for this sample were well 

aligned. This sample was removed from all further downstream analysis as the 

error-source remained unresolved.

CNV Integrated Analysis

Genomic determination of 103 ccRCC versus 7 non-ccRCC samples from 110 
pathologically defined ccRCC tumors: Outlier samples identified PCA of by RNA-seq 

data using Omics Explorer (Qlucore, Lund, Sweden) also exhibited low expression of 

ccRCC biomarkers such as ANGPTL4, CA9, and NDUFA4L2, among others and were 

subject to further critical evaluation for genomic aberrations (copy number variations 

(CNVs) and mutations) (Figures S1B–S1D). Samples C3N-00492 and C3N-00175 showed 

one copy loss of chromosomes 1, 2, 6, 10, 13 and 17 along with TP53 mutations and 

contained high expression of several biomarkers (such as FOXI1, RHCG) (Lindgren et al., 

2017) that are characteristic of chromophobe RCC (chRCC). In addition, samples 

C3N-00832 and C3N-00313 contained PTEN mutations, and the latter also showed outlier 

expression of the papillary RCC biomarker VSTM2A (Wang et al., 2018a), along with gain 
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of chr7, and PIK3R1 mutation and were thus categorized as likely papillary RCCs. Sample 

C3L-00359 contained bi-allelic loss of TSC1 along with histologic features of eosinophilic 

solid cystic RCC (ESC-RCC) (Mehra et al., 2018), while C3N-01180 had a SFPQ-TFE3 
gene fusion, a hallmark of translocation RCC. Finally, C3N-00435 contained 3p loss with a 

PIK3CA hotspot mutation. These seven samples were therefore annotated as non-ccRCC 

samples and excluded from the ccRCC cohort in all downstream analyses (Table S1).

Detection of Chromosomal Arm-Level Aberration: GISTIC2 (Mermel et al., 2011) was 

used to process the segment-level CNV log ratios and define chromosome arm-level gain/

loss events for 3p, 5q, 7p, 9p, and 14q, using the default threshold setting (i.e., -ta and -td 

were both set to 0.1). From the GISTC2 arm-level outputs, we defined the positive and 

negative values as arm gain and loss events, respectively. Since GISTIC2 by design ignores 

arm-level CNVs, we next identified arm-level recurrence of gains/losses using an alternate 

approach. For each chromosome arm, we calculated the average (weighted) maximum-

likelihood copy number (clonal orsubclonal) relative to 2 (diploid). Similarly, for each 

chromosome arm, we calculated the proportion of the arm that shows LOH, including copy-

neutral LOH. Following thresholding, (for CN gain (> 0.5) or loss (< −0.5)) these two 

proportions were used to estimate population-level recurrence of arm-level losses/gains and 

LOH, respectively. For chromosome 3p, only the loss (< −0.5) was investigated for LOH 

(defined as > 0.5). The detailed annotation of all chromosome arm events is provided (Table 

S2).

Heatmap Web Server: We developed an online application that allows researchers to query 

the dataset for genes of interest, rendering a downloadable table and corresponding heatmap 

visualization of the select data. The underlying data consist of quantitative information on 

copy number alteration, mutation, methylation, RNA-seq gene expression, protein 

expression, and phosphosite expression for 22,867 genes across 110 samples. Data tracks for 

each gene are labeled as: “Mut”-mutation data (“Yes” is any types of mutation, “No” is no 

mutation), “Methy”-beta value of CpG island in the promoter region of the gene 

(standardized), “CNV (lr)”-the log ratio of copy number variation, “CNV (baf)”-the b-allele 

frequency of the copy number variation (standardized), “mRNA”-gene expression levels 

(standardized), “Protein”-gene-level protein abundance (standardized), and “Phospho”-gene-

level phosphoprotein abundance (standardized). Genomic and clinical annotation data are 

displayed on the top and bottom of the visualization. Tracks on the top include genomically 

confirmed ccRCC and non-ccRCC, 3p copy number variation, and an immune grouping for 

each sample. Bottom-placed tracks visualize CNV data for chromosomes 5q, 7p, 9p, and 

14q, t(3;2) and t(3;5) chromosome translocations, CIMP status, and genomic instability 

status, as well as grade, stage, and gender information. The application can be accessed at 

http://ccrcc.cptac-data-view.org. This is an entirely web-based application, and users do not 

need to download any software outside of a web browser to visualize and access the data. 

Users begin by entering official symbols for up to thirty genes into a text field. For 

convenience, the input gene list may be separated by tabs, commas, semicolons, single 

spaces, or line breaks. All gene symbols found in the underlying dataset will be used to 

generate an Excel file (.xls) and corresponding heatmap visualization. The raw data and 

graphic visualization (.png) can be downloaded to a local computer for further exploration or 
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for use in publication. The application can also be used for interactive visual exploration of 

the data. Users may click any data point on the interactive heatmap to view the underlying 

values, including the sample identifier, data type, and value. By clicking a link next to the 

sample identifier, users can view direct links to the histological images corresponding to the 

sample, organized by tissue location. When available, the user can click gene symbols on the 

heatmap to view summary descriptions from the NCBI. Users can sort the entire heatmap by 

a single data track, in ascending or descending order. The sorted visualization can then be 

downloaded with a button. This functionality enables users to explore dynamically the 

relationships and patterns among different tracks.

Downstream Analysis of Chromosome Arm 3p translocation: This cohort featured 

frequent chromosome 3p arm translocation (e.g., to chromosome 5q and results in 3p loss 

and 5q gain) (Figure 1B). An association analysis of chromosome 3p arm translocation 

events was performed with each of the 9,190 protein abundances (with missing rate < 50%) 

across 110 ccRCC tumor samples to identify the proteomic functional impacts of the 

translocation events. Specifically, three types of translocation categories, Chr3-Chr2, Chr3-

Chr5, and Chr3-other, were simultaneously considered in the regression models, and an 

ANOVA test was applied to assess whether any translocation was associated with the protein 

abundances in the tumors. Age, gender, ischemic time, OCT status and tumor purity were 

adjusted as covariates. The most significant protein was SETD2 (p = 8E - 6; FDR < 0.05). 

Post-ANOVA assessment of each event indicated that Chr3-Chr2 translocation was 

significantly associated with decreased abundance in SETD protein abundance (Figure S1F), 

which is consistent with the high mutation rate observed in Chr3-Chr2 group (Figure S1E).

iProFun-Based Cis Association Analysis: The integrative analysis tool, iProFun (Song et 

al., 2019), was used to identify functional molecular quantitative traits perturbed by DNA-

level variations (https://github.com/WangLab-MSSM/iProFun). Compared to analyzing each 

molecular trait separately, iProFun models multi-omic data jointly, thereby enhancing the 

power for detecting significant cis-associations shared across different omics data types and 

achieves better accuracy in inferring cis-associations unique to certain types of molecular 

traits. Specifically, we considered three functional molecular quantitative traits (mRNA 

expression levels, global protein abundances, and phosphopeptide abundances) for their 

associations with four DNA-level variations (copy number alterations measured by log 

ratios, copy number alterations measured by b-allele frequency, DNA methylations and 

somatic mutations).

Data and preprocessing:  We analyzed data from 110 tumors in the CPTAC cohort. mRNA 

expression levels measured with RNA-seq were available for 19,293 genes (https://cptac-

data-portal.georgetown.edu/cptac/s/S050; RNA_rpkm_tumor_normal.tsv), while global 

protein abundance measurements were available for 11,355 genes (https://cptac-data-

portal.georgetown.edu/cptac/s/S050; CPTAC3_CCRCC_Whole_ 

abundance_gene_protNorm = 2_CB.tsv) and the phosphopeptide abundances were available 

for 42,893 peptides (https://cptac-data-portal.georgetown.edu/cptac/s/S050; 

CPTAC3_CCRCC_Phospho_abundance_phosphopeptide_protNorm%3D2_CB_ 1211.tsv) 

from 8,502 genes. The log ratios and b-allele frequencies of copy number alterations were 
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obtained from WGS and WES data using a segmentation method for 19,285 and 19,293 

genes, respectively. The DNA methylation levels (beta values) averaging the CpG islands 

located in the upstream and nearby transition starting site (TSS) regions, including 5UTR, 

first exon, and upstream TSS were available for 15,885 genes. Somatic mutations were 

called using WES (see SNV calling section above). All data types were preprocessed to 

eliminate potential issues such as batch effects, missing data, and major unmeasured 

confounding effects. All seven types of data were filtered with a missing rate > 50%. mRNA 

expression levels and global protein and phosphoprotein abundances were also normalized 

to a standard normal distribution. Somatic mutations with > 5% frequency were considered 

in iProFun for their functional consequences on molecular quantitative traits (QTs). To 

account for potential confounding factors, we considered age, gender and tumor purity. 

