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Abstract

Genome-scale metabolic models (GEMs) are valuable tools to study metabolism and provide a 

scaffold for the integrative analysis of omics data. Researchers have developed increasingly 

comprehensive human GEMs, but the disconnect among different model sources and versions 

impedes further progress. We therefore integrated and extensively curated the most recent human 

metabolic models to construct a consensus GEM, Human1. We demonstrated the versatility of 

Human1 through the generation and analysis of cell- and tissue-specific models using 

transcriptomic, proteomic, and kinetic data. We also present an accompanying web portal, 

Metabolic Atlas (https://www.metabolicatlas.org/), which facilitates further exploration and 

visualization of Human1 content. Human1 was created using a version-controlled, open-source 

model development framework to enable community-driven curation and refinement. This 

framework allows Human1 to be an evolving shared resource for future studies of human health 

and disease.

Introduction

Human metabolism is an integral part of cellular function, and many health conditions such 

as obesity, diabetes, hypertension, heart disease, and cancer (1, 2) are associated with 

abnormal metabolic states. Several of these conditions can be diagnosed by screening for 

metabolite biomarkers in a patient’s blood or urine (3), and recent studies have explored 

targeting metabolic processes for disease treatment (4, 5).

Despite the importance of metabolism and advances allowing for simultaneous measurement 

of thousands of metabolites (6), understanding metabolism in a holistic manner in human 

cells remains challenging. One reason for this difficulty is that the defining feature of 

metabolism is not the concentrations of biomolecules themselves (such as metabolites, 

mRNA, or proteins), but metabolic fluxes through reactions, for which concentrations can 

only be used as indirect proxies for biological activity (7). This challenge has been 

addressed by building genome-scale metabolic models (GEMs), which have been used for 

instance in industrial applications involving Saccharomyces cerevisiae and Escherichia coli 
to understand metabolism, engineer new cellular objectives (such as biofuel production), and 

increase product yield (8, 9).

Over the past 15 years, researchers have devoted a concerted effort to develop and improve 

such GEMs for human metabolism. This effort began in earnest with the development of 

Recon1 (10) and the Edinburgh Human Metabolic Network (EHMN) (11), which served as 

the starting point for two parallel model series: the Recon series (Recon1, 2, and 3D) (10, 

12, 13) and the Human Metabolic Reaction series (HMR1 and 2) (14, 15). These two model 

lineages incorporate heavily from each other during updates (Fig. S1) and have been used to 

investigate diseases that include dysbiosis, diabetes, fatty liver disease, and cancer (16–19). 

Nevertheless, several challenges remain in the development of a human GEM, including the 
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use of non-standard identifiers for genes, metabolites, and reactions; duplication of model 

components; propagation of errors from previous model iterations; effort divided among 

multiple model lineages; and model updates that are delayed, non-transparent, and difficult 

to coordinate among the scientific community.

Here, we present Human1, the first version of a unified human GEM lineage (Human-

GEM), and Metabolic Atlas, its companion web portal. Human-GEM was developed by 

integrating and extensively curating the Recon and HMR model lineages. The entire 

development process was conducted systematically in a version-controlled Git repository to 

make all past and future changes publicly accessible, and to facilitate collaboration with the 

larger research community. We demonstrate the versatility and predictive accuracy of 

Human1 through an integrative analysis of transcriptomic data from 33 tumors and 53 

healthy tissues; a gene-essentiality investigation involving over 620 different cell types; and 

the prediction of nutrient exchange and growth rates of NCI-60 cell lines using an enzyme-

constrained GEMs (ecGEMs) derived from Human1.

Results

Human1 generation and curation

Our primary focus was to establish a systematically curated model of human metabolism 

that accurately represents the underlying biology. We therefore leveraged the collective 

knowledge contained within existing human GEMs by integrating their information into a 

single resource. Components and information from HMR2, iHsa (20), and Recon3D were 

integrated and reconciled to yield a unified GEM consisting of 13,417 reactions, 10,138 

metabolites (4,164 unique), and 3,625 genes (Fig. 1, Table S1).

