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abstract

PURPOSE Diagnosis (DX) information is key to clinical data reuse, yet accessible structured DX data often lack
accuracy. Previous research hints at workflow differences in cancer DX entry, but their link to clinical data quality
is unclear. We hypothesized that there is a statistically significant relationship between workflow-describing
variables and DX data quality.

METHODSWe extracted DX data from encounter and order tables within our electronic health records (EHRs) for
a cohort of patients with confirmed brain neoplasms. We built and optimized logistic regressions to predict the
odds of fully accurate (ie, correct neoplasm type and anatomic site), inaccurate, and suboptimal (ie, vague) DX
entry across clinical workflows. We selected our variables based on correlation strength of each outcome
variable.

RESULTSBoth workflow and personnel variables were predictive of DX data quality. For example, a DX entered in
departments other than oncology had up to 2.89 times higher odds of being accurate (P , .0001) compared
with an oncology department; an outpatient care location had up to 98% fewer odds of being inaccurate
(P , .0001), but had 458 times higher odds of being suboptimal (P , .0001) compared with main campus,
including the cancer center; and a DX recoded by a physician assistant had 85% fewer odds of being suboptimal
(P = .005) compared with those entered by physicians.

CONCLUSION These results suggest that differences across clinical workflows and the clinical personnel producing
EHR data affect clinical data quality. They also suggest that the need for specific structured DX data recording
varies across clinical workflows and may be dependent on clinical information needs. Clinicians and researchers
reusing oncologic data should consider such heterogeneity when conducting secondary analyses of EHR data.
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INTRODUCTION

Secondary analysis of electronic health record (EHR)
data is essential to the development of learning health
care systems,1-3 oncologic comparative effectiveness
research,4-7 and precision oncology decision support.8-11

This often relies on patient diagnosis (DX) data for cohort
selection12,13 in spite of its quality limitations.14 Decades
of research have shown alarmingly high DX inaccuracy
rates,15-17 which can greatly affect secondary analysis
results.15 Despite error rate improvements from 20%-
70% in the 1970s to 20% in the 1980s, their re-
liability remains questioned.5,18 The complex nature
of clinical knowledge, variable clinical workflows,
and billing-oriented data recording are partially to
blame5,19-22 but the challenges are exacerbated by
EHR systems that provide multiple descriptions for
individual DX codes.23

Inaccurate DX data entry is particularly complex in
oncology because of both cancer DX coding structures

and oncology workflow constraints. Standard DX code
descriptions are not designed to support oncology data
reuse,5,24,25 leaving information locked in progress
notes.5,26 For example, International Classification of
Diseases (10th revision) codes C71.XX correspond to
“malignant neoplasm of the brain” DX codes and allow
encoding anatomic site (eg, C71.1 represents a ma-
lignant neoplasm of the frontal lobe). However, unlike
International Classification of Diseases for Oncol-
ogy (3rd edition) codes,27 which are not as broadly
adopted, they do not encode neoplasm type (eg, IDH
wild-type glioma, glioblastoma, and so on), which is
crucial to treatment selection and patient classifica-
tion. Customized DX descriptions provided by EHR
vendors include some neoplasm type information but
present wide-varying levels of specificity, complicating
structured DX entry.28 Because cancer care is team
based and requires patients to interact with multi-
ple specialties and units (eg, scheduling, imaging,
surgery, and so on); EHR systems rarely support
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consistent data recording across clinical workflows, making
DX logging burdensome to oncologists.29-31 Although both
aspects cause structured DX data unreliability, much more
has been published on resulting data issues14,21,22 and
limitations of coding terminology25,21 than on the impact of
clinical workflows on EHR data.32-35