Tumor purity was determined from RNA-seq data using ESTIMATE (Yoshihara et al., 

2013).

iProFun procedure:  The iProFun procedure was applied to 4,009 genes measured across 

all six data types (mRNA, global protein, phosphoprotein, CNA – lr, CNA – baf, DNA 

methylation) for their cis regulatory patterns in tumors. Thirteen genes with frequent somatic 

mutations (mutation rate > 5%) were also considered for their effects on cis molecular QTs. 

Specifically, for the remaining 3986 genes, we considered the following three regressions:

mRNA ∼ CNV lr + CNV baf + methy + covariates,

global ∼ CNV lr + CNV baf + methy + covariates, and

phosphor ∼ CNV lr + CNV baf + methy + covariates .

For the thirteen genes with frequent somatic mutations we considered the following three 

regressions:

mRNA ∼ CNV lr + CNV baf + methy + mutation + covariates,

global ∼ CNV lr + CNV baf + methy + mutation + covariates, and

phosphor ∼ CNV lr + CNV baf + methy + mutation + covariates,

The association summary statistics of CNV (lr), CNV (baf), and methy from two sets of 

regression frameworks were combined and applied to iProFun to call the posterior 

probability of belonging to each of the eight possible configurations (“None,” “mRNA 

only,” “global only,” “phosphor only,” “mRNA & global,” “mRNA & phosphor,” “global & 

phosphor,” and “all three”) (Figure S2A), to estimate the variation of molecular QTs 

explained by each DNA variations (R2), and to determine significance associations.
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Table S3 and Figure S2B present the significant genes that pass three criteria: (1) satisfying 

the biologic filtering procedure, (2) posterior probabilities > 75%, and (3) empirical false 

discovery rate (eFDR) < 5%. Specifically, we posed the biological filtering criterion for 

CNV and DNA methylations. Only CNV (lr) that were positively associated with all the 

types of molecular QTs, DNA methylations that were negatively associated with all types of 

molecular QTs, and CNVs (baf) with associations of consistent direction (either positive or 

negative) with all types of molecular QTs were considered for significance calling. A 

significance was then called only if the posterior probability > 75% of a predictor being 

associated with a molecular QT was greater than 75%, by summing over all configurations 

that are consistent with the association of interest. For example, the posterior probability of a 

DNA methylation being associated with mRNA expression levels was obtained by summing 

up the posterior probabilities in the following four association patterns – “mRNA only,” 

“mRNA & global,” “mRNA & phosphor,” and “all three,” all of which were consistent with 

the association of DNA methylation with mRNA expression. Lastly, we calculated empirical 

FDR (eFDR) via 100 permutations per molecular QTs by shuffling the label of the 

molecular QTs and requesting eFDR < 5% by selecting a minimal cutoff value of alpha such 

that 75% < alpha < 100%. The eFDR is calculated by:

eFDR = Averaged number of genes with posterior probabilities > alpha in permuted data /
× Averaged number of genes with posterior probabilities > alpha in original data

Among all the genes whose phosphoproteins were significantly associated with tumor versus 

normal and with tumor grade, CNV, and methylation with cascade effects, i.e., 

demonstration of significant association with all of the three traits (mRNA levels, protein 

and phosphopeptide abundances) were plotted in Figure 2A. Table S3 catalogs R2 range 

(0,1) by providing the percentage of adjusted variances explained by each type of DNA 

alterations. These R2 were obtained by contrasting multiple regression R2 values between 

the full model and models without the predictor of interest. For example, to calculate R2 of 

DNA methylation of a gene with a low mutation rate on its cis mRNA, the R2_full value is 

generated from model mRNA ~CNV (lr) + CNV (baf) + methy + covariates, whereas the 

R2_reduced value is from model mRNA ~CNV (lr) + CNV (baf) + methy + covariates. The 

difference, R2_diff is calculated as R2_full - R2_reduced and represents R2 of mRNA 

explained by DNA methylation in this gene. For the additional thirteen somatic mutations, 

posterior probabilities could not be called robustly using iProFun, as alternative densities 

used in iProFun cannot be inferred accurately using only thirteen observations. We only 

required eFDR < 5% and consistent direction in association with all types of molecular QTs 

to call significance. The R2 can be obtained in the same way as in other DNA variations. 

Table S3 presents the iProFun results based on measured mRNA and protein, without 

considering phosphoprotein. This exercise begins with a large number of genes that are 

measured across mRNA and protein.

Trans Association Analysis: We analyzed ten genomic features to understand their cis and 

trans associations with multi-omic molecular QTs in 110 cases in this cohort (Figures 2B 

and S2D). Specifically, we considered multiple linear regression to evaluate the association 

between each pair of genomic feature and molecular trait adjusting for potential 
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confounding factors. The mRNA expression and global protein abundances were considered 

at gene-level, and the phosphopeptide data were considered at the peptide level. In ccRCC, a 

total of 19,293 mRNA expression levels, 11,355 global protein abundances and 42,893 

peptide-level phosphoprotein abundances were quantified, respectively. We required a 

missing rate < 50% for consideration in association analyses, with 17,461 mRNA expression 

levels, 9,190 protein abundances and 21,245 phosphopeptide abundances being analyzed. 

All outcomes were normalized to match to a standard normal distribution before entering the 

regression models. We considered five chromosome arm-level genomic features (3p, 5q, 7p, 

9p and 14q) that are most prevalent in the genome, one global methylation feature (CpG 

Island Methylator Phenotype (CIMP)), and five key mutations (VHL, PBRM1, BAP1, 
SETD2, KDM5C) for ccRCC (Table S3). For chromosome arms 3p and 14q, we compared 

copy loss with copy neutral. For chromosome arm 5q and 7p, we compared amplification 

with neutral. In 7p, we excluded four samples with loss from the analysis. CIMP was treated 

as a categorical variable; CIMP+ and CIMP− were compared in regression. For five 

mutations, we grouped all mutation types for power purposes and compared mutation versus 

no mutation in the analysis. We adjusted for potential confounding factors that could affect 

the association between trans genomic features and molecular traits in the analyses, 

including age, gender, OCT embedding, ischemic time, and tumor purity. Ischemic time was 

calculated as minutes from the initial clamping to collection and minutes from collection to 

freezing, if a clamp was used in the surgery. If no clamp was used in the surgery, the 

ischemic time was defined as minutes from collection to freezing. We considered eFDR to 

call for significance to account for complex unknown gene/gene correlations. Specifically, 

we first calculated t statistics for the association between a genomic feature and all genes/

peptides of a given data type (e.g., mRNA) via multiple regression, thus adjusting for 

confounding factors. We then permuted our sample 100 times by shuffling the sample label 

of the outcomes to re-calculate the t statistics. For a pre-specified t statistics cut-off value, T, 

a gene was considered positive if it’s absolute t statistics were greater than T. Empirical FDR 

was calculated as noted previously for a pre-specified T value. The smallest T values that 

allow an averaged empirical FDR < 10% were used as the final cutoffs, and all genomic 

feature and molecular trait pairs with absolute t statistics greater than the cutoff were 

considered significant associations. The significant trans associations of the selected key 

features (3ploss, 5q amplification, 7p amplification, 9ploss, 14q loss, CIMP, VHL, PBRM1, 
BAP1, SETD2, KDM5C) Figures 2B and S2D) were binarized to +1 (positive) and −1 

(negative) according to the calculated association values above and visualized in Figures 2B 

and S2D using OmicsOne (Hu et al., 2019), a toolkit for data visualization and analysis of 

multi-omic data (https://github.com/ HuiZhangLab-JHU/OmicsOne). The cumulative 

density of the positive and negative associations on each individual chromosome was 

counted to illustrate the propagation heterogeneity of trans associations on different 

chromosomal locations. For each one of the eleven genomic events, pathway analyses were 

considered based on their association summary statistics with 9,190 genes that were 

observed in more than 50% of the 110 clinical samples. Specifically, a quantity T = − 

sign(beta) log(p value) was considered for the association between each pair of genomic 

event and protein abundance. The T value will be extremely high if the genomic event is 

significantly upregulated in the protein abundance, extreme negative values if the genomic 

event is significantly downregulated in the protein abundance, and values close to zero if the 
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genomic event is not associated with the protein abundance. For each genomic event and 

each pathway under consideration, we tested if T_in = T_out using a two-sided Wilcoxon 

rank-score test, where T_in are the T values for all proteins inside of the pathway and T_out 

are the T values for all proteins outside of the pathway. Databases from Hallmark (MsigDB 

Collections), KEGG, and Reactome were combined for pathway analysis (Joshi-Tope et al., 

2005; Liberzon et al., 2011; Ogata et al., 1999). The significance threshold was set as FDR < 

0.05 to identify pathways that were most significantly associated with the genomic features. 