Curation of the integrated model to generate Human1 involved the removal of 8,185 

duplicated reactions and 3,215 duplicated metabolites; revision of 2,016 metabolite 

formulas; re-balancing of 3,226 reaction equations; correction of reversibility for 83 

reactions; and the inactivation or removal of 576 reactions that were inconsistent (violated 

mass or energy conservation) or deemed unnecessary (Tables S1–S3). We also constructed a 

new generic human biomass reaction based on various tissue and cell composition data 

sources to facilitate flux simulations and other analyses relying on a such a reaction (Data 

files S1 and S2). All model changes were documented to provide justification and to ensure 

reproducibility. Furthermore, to ensure that these changes remained consistent with previous 

human GEM simulation studies, we repeated the infant growth simulation presented by 

Nilsson et al. (21) and found excellent agreement between their HMR2-based results and our 

Human1-based simulations (Fig. S2).

The quality of Human1 was evaluated using Memote, a community-maintained framework 

for assessing GEMs with a standardized set of tests and metrics (22). In terms of 

consistency, Human1 exhibited excellent performance with 100% stoichiometric 

consistency, 99.4% mass-balanced reactions, and 98.2% charge-balanced reactions (Fig. S3). 

This is a considerable improvement over the most recent GEM, Recon3D, which had 19.8% 

stoichiometric consistency and 94.2% mass- and 95.8% charge-balanced reactions. Although 

the “model” version of Recon3D is fully stoichiometrically consistent and has a similar 
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charge balance percentage (98.7%) as Human1, it has a lower percentage of mass balanced 

reactions (97.3%) and contains 20% fewer total reactions and 33% fewer metabolites 

compared to Human1. The average Memote annotation score for metabolites, reactions, 

genes, and SBO (systems biology ontology) terms in Human1 was 66%; although this is a 

substantial improvement over previous models (46% for HMR2 and 25% for Recon3D), it 

indicates an area requiring further attention. We also used Memote to evaluate all 27 

Human-GEM releases (versions) preceding Human1 to resolve the effect of different 

curation processes on the various quality metrics (Fig. S4A–C).

A major advantage of GEMs is their ability to integrate different molecular datatypes to 

enable the interpretation of such data within the context of metabolism (23). We prioritized 

the curation and enhancement of gene-reaction associations for Human1 because such 

associations serve as an important link for the integration of multi-omics data. To this end, 

gene-reaction associations from HMR2, Recon3D, and iHsa were combined and integrated 

with enzyme complex information from Recon3D, iHsa, and the comprehensive resource of 

mammalian protein complexes database (CORUM (24)) to obtain gene-reaction rules for 

Human1. We also made available the transcript- and protein-reaction rules to facilitate direct 

integration of protein- or transcript-level data into the model, respectively (25). Furthermore, 

a key contribution of Recon3D was the association of protein structure information (such as 

3D structure data) in a GEM-PRO data frame (13). We therefore regenerated the GEM-PRO 

data frame for Human1 to ensure that this same detailed protein information is also available 

for Human1.

An obstacle with existing human GEMs is their insufficient use of standard identifiers (such 

as KEGG, MetaCyc, and ChEBI) for many metabolites and reactions, thus impeding the 

retrieval of associated information from databases or the comparison of different models. To 

address this issue, we combined the available reaction and metabolite formulas, names, and 

identifiers in a semi-automated curation process using the MetaNetX reference database (26) 

to map 88.1% of reactions and 92.4% of metabolites to at least one standard identifier in 

Human1.

Other challenges facing human models are the ineffective communication and dissemination 

of their construction or revision. Traditionally, GEMs have been provided as a static object 

accompanying a publication, and thus errors can remain without correction for years. Based 

on the approach applied for the Yeast8 GEM (27), we developed Human1 using a Git 

repository hosted on GitHub to establish a more systematic and community-driven 

development process. This configuration enables version control and tracking of all changes 

made to the model since its inception, accompanied by documentation such as commit 

messages and log files. The use of a public repository allows users to view or download the 

curation history of Human1 and submit issues to suggest changes or highlight errors. Thus, 

new knowledge can be efficiently integrated in future updates of the model using a 

community wide effort.

Collectively, these improvements yield a standardized model enabling simple and accurate 

integration with different databases or omics datasets. We observed that the implementation 

of Human1 in a version-controlled framework such as Git is necessary to address many of 
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the reproducibility and transparency concerns associated with computational research (28, 

29).

Metabolic Atlas

In parallel with the development of Human1, we developed Metabolic Atlas (https://

www.metabolicatlas.org/), an online platform that enables interactive exploration of cell 

metabolism and convenient integration of -omics data. Metabolic Atlas is an open-source re-

implementation and complete re-design of its predecessor, the Human Metabolic Atlas (30).