Oncologic records suffer from high DX data variability,28

EHR section-dependent accuracy levels,36 and statisti-
cally significant differences in DX entry accuracy across
subspecialties.37 This hints at a link between clinical work-
flows and resulting data quality, in concordance with prior
work.5,38 However, the literature is still unclear on which
factors affect data quality. To address this gap, we conducted
a statistical analysis. We assessed which clinical workflow
factors correlate with accurate DX entry. We hypothesized
that there is a statistically significant relationship between
workflow-describing variables (eg, care location, department,
and users) and accurate, inaccurate, and suboptimal (ie,
correct but imprecise) data entry. We tested this hypothesis
on EHR data from patients diagnosed with brain neoplasms.
We selected this disease for its large number of textual di-
agnosis descriptions of varying levels of precision for a limited
list of specific diagnosis codes and the availability of a de-
finitive histopathology report stating the most precise and
accurate DX description possible. This analysis improves our
understanding of oncologic data entry within clinical work-
flows and its impact on clinical data quality. Our findings
identify a new avenue for clinical data quality improvement,
thereby facilitating reliable secondary uses of oncology data
within learning health care systems and future clinical
oncology applications, such as clinical data–driven clinical
decision support for cancer treatment selection.

METHODS

We extracted structured DX data and relevant covariates
across multiple clinical workflows from the Wake Forest

Baptist Medical Center’s EHR database. Our study was
approved by Wake Forest University School of Medicine’s
Institutional Review Board (IRB; No. 00044728). Our initial
extract contained oncologic DX entries for a set of 36
patients treated for brain neoplasms. The data set con-
tained DX descriptions entered during care and covariates
describing clinical workflows and involved personnel. The
covariates selection was driven by relevance to clinical
workflow and personnel-EHR interaction descriptors, but
also data availability within the EHR’s data and metadata
tables. Our initial list of covariates included days between
biopsy and DX entry, DX chronologic rank in entry se-
quence, clinical department and location where the DX was
entered, visit providers and their specialties, users entering
the data and their clinical role (eg, physician, nurse, as-
sistant, and so on), the authorizing provider, and the order
type for order DX.

To identify accurate, inaccurate, and suboptimal DX de-
scription, we used a clinician-generated gold standard
containing each patient’s accurate diagnosis. Patient
charts were preselected from an existing chart review–
based glioma registry (IRB No.: 00038719). Patient in-
clusion was based on completeness of information within
the registry. Patients having received cancer care outside
our institution were excluded to ensure that all relevant care
information was available within our EHR. Comprehensive
medical record review was performed by 2 independent
reviewers. The primary postoperative diagnosis was de-
termined based on a review of pathology reports and cli-
nician notes. All treating clinicians were available for
consultation when needed. Discrepancies between the
2 reviewers were resolved by an independent neuro-
oncologist. Two features were used to determine DX ac-
curacy: neoplasm type (eg, astrocytoma, glioblastoma, and
so on) and anatomic site (eg, frontal lobe, temporal lobe,
and so on). We compared the standard’s DX description
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with each DX entry. Accurate DX entries matched the
standard’s neoplasm type and anatomic site; inaccurate DX
entries contradicted neoplasm type or anatomic site. For
example, a frontal lesion DX for a patient with a temporal
lesion would be inaccurate; an astrocytoma DX for a patient
treated for a glioblastoma would also be inaccurate. Par-
tially accurate (ie, suboptimal) DX descriptions were cat-
egorized separately because they did not contradict the
standard DX because they failed to provide a specific DX
description.

Our final data set contained 10,052 DX attached to pro-
cedure orders and 3,718 encounter DX observations of 31
patients, recorded from January 1, 2016, to June 1, 2018.
This time frame was defined to ensure ICD coding version
consistency (ie, to include DX after October 2015; ICD10
implementation date). We only analyzed data after a biopsy
(BX) to allow for accurate recording on the clinical side.
However, 4 patients did not have BX data within the se-
lected time window and were excluded. One patient was
excluded because of a confirmed neurofibromatosis DX,
which made the patient not clinically comparable to other
patients.