The direction of regulation (up versus down) was given by test statistics, with T_in > T_out 

indicating upregulation and T_in < T_out indicating downregulation.

Correlation of mRNA and Protein Expression: A total of 7,026 genes with complete 

mRNA (https://cptac-data-portal.georgetown.edu/cptac/s/S050; RNA_rpkm_tumor_ 

normal.tsv) and protein (https://cptac-data-portal.georgetown.edu/cptac/s/S050; 

CPTAC3_CCRCC_Whole_abundance_gene_ protNorm = 2_CB.tsv) data across all 103 

ccRCCs and 72 NAT samples were used to measure gene-wise (Figure 3A) and sample-wise 

(Figures 3B and S3A) mRNA and protein correlations. Spearman correlation was calculated 

for each mRNA-protein pair across tumors and NATs separately and for each individual 

sample across 7,026 genes (Table S4). GSEA was used for gene-wise investigation on the 

correlation-ranked list of genes to determine if functional groups (pathways or complexes) 

were non-randomly distributed in terms of mRNA-protein correlation (Subramanian et al., 

2005). Functional classes were obtained from the MSIGDB (https://www.broadinstitute.org/

gsea/msigdb/index.jsp) and were chosen from the most significant non-redundant functions 

that were biologically informative. The individual proteins associated with pathways 

highlighted in the text as being significantly differentially present in more- or less-correlated 

protein-mRNA pairs are presented. To determine which pathway or functional activity may 

contribute to the sample-wise mRNA-protein correlation, we calculated the Spearman 

correlation between index and protein expressions across 103 tumor samples for 7,026 

proteins using the correlation as index for each sample. Similarly, functional pathways were 

enriched and selected in those high correlations by GSEA enrichment analysis using the 

correlation-ranked list of proteins (Figures 3B, 3C, S3B, and S3C). In addition, we assessed 

the association between DNA aberrations such as CNV data and mutations and clinical 

phenotypes such as tumor grade. A univariate linear model was utilized in which the 

pairwise correlation was modeled as a linear function of DNA aberrations and clinical 

phenotypes (Table S4). To assess whether the association between pairwise correlation and 

those covariates was induced by their shared dependence on tumor purity, tumor purity was 

included in the linear model as a covariate (Table S4). All figures were visualized using 

OmicsX (Pan et al., 2019), a webserver for data analysis and visualization (http://

bioinfo.wilmer.jhu.edu/OmicsX/).

Differential Abundance of mRNA, Protein, and Phosphoproteome 
Measurements

Principal Components Analysis: We performed PCA on 103 tumor samples and 80 normal 

adjacent (NAT) samples to illustrate the global proteomic difference between tumor and 

NAT samples (Figure 4A). The PCA function under the scikit-learn R package (Pedregosa et 

al., 2011) was implemented for unsupervised clustering analysis with the parameter 
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‘n_components = 2’ on the expression matrix of global proteomic data containing 7000+ 

proteins (features). The 95% confidence coverage was represented by a colored ellipse for 

each group, which was calculated based on the mean and covariance of points in each 

specific group (tumor and NAT).

Global Heatmap: Two-way hierarchical clustering was applied to the global proteomic data 

on samples and proteins to identify the global differential protein expression and protein co-

expression patterns (Figure S4A). Each gene expression value in the global proteomic 

expression matrix was transformed to a z-score across all samples. For the sample-wise and 

protein-wise clustering, distance was set as “Euclidean” distance, and the weight method 

was “complete.” The z-score-transformed matrix was clustered using R package: pheatmap 

(version 1.0.10).

Tumor versus Normal Differential Proteomic Analysis: TMT-based global proteomic 

data were used to perform differential proteome analysis between tumor and normal samples 

(Figures 4B, S4B, and S4C; Table S5). A Wilcoxon rank sum test was performed to 

determine differential abundance of proteins between tumor and normal samples. The 

significantly differentially expressed gene lists (fold change > = 2 and FDR < 0.05) were 

used to perform overrepresentation enrichment analysis (ORA) implemented in 

WebGestaltR (Wang et al., 2017), in which the parameters were set to use 9190 background 

genes and the combined KEGG/HALLMARK/Reactome database as described above.

Accounting for Tissue Purity in Differential Analysis based on Proteomic Data: NAT 

and tumor tissues represent mixtures of epithelial, stromal and immune cells. TSNet 

(Petralia et al., 2018) was used to account for this tumor heterogeneity and identify proteins 

that are differentially expressed between pure-tumor and pure-NAT cells. TSNet models the 

global abundance of each protein as a mixture of pure component and a component that 

captures the immune and stromal infiltration in a particular tissue. This algorithm estimated 

a mean parameter for pure component and immune/stromal infiltrated component for each 

protein. TSNet was applied to tumor (T) and NAT (N) samples separately by estimating the 

following two models:

XT, i . j = πT , iyT , i, j + 1 − πT, i ZT, i, j

XN, i, j = πN, iyN, i, j + 1 − πN, i ZN, i, j

with 

yT , i, j ∼ Normal(μT , j
Y , σT , j

Y ), ZT , i, j ∼ Normal(μT , j
Z , σT , j

Z ), yN, i, j ∼ Normal(μN, j
Y , σN, j

Y ), ZN, i, j
∼ Normal(μN, j

Z , σN, j
Z ), Xt, i, j

being the observed global abundance of sample i and gene j for tissue t ∈ T , N , πt, j being 

the tissue purity for sample i and tissue t and yt, i, j, zt, i, j  being latent variables 

corresponding to the protein abundance that would be observed in pure-tissue (i.e., yt, i, j) 

and immune/stromal cells (i.e., zt, i, j). Given the consistency of purity values estimated by 
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TSNet and ESTIMATE (Yoshihara et al., 2013) for this analysis, purity was inferred via 

ESTIMATE and considered as fixed (Table S7). Before implementing TSNet, each protein 

was z-score normalized across NAT and tumor samples. Once that the signal was 

deconvolved into pure-tissue and immune/stromal components, we identified proteins that 

were differentially expressed in pure tumor component compared to pure NAT component. 

Mathematically, this was achieved by assessing the significance of the difference between 

the means μN, j
Y and μT , i

Y  for each protein j. Significance was assessed via permutation. 

Specifically, TSNet was implemented under permuted data, where the labels of NAT and 

tumor samples were randomly shuffled. For this analysis, 200 permutations were considered. 

Using the null density of mean difference derived based on permutated data, we assessed the 

significance of the up/downregulation in tumor compared to NAT. In particular, at a specific 

FDR cut-off of 10%, true associations were computed using the strategy illustrated by 

Tusher et al. (2001). To be consistent with the differential analysis based on un-deconvolved 

data, among the selected proteins at FDR 10%, only mean differences with a fold change 

greater than two were considered significant. Reported pathways are listed in Table S5.

Accounting for Anatomic Region of NAT: Using published gene signatures (Lindgren et 

al., 2017), NAT samples were allocated to different anatomic regions, including cortex, 

medulla, corticomedulla (Tal), inflammatory (Infla), and endothelial and/or smooth muscle 

cells or fibroblasts (SMC). Gene expression of all the genes (TPM) was z-scored normalized 

across samples and then averaged across genes mapping to each anatomic region subtype. 

Each sample was then allocated to the anatomic group with the highest score. A one-sided 

Wilcoxon test was performed to compare ccRCC versus NAT samples allocated to the cortex 

anatomic region. P values were adjusted for multiple comparisons using a Benjamini 

Hochberg adjustment. Only proteins with an adjusted p value less than 5% and fold change 

greater than two were considered significant. Reported pathways are listed in Table S5.