Metabolic Atlas enables visualization of the complex metabolic network and interconnects 

model components (Fig. 2). It contains interactive 2D maps at compartment and subsystem 

levels, allowing the use of smaller, more focused maps that pertain to metabolic areas of 

interest. The manually curated 2D maps cover 6,793 non-transport/non-exchange reactions 

(90%), 4,027 metabolites (97%), and 3,316 genes (91%) present in Human1. These maps are 

integrated with transcriptomic data from the Human Protein Atlas (HPA (31)), upon which 

gene expression levels from 37 different tissue types can be overlaid. Users can also upload 

their own transcriptomic data to be visualized on the maps, and an expression comparison 

feature allows the overlaying of expression fold-changes between two samples (such as 

different HPA tissues and/or user-uploaded data).

Selection of a component (gene, reaction, metabolite, subsystem) on any Metabolic Atlas 

map provides a descriptive summary on the sidebar, which includes a link to its complete 

information page with further details and links to external databases. Moreover, 

automatically generated 3D maps are available, which cover 100% of the Human1 network. 

In addition to maps, Metabolic Atlas dynamically generates graphs of interaction partners 

for any given enzyme or metabolite in Human1, which show the connectivity to other 

metabolites and enzymes based on their associated reactions. These graphs can be expanded 

to include more distant interaction partners and are also integrated with HPA transcriptomic 

data.

Metabolic Atlas continues to serve as a repository for an increasing number of GEMs (over 

350), ranging from those of individual human tissues and tumors to S. cerevisiae and other 

model organisms for fungi or bacteria. These models are summarized in a searchable table 

including information such as organism name; condition; year of publication; and number of 

reactions, metabolites, and enzymes. Furthermore, the content of Human1 can be accessed 

programmatically using the API to retrieve, for example, all information associated with a 

given metabolite.

Metabolic Atlas provides a valuable resource and intuitive tool that complements the 

functionality of the Human1 model for studying metabolism. The coupling of Human1 and 

Metabolic Atlas enables valuable infrastructural support for future research in human health 

and disease.

Generation and comparison of healthy tissue- and tumor-specific models

To demonstrate the utility of Human1, we explored metabolic patterns across healthy tissues 

and primary cancers arising within those tissues. We performed GEM contextualization to 
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construct tissue- and cancer-specific models because Human1 contains reactions across 

many human cell types and is thus not representative of any individual tissue or tumor type. 

The contextualization was performed using tINIT (32) based on gene expression levels from 

The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression database (GTEx 

(33)) to construct 53 healthy tissue metabolic models and 33 cancer metabolic models.

We first investigated the global similarity in the structure of the metabolic models by 

comparing which reactions were included in each model. We visualized relationships across 

the reaction structures of the 86 models using a 2D t-distributed stochastic neighbor 

embedding (tSNE) projection, which showed that each cancer type’s metabolic signature is 

more similar to the metabolism of its tissue of origin than to that of other cancer types (Fig. 

3A and Fig. S5). This phenomenon has also been observed when comparing gene expression 

data among different tissue and cancer types (34). Several tissues and their associated 

tumors had markedly different metabolic capabilities than the other tissue models; these 

included the brain, liver, kidney, and tissues in the digestive system (stomach, colon, and 

rectum). This result highlights the role of these tissues as “metabolic specialists” as opposed 

to other human tissues.

We next focused on the GEMs of liver, liver cancer, blood, and blood cancer. A more 

detailed reaction structure comparison showed that liver and blood models (and their 

associated tumors) have distinct metabolic reaction structures, and that, within liver models, 

cholangiocarcinoma (CHOL) was more distinct from healthy liver tissue whereas 

hepatocellular carcinoma (LIHC) laid between the two states (Fig. 3B).

To further explore these differences, we investigated the metabolic subsystem coverage and 

functional differences between liver tissue and liver cancers. We found a distinct loss of 

metabolic functions in the CHOL GEM, including a deficiency in metabolic reactions 

associated with the urea cycle, bile acid recycling, metabolism of other amino acids, 

phenylalanine metabolism, and glucocorticoid biosynthesis (Fig. 3C), leading to a loss of 

function in urea production, ornithine degradation, arginine and creatine synthesis, ammonia 

import and degradation, and other metabolic tasks (Fig. 3D). The exception was proline de 

novo synthesis, which was the only metabolic task active in CHOL that was inactive in the 

other liver-related GEMs. This was supported at the mRNA level (visualized using 

Metabolic Atlas in Fig. S6) and reflects previous studies that have shown increased proline 

synthesis and decreased proline degradation in other cancers in response to signaling 

through c-MYC and PI3K oncogenes, where the disruption of such metabolic activity 

constitutes a potential therapeutic strategy (35, 36). These and other approaches targeting 

metabolic functions such as ammonia buildup may constitute beneficial areas of research for 

developing CHOL treatments, which currently suffers from a lack of targeted therapies (37).