We selected our predictors based on the strength of cor-
relation (Nagelkerke R2)39 with each outcome variable,
because it solves Cox-Snell correlation’s40 upper bound
issues and provides a generalized correlation metric similar
to our modeling approach.41 We used a stepwise selection
approach for covariate inclusion. To test our hypothesis, we
built logistic regressions41 to predict the odds of accurate,
inaccurate, and suboptimal DX across patient charts using
R’s generalized linear model package.42 Some of our
variables had toomany categories to be useful in ourmodel.
Thus, we reclassified clinical departments into oncology
and nononcology departments and represented user fac-
tors via provider type rather than using user identification
numbers. We maximized goodness of fit using Akaike’s
information criterion.43 We tested for variable interactions
and collinearity effects in all models with more than one
predictor. Adjustments for multiple comparison were made
using R’s p.adjust function44 selecting Holm’s correction
method.45 We reran each regression using a time window of
90 days before and after the BX to confirm the effect’s
robustness.46 Data extraction was performed with DataGrip
software (version 2017.2.2; JetBrains, Prague, Czech
Republic), exploratory analysis relied on Tableau (version
10.2.4; Tableau Software, Seattle, WA), and graphics were
generated using Prism (version 8; GraphPad Software, San
Diego, CA). Data cleaning and statistical analyses relied on
R version 3.6.130 and RStudio (version 1.2.1335; RStudio,
Boston, MA).

RESULTS

The final analytical data set contained 10,052 order DX
entries and 3,718 primary encounter DX entries for 31
patients (Table 1). Each patient had at least one encounter

per visit and at least one order per encounter that would
each have DX entries attached for clinical care and billing
purposes. Minimum and maximum follow-up times were
119 and 1,185 days, respectively, with an average follow-
up time of 654 6 308 (mean 6 standard deviation). Order
DX entries contained 1,899 (18.9%) accurate records and
1,536 (15.3%) inaccurate records; the remaining were
suboptimal. There were 180 visit providers, 108 order-
authorizing providers for 27 different kinds of orders,
and 431 distinct users over 63 departments, across 8 care
locations, covering 23 clinical specialties recorded in this
data set. Encounter DX entries contained 712 (19.1%)
accurate DX and 522 (14.0%) inaccurate DX, recorded
in 66 departments across 8 care locations, covering 28
clinical specialties by 162 visit providers.

Correlation analysis revealed relatively strong relationships
between workflow variables and accuracy (Fig 1). De-
partment and care location had high correlation for most
outcomes on both data sets (ie, order and encounter DX).
Department presented 0.31, 0.26, and 0.30 correlation
values for order accurate, inaccurate, and suboptimal DX,
respectively. Care location presented 0.31, 0.21, 0.32
correlation values, respectively. Clinical personnel variables
also returned higher correlation values. User entering the
data (R2 = 0.3, 0.34, 0.36), visit provider (R2 = 0.29, 0.33,
0.39), and authorizing provider (R2 = 0.16, 0.11, 0.16),
respectively, had high correlation values for all outcomes
for order DX data. For encounter DX data, department

TABLE 1. Data Set Size and Features

Feature

DX Data Provenance

Order DX Encounter DX

Patients 31 31

DX entries 10,052 3,718

Accurate DX entries 1,899 712

Inaccurate DX entries 1,536 552

Hospital departments 63 66

Care locations 8 8

Specialties 23 28

Visit providers 180 162

Authorizing providers 108 —

Entering users 431 —

Order types 27 —

Days since biopsy (mean 6 SD) 259 6 348 253 6 313

NOTE. Data are No. unless otherwise indicated. We built our
regressions using 2 data sets containing DX data from 2 segments of
our oncologic EHR. One data set contained all DX entries attached to
clinical orders across 31 patient charts. The second data set contained
all DX entries attached to encounter data structures for 31 patients in
our oncology EHR. No entering user data were available within
encounter DX EHR data tables.
Abbreviations: DX, diagnosis; EHR, electronic health record; SD,

standard deviation.
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(R2 =0.31, 0.21, 0.32), care location (R2 = 0.30, 0.20,
0.27), and visit provider (R2 = 0.15, 0.20, 0.19), re-
spectively, had relatively high correlation values. All high
correlation values were significant (P , .0001).