Metabolic Reprogramming in ccRCC: A Wilcoxon rank sum test was performed to 

explore tumor-normal differential analysis for RNA and protein at the gene level (Figure 

4C). Genes associated with glycolysis, the TCA cycle (Krebs Cycle), and oxidative 

phosphorylation (electron transport chain) were focused for metabolic reprogramming. In 

tumor samples, metabolic reprogramming-associated genes were selected, and z-score 

transformation was performed. For genes detected at both the mRNA and protein levels, t 

tests were performed to compare the gene/protein expression between tumor and NAT, 

separately. The log2 fold changes were used to measure the expression difference and 

significance and the concordance between mRNA level and protein measurements. Finally, 

the difference of log2 fold change between mRNA and protein were input into GSEA (Table 

S4) to investigate enriched pathways. The enriched concepts indicates the discordance 

between mRNA and protein for tumor/normal difference (Figures 4D and S4C). Figures 4D 

and S4C were visualized using OmicsX (http://bioinfo.wilmer.jhu.edu/OmicsX/) (Pan et al., 

2019).

Phosphoproteomic Analysis

Phosphopeptide Analysis – Kinase and Substrate Regulation: To discover the 

phosphorylation events that were relevant to ccRCC, we utilized phosphopeptide-level data 
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to examine the overall relationship between phospho-substrates and their associated kinases 

(Figures 5A and S5A). The kinase-substrate association was first extracted from 

PhosphoSitePlus (Hornbeck et al., 2015) to eliminate phosphopeptides (https://cptac-data-

portal.georgetown.edu/cptac/s/S050; 

CPTAC3_CCRCC_Phospho_abundance_phosphopeptide_protNorm = 

2_CB_imputed_1211.tsv) containing phosphosites (https://cptac-data-

portal.georgetown.edu/cptac/s/S050; CPTAC3_CCRCC_Phospho_abundance_phosphosite_ 

protNorm = 2_CB_imputed.tsv) that were not reported as well as those without associated 

kinases identified in our global dataset (https://cptac-data-portal.georgetown.edu/cptac/s/

S050; CPTAC3_CCRCC_Whole_abundance_gene_protNorm = 2_CB.tsv). Next, we 

inspected any substantial differences among 80 tumor/NAT pairs, especially those that 

showed higher changes in tumors, by calculating the fold change (log2 scale). We then 

ranked each tumor (> 1.5 fold increase) among different kinase substrates to obtain the 

highest ranked phospho-substrate events in the majority of tumors (Table S6). Finally, we 

identified nine phospho-substrate events of eight kinases with inhibitors that are either FDA-

approved or in clinical trials (Carles et al., 2018; Ferguson and Gray, 2018). We also 

calculated the fold change of the selected phospho-substrates and kinases in other omics data 

(e.g., mRNA) to examine any difference in expression level among multiple omics data 

types (Figures S5A–S5C). In addition, we compared the phosphopeptide expression between 

low-grade tumors (Grades 1 and 2) and high-grade tumors (Grades 3 and 4) as well as 

between low-stage tumors (Stages 1 and 2) and high-stage tumors (Stages 3 and 4). A p 

value < 0.05 (Mann–Whitney U test) was considered as significant (Figure S5B). Data were 

visualized using Omic-Sig (https://github.com/hzhangjhu/Omic-Sig) (Lih et al., 2019).

Phosphoproteomic Co-expression Network Inference: Network inference was utilized to 

characterize co-expression patterns among phosphopeptides in ccRCC. Due to the high 

dimensionality of phosphorylation data, which contained approximately 20,000 different 

peptides, phosphopeptides were first clustered into three groups, and then co-expression 

networks were estimated for each group, separately (Figures 5C, 5D, and S5D–S5G). 

Specifically, we first summarized multiple phosphopeptides mapping to the same protein 

using their leading principal component, which was derived based on 103 ccRCC tumor 

samples and 80 NAT samples. k-means clustering was then implemented on the gene-level 

matrix to cluster proteins into three groups. This procedure resulted in one group containing 

1,842 genes mapping to 6,182 phosphopeptides, a second group containing 1,963 genes 

mapping to 6,976 phosphopeptides, and a third group containing 2,047 genes mapping to 

7,818 phosphopeptides. For each group of genes, a co-expression network was estimated 

based on phospho-peptide level data through a random-forest-based algorithm (Petralia et 

al., 2015). In particular, co-expression networks were estimated using missing data-imputed 

peptide-level phosphorylation data (https://cptac-data-portal.georgetown.edu/cptac/s/S050; 

CPTAC3_CCRCC_Phospho_abundance_phosphopeptide_protNorm = 

2_CB_imputed_1211.tsv). Let p represent the total number of phosphopeptides measured 

for n samples. Xi, j
S  represents the abundance of the j-th peptide mapping to the s-th protein 

for the i-th sample. Xi, j
S  was modeled as a function of other protein phosphopeptides, i.e., 

Xi, j
k

k ≠ s, via random forest. To facilitate the comparison with networks inferred based on 
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RNA-seq and global proteomic data, the network was obtained at the gene-level with nodes 

corresponding to genes. Basically, an edge between two genes was drawn if at least some 

peptides mapping to the two genes were found to be associated. This was achieved by using 

an extension of the random forest algorithm (https://github.com/WangLab-MSSM/ptmJRF) 

(Petralia et al., 2016). Basically, for each protein j, the abundance of each phosphopeptide 

mapping to that protein was modeled as a function of other proteins’ phosphopeptides via 

random forest. At each node in the random forest tree, M proteins were randomly sampled 

and proposed as candidates for the splitting rule. Then, across all phosphopeptides mapping 

to the M proteins, the phosphopeptide resulting in the lowest node impurity was utilized for 

the splitting rule. A separate collection of T trees was estimated for each phosphopeptide 

mapping to protein j. Based on each ensemble tree, an importance score capturing the 

association between protein k and j was derived (Petralia et al., 2015). The final weight 

assigned to the relationship k j  was derived by taking the maximum of the importance 

scores across different tree ensembles. This procedure was repeated for each protein j. The 

final importance score assigned to the edge k − j  was derived as the average between the 

importance score corresponding to k j  and the importance score corresponding to 

j k  (Petralia et al., 2016). To derive the final unweighted networks, a proper cut-off value 

was chosen via permutation techniques (Petralia et al., 2016). Specifically, 40 permutations 

and a FDR cut-off of 5% were considered to derive the final network. Table S6 contains the 

list of network edges of genes obtained at 5% FDR cut-off.

Phosphoproteomics Co-expression Network Modules: Network-modules were derived 

using Glay (Su et al., 2010), a community clustering algorithm available through Cytoscape 

(Morris et al., 2011; Shannon et al., 2003). Thirty network-modules containing at least 

twenty genes were identified (Table S6). Considering the list of genes mapping to each 

network module, pathway enrichment analysis was performed to identify biological 

pathways overrepresented in each network module via Fisher’s exact test. For this analysis, 

pathways from the KEGG (Kanehisa and Goto, 2000) and Reactome (Joshi-Tope et al., 

2005) database were considered. Table S6 shows the list of enriched pathways for each 

network-module. A one-sided t test was used to identify 18 network modules whose nodes 

were more correlated under the Phospho-Tumor network than under other data types (Table 

S6). To visualize the network modules (Figures S5D and S5E) the software iCAVE (Kalayci 

and Gümüş, 2018; Liluashvili et al., 2017) and Cytoscape were utilized.

Interactive Network Exploration Portal: We developed a web portal that allows 

researchers to interactively explore tumor phosphoproteomics co-expression network and its 

modules (http://ccrcc.cptac-network-view.org). This web-based application does not require 

users to download any software outside of a web browser to access and explore the data. The 

main page features a panel on the left that enables 3D viewing and exploration of the tumor 

phosphoproteomics co-expression network. Nodes are colored accordingly with associated 

modules that are listed to the right of the viewing panel. Users can search for a certain gene 

within the network by entering the HUGO symbol in the search box provided and clicking 

the Search button. If found, the gene is highlighted in the 3D panel in red, and the associated 

information about the gene is provided under the search box. Gene information includes the 

list of genes that are directly connected to the queried gene and also association of the gene 
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with clinical variables (FDR value and p value for grade, gender, age, and stage). Users can 

click on the name of a module to view it in detail. A separate page opens and displays 

module-specific network and associated details. Module-specific pages provide the 3D 

network view and exploration panel at the center of the page. Users can interactively explore 

the network in 3D using this panel. Node sizes are proportional to the number of 

connections. Hovering over a node displays the gene name and highlights it in red. Clicking 

on a node will highlight the edges connected to the node in red and also display associated 

information on the right side. Gene-associated information includes the list of genes that are 

directly connected to the gene, peptides associated with the gene, and the association of the 

gene with clinical variables (FDR value and p value for grade, gender, age, and stage). 