The construction of healthy and cancer-specific GEMs allowed us to compare cancer 

metabolism to healthy metabolism in systems for which paired normal tissue was not 

collected along with cancer tissue. An example is the comparison of the metabolism of acute 

myeloid leukemia (LAML) to that of healthy blood. The LAML GEM was characterized by 

a large increase in metabolic function over healthy blood (Figs. 3E and 3F), including 

processes such as glucocorticoid biosynthesis, fatty acid oxidation (Fig. S7), 
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glycosphingolipid synthesis, and amino acid metabolism. This observation is consistent with 

previous studies showing that LAML relies on elevated fatty acid oxidation (38) and exhibits 

increased glycosphingolipid biosynthesis (39) which is associated with resistance to 

chemotherapeutics (40).

The large gain of metabolic function in LAML provides a rich number of pathways to target, 

such as heme biosynthesis, which constitutes a potential target for the treatment of LAML 

(41, 42). Moreover, reduced coverage of a metabolic pathway in the disease-state GEM may 

indicate a less robust metabolic function that is more susceptible to therapeutic disruption. 

For example, the LAML GEM contained fewer reactions in the heme degradation subsystem 

compared to that of healthy blood, suggesting that targeting such activity could prove 

beneficial for treating LAML. Supporting this observation, inhibition of oxidative heme 

degradation has been demonstrated to be a promising treatment for myeloid leukemia (43).

Prediction of metabolic task-essential genes in human cell lines

Following the construction and analysis of context-specific GEMs derived from Human1, 

we performed additional analyses to validate the network topologies of such models. Gene-

reaction associations encoded within GEMs enable predictions of how gene perturbations 

(such as deletions) impact metabolic functionality. A common approach involves the 

prediction of essential genes by determining which genes, when deleted in silico, sufficiently 

reduce or eliminate the function of a specified objective reaction, such as biomass 

production (44). This predicted set of essential genes can then be compared with 

experimental gene essentiality measurements to quantitatively evaluate model performance.

Genome-wide knockout screens have provided gene essentiality data to validate microbial 

GEMs, but such data has been unavailable for human cells due to challenges in genetically 

engineering these cells. Because the development of CRISPR technologies has enabled high-

throughput genome-wide knockout screens in human cell lines, we leveraged this new data 

source to evaluate Human1 gene essentiality predictions. We retrieved gene essentiality data 

from a CRISPR knockout screen performed in five different human cell types: GBM, a 

patient-derived glioblastoma cell line; RPE1, retinal epithelial cells; HCT116 and DLD1, 

colorectal carcinoma cell lines; and HeLa, a cervical cancer cell line (45). Five cell-line-

specific GEMs were constructed from Human1 using tINIT and their respective gene 

expression (RNA-Seq) profiles (45), and in silico gene deletions were performed on each 

GEM (Fig. 4A). Rather than focusing solely on growth, essential genes were defined as 

those which, upon deletion, impaired any of the 57 basic metabolic tasks (including biomass 

production) that are required for human cell viability (32) (Data file S3). This more general 

definition of gene essentiality reduces the extent to which predictions depend on the 

formulation of the biomass reaction and was hypothesized to increase sensitivity of the 

predictions by accounting for more functions of the metabolic network. We repeated this 

process using HMR2 and Recon3D as the template GEMs to enable comparison of Human1 

performance with previous human model iterations.

We compared model-predicted essential genes for each individual cell line (as well as those 

essential in all five cell lines) to the set of essential genes identified in the corresponding 

CRISPR screen. The results were organized as confusion matrices quantifying the number of 
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true and false positives and negatives (Fig. 4A), which were then used to evaluate prediction 

performance using several metrics (Fig. 4B). The general robustness of cells toward 

perturbations such as single gene knockouts (46) yields a much smaller number of essential 

genes than non-essential genes, resulting in highly imbalanced group sizes. Accuracy is 

therefore an inappropriate metric for assessing the quality of gene essentiality predictions. 