We found significant statistical relationships between
clinical workflow and user variables in the order DX data set
(Table 2). For clinical workflow variables, DX entered in
a nononcology department (eg, surgery, magnetic reso-
nance imaging, outpatient laboratories, and so on) had
2.89 times higher odds of being fully accurate (ie, correct
and specific histology and anatomic site; adjusted [adj]-
P , .0001) and 49% lower odds of being suboptimal (adj-
P , .0001) compared with oncology departments (eg,
oncologic hematology, radiation oncology, and so on). We
also found that DX data recorded at care locations where
patients were seen regularly presented increased accuracy
and reduced inaccuracy odds. For example, a DX entered
at a care location including a cancer survivorship center
had 68 times higher odds of being fully accurate (adj-
P , .0001), was 95% less likely to be inaccurate (adj-
P , .0001), and had 62% lower odds of being suboptimal
(adj-P , .0001) compared with the main campus care
location, which included the comprehensive cancer center.
Similar results were found for a care location including
a geriatric outpatient clinic and a chronic disease man-
agement facility. DX entered at these facilities had 19 and
8 times higher odds of being accurate (adj-P , .0001),
respectively, 88% and 62% lower odds of being suboptimal
(adj-P, .0001), respectively, and 98% lower odds of being
inaccurate in the chronic disease management center (adj-
P , .0001). Imaging facilities were the only care locations
with significantly less accurate logging. A DX entered at
an imaging facility location had 99% lower odds of being
accurate (adj-P , .0001) and over 400 times higher odds

of being suboptimal (adj-P , .0001) compared with DX
data recorded at the main campus. For our user variable,
we found that a DX entered by a physician assistant had
16% lower odds of being fully accurate (adj-P, .0001) but
only 9% higher odds of being inaccurate (P = .0015)
compared with DX entered by physicians. We also found
differences in the logging habits of pharmacists. DX entered
by users with pharmacist roles in the system tended to be
much more accurate (odds ratio [OR], 2.99; P = .012; adj-
P = .059) and had 85% lower odds of being suboptimal
(adj-P = .005).

We further tested this relationship between clinical work-
flow variables and data quality by rebuilding this re-
gression using the encounter DX data (Table 3) and by
rerunning our initial regression on a data set containing
only data within a 90-day range of the BX. We found
that a DX entered in a nononcology department had
66% higher odds of being fully accurate (adj-P = 0.008)
and 28% lower odds of being suboptimal (adj-P = .025)
compared with oncology departments. A DX entered at a
care location including a cancer survivorship center had
over 36 times higher odds of being fully accurate (adj-P,
.0001), 89% lower odds of being inaccurate (adj-P =
.017), and 50% lower odds of being suboptimal (adj-P =
.003) compared with the main campus care location. DX
entered at a geriatric outpatient clinic and a chronic
disease management facility had over 7 and 3 times the
odds of being accurate (adj-P , .0001), respectively, 96%
lower odds of being inaccurate (adj-P , .0001) for the
chronic diseasemanagement center, and 50% lower odds of
being suboptimal in the outpatient geriatric care facility
(adj-P = .003). A DX entered at an imaging facility had
95% lower odds of being accurate (adj-P , .0001) and
66 times higher odds of being suboptimal (adj-P = .025)
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FIG 1. Correlation analysis results. DX, diagnosis.
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compared with DX data recorded at the main campus. We
also rebuilt our models for data sets containing data for the
first 90 days after each patient’s BX to further confirm our
findings. The resulting model for order DX data confirmed
our finding on user differences revealing differences be-
tween physicians and physician assistants (OR, 6.3, adj-
P , .0001 for accurate DX; OR, 0.38, adj-P , .0001 for
inaccurate DX; OR, 0.33, adj-P , .0001 for suboptimal
DX). This model also revealed the same differences for
clinical departments (OR, 3.5; adj-P , .0001 for accurate
DX; OR, 0.44, adj-P, .0001 for suboptimal DX) and for the
outpatient geriatric care facility (OR, 8.0, adj-P , .0001
for accurate DX; OR, 0.44, adj-P , .0001 for suboptimal
DX). Interestingly, we found the opposite effect for the