Above the network-view panel, another panel can perform phenotype-related search 

operations. Users can select the phenotype of interest (grade, gender, age, or stage), enter an 

FDR cutoff value, and click the Submit button. Genes that satisfy the search metrics are 

listed in the text box and are also highlighted in the network panel in red. Users can click the 

Reset button to return to the original network. On the left side of the network view panel, an 

interactive table showing the list of enriched pathways (if any) is provided. Users can click 

on a pathway name, and the genes within the pathway will be listed in the text box as well as 

highlighted in the network panel in red. Users can click the Reset button to return to the 

original network. The interactive network exploration portal utilizes multiple client-side 

Javascript libraries (e.g., three.js, D3.js, JQuery) to facilitate visualization and user 

interaction with large volumes of data in real time. For 3D visualizations that are displayed 

within the interface, we incorporated 3D layouts from iCAVE (Kalayci and Gümüş, 2018; 

Liluashvili et al., 2017) and customized them to serve the specific needs of our tool. We also 

incorporated other utility libraries (e.g., dataTables.js) for data manipulation and interaction. 

For web interface styling, we relied primarily relied on Bootstrap v3.3.7, integrated with our 

custom CSS elements. Since our implementation utilizes only standard libraries and does not 

necessitate any external plug-ins, the portal runs on all modern web browsers.

ccRCC Inter-Tumor Proteome Heterogeneity

Proteomic Subtyping: We investigated the molecular subtyping of all tumor samples based 

mainly on global proteomic expression to identify the associations between the multi-omics 

expression and clinical phenotypes, such as tumor stage and grade (Figure 7B; Table S5). 

The 3,567 (50%) most variable global proteins without missing values were analyzed by 

CancerSubtypes (Xu et al., 2017) for consensus clustering (Monti et al., 2003) of tumor 

subtypes. Specifically, 80% of the original sample pool was randomly subsampled without 

replacement and partitioned into three major clusters using hierarchical clustering, which 

was repeated 500 times (Wilkerson and Hayes, 2010). The expression values were 

transformed into Z scores at the gene level using the built-in standardization function of R. 

The consensus-clustered samples were ordered according to the calculated distance and 

associated with stage and grade, four key mutations (VHL, PBRM1, SETD2, and BAP1), 

and the consensus clustering results from other omics data, including immune subtypes. 

Proteins were grouped into three clusters using hierarchical clustering. The 

overrepresentation analysis (ORA) was performed on the gene list of each protein cluster 

using WebGestaltR (the R Version of WebGestalt). The parameters were set as described 
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above. The significance threshold was set as FDR < 0.05 to identify and annotate the 

pathways most-associated with each protein cluster.

Multivariate Analysis: To investigate the possible associations between genome-/proteome-

wide data and clinical features, we utilized multiple omics data including RNA-seq, 

proteome, and phosphoproteome of tumor and NAT samples to conduct the association 

analysis (Figures 7A, S7A, and S7B; Table S5). We also incorporated CNV and DNA 

methylation data from tumors only in the analysis. Our set of clinical features consists of 

tumor characteristics (e.g., stage, grade, margin status, left-right kidney laterality, presence 

of necrosis), patient properties (e.g., age, gender, BMI, country of origin), lifestyle, medical 

history (e.g., smoking, alcohol, diabetes), and sample handling parameters (ischemic time). 

We also included Immune and Stromal scores computed by ESTIMATE (Yoshihara et al., 

2013) as predictors because they reflect crucial TME properties (Figure 6E). In our linear 

regression analysis, stage, grade, age, BMI, ischemic time, and Immune and Stromal score 

were used as numerical variables, whereas the remaining variables were treated as 

categorical. For alcohol and smoking status, lifetime non-drinkers or non-smokers were 

compared to the rest of the population. For country of origin, European countries (in this 

case, Poland and Ukraine) were compared to all other countries. p values obtained for each 

gene in multivariate linear regression were corrected using Benjamini-Hochberg adjustment 

(Benjamini and Hochberg, 1995). The values of all adjusted p values for all clinical features 

and all data types in both tumor and adjacent normal are provided in Table S5. Figure S7A 

contains the number of genes with adjusted p value below 10%. To identify molecular 

pathways associated with tumor grade, we began with the pathway gene sets obtained from 

KEGG, Reactome, and Hallmark databases (Joshi-Tope et al., 2005; Kanehisa and Goto, 

2000; Liberzon et al., 2011) and removed pathways that contained more than 500 genes. For 

proteome and mRNA data, we computed log10(FDR) for genes with positive associations 

and negative associations, where FDR is the adjusted p value for a gene’s association with 

grade. On this dataset, we ran a one-sided Wilcoxon rank-sum test for each pathway gene set 

versus all other genes. These p values were then corrected using Benjamini-Hochberg 

adjustment. A score for each pathway was computed as (+/−)log10(p-adj), depending on 

whether the rank-sum test p value showed it to be more up- or downregulated compared to 

other genes. Table S5 lists the scores of all pathways with adjusted p value <0.01. Figures 

7A and S7B present a subset of pathways significantly associated with grade that were 

selected to be representative, non-redundant, and as informative as possible regarding the 

biological functions contained in the full set.

Immune-based Clustering of ccRCC tumors

Subtype identification based on cell type composition: The abundances of 64 different 

cell types in 175 ccRCC samples (103 tumor samples and 72 NAT samples) were computed 

via xCell (Aran et al., 2017). For this analysis, FPKM (Fragments Per Kilobase Million) 

mRNA expression values were utilized. Table S7 contains the final score computed by xCell 

for different cell types for the 175 samples. Based on these 64 signatures, consensus 

clustering was performed to identify groups of samples with the same immune/stromal 

characteristics. Consensus clustering was performed using the R packages 

ConsensusClusterPlus (Monti et al., 2003; Wilkerson and Hayes, 2010) within the 
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Bioconductor package CancerSubtypes (Xu et al., 2017). Specifically, 80% of the original 

175 samples were randomly subsampled without replacement and partitioned into six major 

clusters using the Partitioning Around Medoids (PAM) algorithm, which was repeated 200 

times (Wilkerson and Hayes, 2010). Figure 6A shows the heatmap of scores for key cell 

types from the 175 ccRCC samples. The four tumor sample-based subtypes were tested for 

association with clinical variables (e.g., tumor grade) and genomic aberrations such as chr14 

loss via a Chi-Square test of independence (Table S7). The upregulation of immune and 

stromal cells in a particular immune group based on tumor samples was assessed using a 

multivariate linear regression in which the score of each immune and stromal cell was 

modeled as a function of immune groups. First, every score was normalized across tumor 

samples by subtracting the mean and dividing by the standard deviation. Then, the score of 

the j-th cell for sample i was modeled as:

Xi, j =
k 1

4
βk j1 i ∈ IK + εi, j (1)

with εi, j ∼ N 0, σj , Ik being the set of samples belonging to the k-th immune cluster, 1 (A) 

being an indicator function equal to 1 if the event A occurs and 0 otherwise, and βk, j being 

the coefficient capturing the association between gene j and the k-th immune group. 

Benjamini-adjusted p values can be found in Table S7.

Estimation of Stromal and Immune Scores: ESTIMATE (Yoshihara et al., 2013) was also 

used to infer tumor purity and immune and stromal scores based on RNA-seq data and 

global proteomic data (Figure S6B; Table S7). For the analysis of global proteomic data, 

only proteins with no missing values across all samples were considered. As shown in Table 

S7, immune and stromal scores based on global proteomic data and RNA-seq data were 

highly correlated (i.e., a Pearson correlation between immune scores based on RNA-seq and 

proteomic data higher than 0.85 and Pearson correlation of stromal scores higher than 0.75 

for both NAT samples and ccRCC tumor samples). For this comparison, only samples 

overlapping between the two data types were considered (i.e., 103 ccRCC tumor samples 

and 72 NAT samples).

Validation of microenvironment scores using DNA methylation data: Edec was used to 

infer the tumor composition from DNA methylation data (Table S7). Edec is based on the 

principle that DNA methylation measured from whole bulk tumor is the linear combination 

of measurements from individual cell types weighted by their cell proportions. For the 

reference methylation profiles, we collected DNA methylation data (represented as beta-

values) for five cell types – kidney cancer epithelial cells, kidney normal epithelial cells, 

fibroblasts, endothelial cells and immune cells (Table S7). Using a one-versus-all t test, we 

selected the methylation probes that distinguish the given cell type from other cell types. 