For example, although all reference models (HMR2, Recon3D, and Human1) achieved 

similarly high accuracy across all cell types (mean accuracy 86–88%), the same degree of 

accuracy is achieved if all genes are simply predicted as non-essential. This feature is 

reflected in the high specificity but low sensitivity exhibited by all three reference models. A 

more balanced prediction metric, the Matthews Correlation Coefficient (MCC) (47), was 

therefore calculated and compared among the different reference and cell-specific GEMs. 

Although the MCC values were relatively low overall, they showed a substantial increase 

(over 2.5-fold) in prediction quality for Human1-derived GEMs compared to HMR2- and 

Recon3D-derived models. Moreover, a hypergeometric test for enrichment of true positives 

in each model’s set of predicted essential genes showed significant enrichment for 

predictions from all Human1-derived GEMs (all p < 10−20), whereas HMR2- and Recon3D-

derived GEMs performed no better than random (p > 0.05) in predicting essential genes for 

the RPE1 cell line and/or those common to all five cell lines (Fig. S8).

To further verify the improvement in Human1 gene essentiality predictions, we repeated the 

same pipeline (Fig. 4A) using RNA-Seq profiles and CRISPR knockout screen data for 621 

human cell lines retrieved from the DepMap database (48, 49). The prediction performance 

of these 1,863 cell-specific GEMs (621 models derived from each of the 3 reference GEMs) 

was again evaluated using several different metrics (Fig. S9, A to D), including MCC (Fig. 

4C). The analysis further confirmed the improvement in the performance of Human1, which 

exhibited a 2.8-fold mean increase in MCC over Recon3D. Because the CRISPR knockout 

screen scored genes on a continuous scale, it required the use of a threshold to categorize 

genes as essential or non-essential. We therefore repeated the analysis with a range of 

threshold values to confirm that our results were insensitive to this parameter (Fig. S10). To 

ensure that the selection of metabolic tasks was not biasing the results, we repeated the 

analysis using only biomass production to define gene essentiality. Although the relative 

performance between the three reference models was not affected, the results demonstrated 

an increased sensitivity in all GEMs’ predictions when using metabolic tasks instead of only 

biomass to define gene essentiality (Fig. S11, A and B).

Collectively these results demonstrated a marked improvement in Human1 over previous 

GEMs. However, the large number and diversity of curations involved in the development of 

Human1 make it difficult to resolve which changes contributed to the improved gene 

essentiality predictions. We therefore repeated the gene essentiality analysis pipeline (Fig. 

4A) and comparison with the 5 cell-lines from the Hart 2015 dataset (45) for all 27 versions 

preceding the current release of Human1 (v1.3.0). Although the largest increases in 

performance were the result of updates to model genes or gene-reaction rules (based on 

database information, other GEMs, or the literature), other curations such as mass-balancing 

reactions and correcting reversibility of reactions associated with the electron transport chain 

also contributed to increases in Human1 predictive performance (Table S3 and Fig. S4D).
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An enzyme-constrained human model

Human GEMs are often poorly constrained due to the limited availability of measured flux 

data, as well as the reliance of human cells on essential amino acids and vitamins as 

nutrients in addition to a dominant carbon source such as glucose (50). The GECKO 

(enhancement of a Genome-scale model with Enzymatic Constraints using Kinetic and 

Omics data) modeling framework was developed to integrate enzyme abundance and kinetic 

data into GEMs to constrain the flux space to a more meaningful region without requiring 

extensive nutrient exchange data (51). We therefore applied the GECKO framework to 

Human1-derived GEMs to generate enzyme constrained ecGEMs. GECKO implements 

enzyme constraints by incorporating the enzymes into their catalyzed reactions as pseudo-

metabolites with a stoichiometric coefficient inversely proportional to their turnover rate 

(kcat). The explicit incorporation of enzymes allows the use of absolute proteomics datasets 

as constraints for each protein. If protein measurements are not available, the total protein 

content can be used as a global constraint for an additional pseudo-metabolite (protein pool) 

from which all enzymes are drawn.

To evaluate the improvement in flux predictions for enzyme-constrained GEMs derived from 

Human1, we used 11 NCI-60 cell-line-specific GEMs generated during the gene essentiality 

analysis (part of the DepMap dataset) for which reliable nutrient exchange rate data (52, 53) 

were available. Other NCI-60 cell lines were excluded as their metabolite exchange data was 

deemed unreliable due to early depletion of one or more nutrients (53, 54). Enzyme 

constraints were incorporated into each of these cell-specific GEMs using the GECKO 

framework, yielding 11 cell-specific ecGEMs (Fig. 5A).