chronic disease management outpatient facility (OR, 0.47,
adj-P , .0001 for accurate DX; OR, 6.8, adj-P , .0001 for
suboptimal DX) hinting at a transient effect where such
clinics might be more likely to record less accurate and
more suboptimal DX data early in cancer treatments. Re-
building the model for encounter DX confirmed that geri-
atric care facilities were more likely to record accurate DX
(OR, 10.8; adj-P , .0001) and less likely to record sub-
optimal DX (OR, 0.29; adj-P = .035).

DISCUSSION

We used statistical regressions to uncover potential re-
lationships between accurate, inaccurate, and subop-
timal DX data entry in oncologic EHRs and clinical

TABLE 2. Order DX Regression Results

Model Term
Odds Ratio
Exp (β) Estimate (β) SE

95% CI

P Adjusted PLower Upper

Accurate DX Department

Oncology (ref) 1 0 — — — — —

Nononcology 2.89 1.06 0.10 0.88 1.25 , .0001 , .0001

Care location

Main campus and cancer center (ref) 1 0 — — — — —

Imaging center 0.01 −4.89 0.24 −5.40 −4.46 , .0001 , .0001

Outpatient geriatric care 19.14 2.95 0.08 2.80 3.11 , .0001 , .0001

Cancer survivorship center 68.77 4.23 0.26 3.75 4.79 , .0001 , .0001

Chronic disease management facility 8.74 2.17 0.04 2.08 2.25 , .0001 , .0001

Other outpatient facilities 0 −16.06 68.89 −93 −109 0.81 1

Clinical role

Physician (ref) 1 0 — — — — —

Physician assistant 0.84 −0.18 0.03 −0.24 −0.11 , .0001 , .0001

Pharmacist 2.99 1.10 0.44 0.21 1.94 .012 .059

Nurse practitioner 3.36 1.21 1.16 −0.81 3.62 .29 1

Inaccurate DX Department

Oncology (ref) 1 0 — — — — —

Nononcology department 1.15 0.14 0.07 −0.01 0.29 .062 .49

Care location

Main campus and cancer center (ref) 1 0 — — — — —

Imaging center 0.001 −18.49 106.51 −135 −167 .86 1

Outpatient geriatric care 0.00 −18.47 325.70 −313 −278 .95 1

Cancer survivorship center 0.06 −2.75 0.46 −3.80 −1.97 , .0001 ,.0001

Chronic disease management facility 0.02 −3.78 0.22 −4.25 −3.37 , .0001 ,.0001

Other outpatient facilities 9.5e-9 −18.47 188.27 −223 −283 .92 1

Clinical role

Physician (ref) 1 0 — — — — —

Physician assistant 1.09 0.09 0.03 0.03 0.14 .0016 0.015

Pharmacist 2.24 0.81 0.44 −0.09 1.67 .068 0.49

Nurse practitioner 1.85 0.61 1.17 −2.42 2.64 .6 1

(Continued on following page)
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workflow-describing variables, such as care location,
clinical department, and EHR user types. We found that
both clinical department and care location were predictive
of accurate or suboptimal DX entry. Care location was also
predictive of inaccurate recording. We also found that
a user’s clinical role predicted the odds of accurate, in-
accurate, or suboptimal entry. Our findings support the
hypothesis that clinical workflow factors affect the accu-
racy of clinical data recording; they also suggest that there
may be significant differences across clinical workflows
and clinical personnel’s logging habits. Clinical oncologists
using EHR data to make patient care decisions or reusing
clinical data to develop clinical decision support tools
should be aware of this variability.