The probes were then mixed for the data deconvolution.

Immunohistochemistry (IHC) validation of immune cell compositions: Formalin-fixed, 

paraffin-embedded 5 μm tissue sections were stained in batches for CD4, CD8, and CD163 

in a central laboratory at the Johns Hopkins Hospital according to standard automated 
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protocols. Deparaffinization and rehydration were performed, followed by antigen retrieval 

and antibody staining. CD4 and CD8IHC was performed using the Ventana Benchmark 

Ultra autostaining system (Roche) using mouse monoclonal anti-CD8 (C8144B) antibody 

(Cell marque) and rabbit monoclonal anti-CD4(Sp35) antibody (Roche), followed by 

detection with the iVIEW DAB Detection Kit (Roche). CD163 IHC was performed on the 

Leica Bond MAX autostaining system (Leica Biosystems) using anti-CD163 (10D6) 

antibody (Leica Biosystems) followed by detection with Bond Polymer Refine Detection kit 

(Leica Biosystems). For tissue section imaging, slides were imaged using a Ventana iScan 

HT slide scanner (Roche) and processed using the Ventana Virtuoso software (Roche) 

(Figure S6D).

Analysis of Differentially-Expressed Genes and Pathways: Genes that were upregulated 

and downregulated in each of the four immune clusters were identified based on 103 tumor 

samples. For each data type, every feature vector was normalized by subtracting the mean 

and dividing by the standard deviation. For each data type, the expression level of gene j and 

ccRCC sample i (i.e., Xi, j) was modeled via Equation (1). Model [1] was implemented for 

each gene j. Table S7 shows upregulated and downregulated genes identified based on 

different data types. Considering genes that were up- and downregulated with Benjamini’s 

adjusted p value lower than 10%, a Fisher’s exact test was implemented to derive enriched 

pathways (Figures 6B and S6E; Table S7) (Benjamini and Hochberg, 1995). For this 

analysis, pathways from the Reactome, KEGG and Hallmark databases were considered and 

as background the full list of gene/proteins observed under each data type was utilized. 

Pathway scores for 103 ccRCC tumor samples and 80 NAT samples were computed based 

on combined z-score using the R package GSVA (Hänzelmann et al., 2013). Pathway scores 

based on different data types can be found in Table S7. Only combined z-scores of some key 

enriched pathways (Figure S6E) were included.

Angiogenesis and T-Effector Signatures: Using package GSVA (Hänzelmann et al., 2013), 

Angiogenesis (VEGFA, KDR, ESM1, PECAM1, ANGPTL4, and CD34) and T-Effector 

(CD8A, EOMES, PRF1, IFNG, and CD274) signatures (McDermott et al., 2018) were 

computed for 103 ccRCC samples. Upregulation of these signatures in a particular immune 

group was assessed via (1) (Figure 6F; Table S7).

Immune-based clustering on The Cancer Genome Atlas (TCGA) data: Based on 103 

ccRCC samples, we selected genes that were differentially expressed in each of the four 

immune groups (CD8+ Inflamed, CD8− Inflamed, VEGF Immune Desert, Metabolic 

Immune Desert) using the function TCGAanalyze_DEA from the package TCGAbiolinks 

(Colaprico et al., 2016) and following our previously-described workflow (Silva et al., 

2016). In particular, only genes with 10% FDR cut-off and log fold change greater than 1 

were selected. Following this procedure, 2,252 unique genes were selected across different 

immune groups (i.e., 1,067 for CD8+ Inflamed, 721 for CD8− Inflamed, 1,054 for VEGF 

Immune Desert and 898 for Metabolic Immune Desert). Based on this set of genes, the one-

class regression model, OCRL (Sokolov et al., 2016) was applied to construct a CPTAC 

data-based classifier for each immune group. The logistic regression model was trained 

using the R CRAN package, gelnet. The OCRL pipeline returned a 2,252 dimensional vector 
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of weights for each immune group, i.e., Wi with ∈ {1,2,3,4} Then, TCGA kidney renal clear 

cell carcinoma (KIRC) samples were allocated into immune groups based on two scores that 

were computed using the set of 2,252 pre-selected genes. Specifically, for the k-th sample in 

TCGA data and each immune group i, the following two scores were computed:

Score 1: Spearman correlation between the model’s weight vector and the k-th TCGA 

sample’s expression profile, i.e., Zik = cor (Wi, Xk) with Xk being a 2,252 

dimensional vector containing expression levels of the 2,252 genes for the k-th 

TCGA sample. The correlation between Wi and Xk would be high if the k-th TCGA 

sample belonged to the i-th immune group. Scores {Zsk} were normalized to be in the 

unit interval {0,1} by subtracting the lowest value and then dividing by the maximum 

value.

Score 2: Spearman correlation between the k-th TCGA sample’s expression profile 

and the s-th CPTAC sample’s expression profile of 2,252 genes, i.e., Ssk = cor(Ys, 
Xk) with Ys being a 2,252 dimensional vector containing expression levels of the pre-

selected 2,252 genes for the k-th CPTAC sample, Xk being a 2,252 dimensional 

vector containing expression levels of the 2,252 genes for the k-th TCGA sample. 

This score was computed for each CPTAC sample s belonging to the i-th immune 

group. Scores SSK S ∈ li were normalized to be in the unit interval {0,1}. The final 

score measuring the association between the k-th TCGA sample and the i-immune 

group (i.e., QiK) was obtained by averaging scores SSK S ∈ li with li being the set of 

samples in the j-th immune group.

The first score (i.e., ZiK ) was utilized previously to classify samples (Malta et al., 2018). In 

this study, a second score was considered to avoid cases in which multiple immune 

categories resulted in the same score. In particular, the final score was derived by averaging 

scores ZiK and QiK , i.e., XiK = ZiK + QiK /2. Finally, to each TCGA sample k, the 

immune group with the highest score was assigned, i.e., Gk = argmaxiK. This final score can 

be found in Table S7. This classification resulted in 126 samples allocated to the CD8− 

Inflamed group, 156 samples allocated totheCD8+ Inflamed group, 135 samples allocated to 

the Metabolic Immune Desert and 78 samples allocated to the VEGF Immune Desert group 

(Table S7). This TCGA-based classification was compared to that based on CPTAC data in 

terms of immune and stromal cell infiltration, pathway activities and key markers that were 

found to be upregulated in different immune groups based on CPTAC data. Similarly to 

CPTAC data, the concentration of different immune and stromal cells was computed via 

xCell (Aran et al., 2017) (Table S7), while the activity of key pathways was derived via a 

combined z-score (Hänzelmann et al., 2013) (Figure S6E; Table S7). To identify immune 

and stromal cells upregulated in different immune groups, the strategy adopted for CPTAC 

data was utilized (Model 1, Table S7).

Clinical Outcome of Immune Groups: Immune groups based on TCGA data were utilized 

to better understand the clinical outcome and expected survival for different immune groups 

(Figures S6G and S6H). Overall survival data and tumor grade information for 495 TCGA 

KIRC samples, deposited in the Genomic Data Commons (GDC) Data Portal, were 

downloaded using the function GDCquery_clinic from the package TCGAbiolinks 
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(Colaprico et al., 2016). Table S7 shows Benjamini’s adjusted p values (Benjamini and 

Hochberg, 1995) from a pairwise Log Rank test comparing survival curves that correspond 

to different immune groups. Kaplan-Meier overall survival curves were generated using the 

function TCGAanalyze_survival from the package TCGAbiolinks (Colaprico et al., 2016). 

The association between high-grade tumors (i.e., grade 3 and 4) and immune groups was 

assessed via a Chi-Square test of independence (Table S7).

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptomic Quantitation—The resulting BAM files were analyzed for expression 

using feature counts against a transcriptomic reference based on Gencode 26. The resulting 

gene-level counts for protein-coding genes were transformed into FPKMs using edgeR.

Proteomic and Phosphoproteomic Quantitation—Whole proteome and 

phosphopeptide-enriched datasets were processed separately but using the same pipeline 

steps as described in the “Protein database searching and quantification of global and 

phosphoproteomic data” section of the STAR Methods. A tutorial describing all steps of the 

analysis, including specific input parameter files, command-line option, and all software 

tools necessary to replicate the results are available at https://github.com/Nesvilab.

The statistical details of all experiments have been reported in the manuscript text, figure 

legends and corresponding STAR Methods section descriptions. Data analysis was 

performed in Excel, R, and Python.