Our study expands beyond existing literature by exploring
DX code assignment beyond accuracy1,22,47 and shifts the
view of static clinical data as raw analysis material to data as
the product of clinical workflows. Our findings are con-
gruent with the existing literature15-17,36 but also unlock new
dimensions of oncologic data quality assurance. We pro-
vide quantitative evidence of the heterogeneous nature of
clinical workflows and, most importantly, their impact on
clinical data quality. This work also provides preliminary
evidence to suggest that different clinical departments,
care locations, and clinical roles may have different data
logging, which we were not able to find reported quanti-
tatively in prior publications. This is the core contribution of
our analysis.

Our findings hint at differences in the ideal level of DX
specificity across clinical workflows, care locations, and
clinical departments. One interesting finding is the higher
degree of accuracy and lower suboptimal logging odds in
nononcology departments, potentially explained by onco-
logic progress note accessibility at oncologic departments.
There may be a reliance on unstructured clinical data for
information foraging48 during clinical practice at these sites.
This is congruent with the idea that the most accurate and
precise DX is contained in the clinical progress note.49-51

However, this raises questions about the accessibility of
oncology notes to users outside oncology departments and
in the postclinical data lifecycle.52 Current clinical data
reuse research seeks to develop data quality assessment
methods separately from clinical practice.6,53-64 However,
our work shows that clinical data and clinical workflows are
closely related and should be viewed as a product and
production process. There may also be a link between
interface design and entry accuracy, given that order and
encounter entry interfaces are different in our EHR system.
This may counter current data aggregation and ware-
housing trends65,66 but would allow for a data quality as-
sessment and reuse approach more in tune with the
paradigm of learning health care.67

Our analysis has 5 core limitations that will be addressed
in future work. First, we analyzed data for 36 patients with
cancer. Because we relied on a clinician-defined gold
standard, developing a larger cohort would have been labor

TABLE 2. Order DX Regression Results (Continued)

Model Term
Odds Ratio
Exp (β) Estimate (β) SE

95% CI

P Adjusted PLower Upper

Suboptimal DX Department

Oncology (ref) 1 0 — — — — —

Nononcology department 0.51 −0.68 0.06 −0.80 −0.55 , .0001 , .0001

Care location

Main campus and cancer center (ref) 1 0 — — — — —

Imaging center 458 6.13 0.24 5.70 6.63 , .0001 , .0001

Outpatient geriatric care 0.18 −1.72 0.08 −1.88 −1.57 , .0001 , .0001

Cancer survivorship center 0.04 −3.32 0.31 −3.99 −2.76 , .0001 , .0001

Chronic disease management facility 0.38 −0.97 0.04 −1.05 −0.88 , .0001 , .0001

Other outpatient facilities 3.2e7 17.30 69.01 76.38 86.57 .8 1

Clinical role

Physician (ref) 1 0 — — — — —

Pharmacist 0.15 −1.87 0.56 −3.07 −0.86 .0008 .005

Physician assistant 1.04 0.04 0.02 −0.01 0.09 .087 .43

Nurse practitioner 0.27 −1.31 1.22 −4.39 0.80 .28 1

NOTE. Each DX regression model predicts the number of DX descriptions based on department, care location, and the data-entering user’s
clinical role for 3 DX types: Accurate DX descriptions (ie, descriptions containing the accurate tumor type and anatomic site), Inaccurate DX
descriptions (ie, descriptions containing inaccurate tumor type or anatomic site), and Suboptimal DX descriptions (ie, DX descriptions that were
neither accurate nor inaccurate).