DATA AND CODE AVAILABILITY

Raw data files for proteomic analysis reported in this paper are hosted by the CPTAC Data 

Portal and can be accessed at: https://cptac-data-portal.georgetown.edu/cptac/s/S044 and 

https://cptac-data-portal.georgetown.edu/cptac/s/S050. Genomic and transcriptomic data 

files can be accessed at: https://portal.gdc.cancer.gov/. Processed data utilized for this 

publication can be accessed at: https://cptac-data-portal.georgetown.edu/cptac/s/S050.

Several custom coding softwares were generated as part of this study and have been 

referenced in the corresponding STAR Methods section and listed with links to the coding 

script in the Key Resources Table: software codes generated by the Cieslik laboratory for 

genomic analyses (CNVEX and CRISP), by the Nesvizhskii laboratory for proteomic data 

processing (Philosopher and TMT-Integrator) by the Wang lab for data imputation 

(DreamAI), and by the Zhang lab for data processing and neoantigen detection (NeoFlow 

and PepQuery).

Interactive data analysis tools were generated by the Wang lab: a web-based application for 

visualizing a heatmap of 22,867 genes across 110 samples can be accessed at: http://

ccrcc.cptac-data-view.org; a web-based application for interactively exploring ccRCC 

phosphoproteomic co-expression networks (3,614 nodes, 11,200 edges) and their modules is 

available at: http://ccrcc.cptac-network-view.org/.

Clark et al. Page 46

Cell. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Nesvilab
https://cptac-data-portal.georgetown.edu/cptac/s/S044
https://cptac-data-portal.georgetown.edu/cptac/s/S050
https://portal.gdc.cancer.gov/
https://cptac-data-portal.georgetown.edu/cptac/s/S050
http://ccrcc.cptac-data-view.org
http://ccrcc.cptac-data-view.org
http://ccrcc.cptac-network-view.org/


Additional Resources—The CPTAC program website, which includes details about 

program initiatives, investigators, and datasets, can be accessed at: https://

proteomics.cancer.gov/programs/cptac

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Integrated proteogenomic characterization in 103 ccRCC cases

• Delineation of chromosomal translocation events leading to chromosome 3p 

loss

• Tumor-specific proteomic/phosphoproteomic alterations unrevealed by 

mRNA analysis

• Immune-based subtypes of ccRCC defined by mRNA, proteome, and 

phosphoproteome
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Figure 1. Genomic Alterations and their Associations with mRNA, Protein, and Phosphoprotein 
Abundances
(A) Profiling of absolute copy number estimates observed in the CPTAC cohort. 

Genomically defined non-ccRCC tumors are above ccRCC tumors; translocation event, 

grade, CpG island methylator phenotype (CIMP) status, genome instability, and CNV loss/

gain are indicated by color coding. ccRCC tumors with evidence of 3p loss of 

heterozygosity (LOH) are indicated by three asterisks (***).

(B) Circos plots of translocation events involving chromosomes 3 and either chromosomes 5 

(red), 2 (blue), 8 (purple) or all other chromosomes (gray), including chromosomal inversion 
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within chromosome 3 (green). Percentage of involved tumors with re-arrangement for each 

chromosome is annotated below each plot.

(C) Heatmap of multi-omic data for the five key tumor suppressor genes (VHL, PBRM1, 
BAP1, SETD2, and KDM5C) (n = 103). Tumor samples were ordered by 3p CNV alteration 

(loss to neutral). Non-ccRCC tumors are separated (right). CNV event, Z score, CNV loss/

gain, translocation status, CpG island methylator phenotype (CIMP) status, genome 

instability, grade, and gender are indicated by color coding (bottom).

See also Figure S1 and Tables S1 and S2.
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Figure 2. Impact of Copy Number Variation (CNV) on Protein Abundance
(A) DNA variations (CNV baf, B-allele frequencies; CNV Ir, adjusted log coverage ratios; 

DNA methylation) with cascading cis-association (associations with all types of mRNA, 

global protein, and phosphopeptide abundances), overlapped with phosphopeptides 

significantly differentiated by clinical features (tumor versus NAT and tumor grade). Genes 

in bold are associated with CNV events involving chromosome 5 or 7 gain and 14 loss.

(B) The cis and trans associations of chromosome arms (3p, 5q, 7p, 9p, and 14q) and CpG 

island methylator phenotype (CIMP). Significant (adjusted p < 0.1) positive (red) and 
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negative (blue) associations for individual chromosomes (left), summed associations 

(middle), and corresponding enriched upregulated (red) and downregulated (blue) pathways 

(adjusted p < 0.05) are annotated (right).

See also Figure S2 and Table S3.
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Figure 3. Correlations between Transcriptomic and Proteomic Abundance
(A) Gene-wise correlations of mRNA and protein expression in tumors (left) and NATs 

(right). Annotated cellular pathways and corresponding Spearman gene-wise correlation 

(bottom).

(B) Sample-wise correlation of tumors ranked from high to low with corresponding NAT 

sample-wise correlation (top). Tumors were evenly distributed into three groups: high (blue), 

middle (gray), and low (gold). BAP1 mutation, chromosome 14 loss status, and tumor grade 

are annotated (bottom).
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(C) Boxplots of ribosome and translation factor gene expression and Pol I-associated 

regulation in tumor samples (left) and corresponding NATs (right) (*p < 0.05). Figure S3 

and Tables S1 and S4.
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Figure 4. Differential Expression of Transcriptomic and Proteomic Profiles between ccRCC 
Tumors and NAT Protein Expression
(A) PCA visualization of protein expression in ccRCC tumors and NATs.

(B) Analysis of significantly differentially regulated pathways (adjusted p < 0.05) between 

ccRCC tumors and NATs.

(C) Schema of metabolic pathways (glycolysis and electron transport chain [OXPHOS]) 

with select differential gene expression of mRNA and protein levels between ccRCC tumors 

and NATs.
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(D) Scatterplots depicting expression of mRNA (x axis) and protein (y axis). Linear 

regression of all mRNA-protein pairs (gray dotted line) and OXPHOS mRNA-gene pairs 

(red dotted line) are shown. Metabolism-related genes are indicated.

(E) Boxplot of representative OXPHOS genes from complex I (NDUFV2), IV (COX6C), 

and V (ATP6V1F) displaying discordant mRNA-protein expression (n.s., not significant, 

*adjusted p < 0.05).

See also Figure S4 and Tables S1, S4, and S5.
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Figure 5. Phospho-Substrates with Associated Kinases and a Network Module Specific to 
Phospho-Tumor Data
(A) Ranked phospho-substrate events of kinases with inhibitors and fold-change at global- 

and phospho-levels for kinases and substrates, respectively.

(B) Pathways based on the selected phospho-substrates and kinases, with relevant drugs 

shown by targets (red). Current FDA-approved drugs for ccRCC (gray).

(C) Pairwise correlation of nodes at multi-omics levels of “cell cycle” co-expression network 

module.
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(D) Heatmap of “cell cycle” module expression with grade, BAP1 and chromosome 14 loss, 

and genome instability distribution annotated.

See also Figure S5 and Tables S1 and S6.
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Figure 6. Immune-Based Subtyping of ccRCC Tumors
(A) Transcriptome-based deconvolution of mRNA transcript cell signatures in 103 ccRCC 

tumors and 72 NATs using xCell.

(B) Molecular characteristics (transcriptomic, proteomic) stratified tumors into four immune 

subtypes: CD8+ inflamed (red), CD8− inflamed (blue), VEGF immune desert (yellow), 

metabolic immune desert (green), and NATs into two subtypes (pink and gray).

(C) Proportion of BAP1 mutation, PBRM1 mutation, chromosome 14 loss, and chromosome 

7 gains within each of the immune groups.
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(D) Proportion of high tumor grade tumors (i.e., grade 3 and grade 4) in each of the immune 

groups for CPTAC and TCGA datasets. High-grade tumors were significantly enriched in 

CD8+ inflamed group compared to VEGF immune desert group.

(E) Density contours of immune and stroma scores of each immune subtype. Pathways 

upregulated based on RNA-seq and global proteomics data are labeled with “R” or “P,” 

respectively.

See also Figure S6 and Tables S1 and S7.
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Figure 7. Proteomic Inter-Tumor Heterogeneity of ccRCC and Associated Functional Pathways
(A) Cellular pathways (right) with positive (red) or negative (blue) associations with grade 

(adjusted p < 0.05) at protein or mRNA level (left). Heatmap of protein expression 

associated with high- and low-grade tumors (center) (Benjamini-Hochberg adjusted p < 

0.05).

(B) Heatmap of global proteomic abundances. For subtype identification, protein features (n 

= 3,567) were selected based on highest variance. Color indicates Z score of protein in each 

sample: red is increased, blue is decreased. Clinical and molecular features are indicated 
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above the heatmap. Cluster-derived modules are annotated according to pathway enrichment 

using Hallmark Gene signature, REACTOME, and KEGG ontologies (adjusted p < 0.05).

See also Figure S7 and Tables S1 and S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-CD8 
(C8/144B)

Cellmarque Catalog #108M-96; RRID: AB_1158208

Rabbit monoclonal anti-CD4 (SP35) Roche Catalog #790-4423

Liquid Concentrated Monoclonal 
Antibody anti-CD163

Leica Biosystems Catalog #NCL-L-163; RRID: AB_2756375

Biological Samples

Primary tumor samples See Experimental Model and 
Subject Details

N/A

Chemicals, Peptides, and 
Recombinant Proteins

Aprotinin Sigma Catalog: A6103

Leupeptin Roche Catalog: 11017101001

Phenylmethylsulfonyl fluoride Sigma Catalog:93482

Sodium fluoride Sigma Catalog: S7920

Phosphatase Inhibitor Cocktail 2 Sigma Catalog: P5726

Phosphatase Inhibitor Cocktail 3 Sigma Catalog: P0044

Urea Sigma Catalog: U0631

Tris(hydroxymethyl)aminomethane Invitrogen Catalog: AM9855G

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Sodium chloride Santa Cruz Biotechnology Catalog: sc-295833

PUGNAc Sigma Catalog: A7229

Dithiothretiol ThermoFisher Scientific Catalog: 20291

Iodoacetamide ThermoFisher Scientific Catalog: A3221

Sequencing grade modified trypsin Promega Catalog: V511X

Lysyl endopeptidase, aass 
spectrometry grade

Wako Chemicals Catalog: 125-05061

Formic acid Fisher Chemical Catalog: A117-50

Reversed-phase C18 SepPak Waters Catalog: WAT054925

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid

Alfa Aesar Catalog: J63218

Tandem mass tags – 10plex ThermoFisher Scientific Catalog: 90110

Trifluoroacetic acid Sigma Catalog: 302031

Ammonium Hydroxide solution Sigma Catalog: 338818

Hydroxylamine solution Aldrich Catalog: 467804

Ni-NTA agarose beads QIAGEN Catalog: 30410

Iron (III) chloride Sigma Catalog:451649

iVIEW DAB Detection Kit Roche Catalog: 760-091

Bond Polymer Refine Detection Kit Leica Biosystems Catalog: DS9800

Critical Commercial Assays
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REAGENT or RESOURCE SOURCE IDENTIFIER

TruSeq Stranded Total RNA Library 
Prep Kit with Ribo-Zero Gold

Illumina Catalog: RS-122-2301

Infinium MethylationEPIC Kit Illumina Catalog: WG-317-1003

Nextera DNA Exosome Kit Illumina Catalog: 20020617

KAPA Hyper Prep Kit, PCR-free Roche Catalog: 07962371001

BCA Protein Assay Kit ThermoFisher Scientific Catalog: 23225

Deposited Data

PhosphoSitePlus Hornbeck et al., 2015 https://www.phosphosite.org

GTEx Ardlie et al., 2015 https://gtexportal.org/home/

TCGA - ccRCC Creighton et al., 2013 https://portal.gdc.cancer.gov/

Software and Algorithms

methylationArrayAnalysis (version 
3.9)

Maksimovic et al., 2016 https://master.bioconductor.org/packages/release/workflows/html/
methylationArrayAnalysis.html

Illumina EPIC methylation array 
(3.9)

Fortin et al., 2017 https://bioconductor.org/packages/release/data/annotation/html/
IlluminaHumanMethylationEPICanno.ilm10b2.hg19.html

VarDict Lai et al., 2016 https://github.com/AstraZeneca-NGS/VarDict

Strelka2 Kim et al., 2018 https://github.com/Illumina/strelka

MUTECT2 Cibulskis et al., 2013 https://software.broadinstitute.org/gatk/documentation/tooldocs/
3.8-0/
org_broadinstitute_gatk_tools_walkers_cancer_m2_MuTect2.php

VarScan2.3.8 Koboldt et al., 2012 http://varscan.sourceforge.net

Pindel0.2.5 Ye et al., 2009 http://gmt.genome.wustl.edu/packages/pindel/

CNVEX Marcin Cieslik Lab https://github.com/mctp/cnvex

CRISP Marcin Cieslik Lab https://github.com/mcieslik-mctp/crisp-build

Proteowizard Kessner et al., 2008 http://proteowizard.sourceforge.net/

MSFragger Kong et al., 2017 https://msfragger.nesvilab.org/

Philosopher Alexey Nesvizhskii Lab https://philosopher.nesvilab.org/

PeptideProphet Keller et al., 2002 http://peptideprophet.sourceforge.net/

ProteinProphet Nesvizhskii et al., 2003 http://proteinprophet.sourceforge.net/prot-proph.pdf

PTMProphet Deutsch et al., 2015 http://www.tppms.org/tools/ptm/

TMT-Integrator Alexey Nesvizhskii Lab https://github.com/Nesvilab/TMT-Integrator

DIA-Umpire Tsou et al., 2015 https://github.com/Nesvilab/DIA-Umpire

msproteomicstools http://
msproteomicstools.roestlab.org/

https://github.com/msproteomicstools

ComBat (v3.20.0) Johnson et al., 2007 https://bioconductor.org/packages/release/bioc/html/sva.html

DreamAI Pei Wang Lab https://github.com/WangLab-MSSM/DreamAI

GISTIC2.0 Mermel et al., 2011 ftp://ftp.broadinstitute.org/pub/GISTIC2.0/GISTIC_2_0_23.tar.gz

iProFun Song et al., 2019 https://github.com/WangLab-MSSM/iProFun

ESTIMATE Yoshihara et al., 2013 https://bioinformatics.mdanderson.org/public-software/estimate/

WebGestaltR Wang et al., 2017 http://www.webgestalt.org/

Joint Random Forest Petralia et al., 2016 https://github.com/WangLab-MSSM/ptmJRF

GSVA Hänzelmann et al., 2013 https://bioconductor.org/packages/release/bioc/html/GSVA.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

TCGAbiolinks Colaprico et al., 2016 http://bioconductor.org/packages/release/bioc/html/
TCGAbiolinks.html

Cytoscape Shannon et al., 2003 https://cytoscape.org/

TSNet Petralia et al., 2018 https://github.com/WangLab-MSSM/TSNet

xCell Aran et al., 2017 http://xcell.ucsf.edu/

CPTAC Network Exploration Portal Pei Wang Lab http://ccrcc.cptac-network-view.org/

CPTAC Data Viewer Pei Wang Lab http://ccrcc.cptac-data-view.org/

iCAVE Liluashvili et al., 2017 http://labs.icahn.mssm.edu/gumuslab/software

MODMatcher Yoo et al., 2014 https://github.com/integrativenetworkbiology/Modmatcher

ConsensusClusterPlus Monti et al., 2003; Wilkerson 
and Hayes, 2010

http://bioconductor.org/packages/release/bioc/html/
CancerSubtypes.html

OmicsX Pan et al., 2019 http://bioinfo.wilmer.jhu.edu/OmicsX/

Omic-Sig Lih et al., 2019 https://github.com/hzhangjhu/Omic-Sig

OmicsOne Hu et al., 2019 https://github.com/HuiZhangLab-JHU/OmicsOne

pyQUILTS (v1.0) Ruggles et al., 2016 http://openslice.fenyolab.org/cgi-bin/pyquilts_cgi.pl

MS-GF+ Kim and Pevzner, 2014 https://github.com/MSGFPlus/msgfplus

NeoFlow Bing Zhang Lab https://github.com/bzhanglab/neoflow

netMHCpan Jurtz et al., 2017 http://www.cbs.dtu.dk/services/NetMHCpan/

Optitype Szolek et al., 2014 https://github.com/FRED-2/OptiType

Customprodbj Bing Zhang Lab https://github.com/bzhanglab/customprodbj

PDV Li et al., 2019 https://github.com/wenbostar/PDV

PeoQuery Wen et al., 2019 http://pepquery.org
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