Abbreviations: DX, diagnosis; ref, reference.
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intensive and cost prohibitive at this stage. Still, our final
data set provided adequate statistical power to test our
hypothesis and previous work.37 Second, we relied on data
from a single institution, which may limit the external
validity of our findings. We will address this limitation in
future work by replicating our analysis at multiple sites.
Third, we had a simple definition of DX accuracy. The
definition was based on information available in our EHR
and information needed to identify patient charts for
secondary analysis. This is in concordance with the
clinical data quality literature,68,69 which recommends
accuracy definitions to fit the intended data use. Fourth,

limited clinical workflow and user factors were explored
because of availability and analytic method limitations;
other variables will be explored in future work. Finally, we
only studied one type of cancer. Future work will include
reproducing this analysis for other patient cohorts to as-
sess generalizability. We will use a larger cohort of patients
and cohorts diagnosed with other oncologic conditions.37

We will also explore the availability of user interaction data
within our EHR database to better understand whether
data entry modes (eg, drop-down menu selection and
search interfaces) have an impact on the accuracy of
DX data entry in oncologic EHRs. Additional secondary

TABLE 3. Encounter DX Regression Results

Model Term
Odds Ratio
Exp (β) Estimate (β) SE

95% CI

P Adjusted PLower Upper

Accurate DX Department

Oncology (ref) 1 0 — — — — —

Nononcology department 1.66 0.51 0.16 0.19 0.84 .002 .008

Care location

Main campus and cancer center (ref) 1 0 — — — — —

Imaging center 0.05 −2.94 0.58 −4.34 −1.97 , .0001 , .0001

Outpatient geriatric care 7.10 1.90 0.20 1.55 2.37 , .0001 , .0001

Cancer survivorship center 38.60 3.60 0.40 2.92 4.54 , .0001 , .0001

Chronic disease management facility 3.58 1.27 0.15 0.98 1.56 , .0001 , .0001

Other outpatient facilities 5.0e-8 −16.80 401 −188 −277 .96 1

Inaccurate DX Department

Oncology (ref) 1 0 — — — — —

Nononcology department 1.07 0.06 0.14 −0.21 0.35 .65 1

Care location

Main campus and cancer center (ref) 1 0 — — — — —

Imaging center 2.7e-8 −17.41 378 −180 −288 .96 1

Outpatient geriatric care 2.7e-8 −17.41 642 −264 3.53 .97 1

Cancer survivorship center 0.11 −2.18 0.72 −3.99 −1.01 .002 .017

Chronic disease management facility 0.06 −2.83 0.51 −4.01 −1.97 , .0001 , .0001

Other outpatient facilities 2.7e-8 −17.41 402 −189 −272 .96 1

Suboptimal DX Department

Oncology (ref) 1 0 — — — — —

Nononcology department 0.72 −0.33 −0.57 −0.10 −2.80 .005 .025

Care location

Main campus and cancer center (ref) 1 0 — — — — —

Imaging center 66.00 4.19 3.22 5.59 7.20 , .0001 , .0001

Outpatient geriatric care 0.50 −0.70 −1.11 −0.31 −3.44 .0005 .003

Cancer survivorship center 0.06 −2.77 −3.83 −1.95 −5.89 , .0001 , .0001

Chronic disease management facility 0.90 −0.11 −0.39 0.18 −0.74 .46 1

Other outpatient facilities 2.8e7 17.15 170 121 0.07 .94 1

NOTE. Each DX regression model predicts the number of DX descriptions based on department and care location for 3 DX types: Accurate DX
descriptions (ie, descriptions containing the accurate tumor type and anatomic site), Inaccurate DX descriptions (ie, descriptions containing
inaccurate tumor type or anatomic site), and Suboptimal DX descriptions (ie, DX descriptions that were neither accurate or inaccurate).

Abbreviations: DX, diagnosis; ref, reference.
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analyses of clinical data using analytic methods, such as
machine learning70 and simulation modeling techniques,71

will also be conducted.

In conclusion, clinical departments and care locations were
predictive of DX data quality. A user’s clinical role (eg,
physician, assistant) was also predictive of accurate,

inaccurate, and suboptimal DX data recording. Clinical
oncologists using EHR data to make care decisions or
reusing data to develop clinical decision support tools
should take such differences into account. Additional
analytic work is needed to tease out this heterogeneity in
clinical data recording.1,2,5
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