After generating the cell-specific ecGEMs, we sought to evaluate the impact of the enzyme 

constraints on the accessible (feasible) flux space. An approach often used to assess the 

feasible flux range for all reactions in a model is flux variability analysis (FVA) (55). We 

conducted FVA on each of the 11 cell-specific ecGEMs and compared the flux variabilities 

with the corresponding non-ecGEMs. The analysis revealed a substantial reduction in 

solution space, where the median decrease in flux variability across the 11 cell line models 

ranged from 3.5 to 7 orders of magnitude (Fig. 5B, Fig. S12, Data file S4).

The integration of enzyme constraints substantially reduced the available flux space of 

Human1 but did not guarantee that this space was more accurate or biologically meaningful. 

We therefore sought to validate the ecGEMs by comparing predicted exchange fluxes with 

measured fluxes for 26 different metabolites, as well as comparing growth rates (Data file 

S5) (52). Fluxes were simulated by maximizing biomass production while specifying only 

which metabolites were present in the medium (Ham’s medium)—no uptake or excretion 

rates were provided. Under these conditions, exchange fluxes cannot be predicted by non-

ecGEMs because the solution is unbounded (the maximum growth rate is effectively 

infinite). However, all ecGEMs were able to predict finite exchange fluxes for each of the 26 

metabolites as well as growth rates, where most (~78%) were in reasonably good agreement 

with experimental measurements (Fig. 5C). The largest disagreements involved the 

overprediction of fluxes for folate, alpha ketoglutarate (AKG), and aspartate, and an 

underprediction for pyruvate, carnitine, and ornithine.
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To further explore the improvement in flux predictions upon incorporating enzyme 

constraints into Human1-derived GEMs, we investigated the effect of specifying one or 

more metabolite exchange rates in addition to the media composition. Comparison of 

predicted to measured growth rates for the 11 cell lines revealed that non-ecGEMs could 

only achieve bounded solutions with errors comparable to their enzyme-constrained 

counterparts if the exchange rates of glucose, lactate, and at least one essential amino acid 

(threonine, in this case) were specified (Fig. 5D). These results also highlight an important 

feature of the enzyme-constraint framework: the greatest advantages and improvement in 

flux predictions are achieved when experimental exchange rates are limited or unavailable, 

which is most often the case when modeling human systems. However, when such flux 

measurements are available, the potential improvement offered by enzyme constraints 

becomes limited, as illustrated in the most constrained simulation in Fig. 5D.

The ability to estimate metabolic fluxes and growth rates with reasonable accuracy through 

the integration of enzyme constraints with Human1 represents a substantial development in 

human metabolic modeling. Whereas previous applications of human GEMs have largely 

been restricted to network-based analyses, the enzyme constraint formulation enables 

simulation-based approaches in the absence of metabolite exchange information.

Discussion

We developed Human1, a systematically curated and version-controlled human genome-

scale metabolic model. Human1 is the unification of the parallel HMR and Recon human 

GEM lineages and effectively represents HMR3 and Recon4 with the aim of consolidating 

scientific efforts into a more efficient and coordinated approach to modeling human 

metabolism. We used Human1 to compare metabolic network structure and function across 

different healthy tissue and tumor types and demonstrated improved reliability of gene 

essentiality predictions for human cells; Human1 furthermore enables accurate simulation of 

cell growth and metabolite exchange rates given limited flux information.

The value of the rigorous curation process that was applied to Human1 is exemplified in part 

by the improved performance in gene essentiality predictions compared to other human 

GEMs (Figs. 4 B and C). Such improvements can be attributed to the integration of enzyme 

complex information from multiple models and databases into Human1 followed by careful 

curation of gene-reaction associations. The development of Human1 extended beyond gene-

reaction associations and gene essentiality analyses, including an extensive mass and energy 

balancing process yielding a 100% stoichiometrically consistent GEM with over 99% mass-

balanced reactions. Furthermore, the quantification of these metrics over the curation 

process (Fig. S4, A to D) enabled us to link various operations to changes in model 

performance or quality. This can help others identify where to focus efforts when applying 

this procedure to another organism or system, particularly if they are interested in improving 

one or two specific metrics.

An important feature of GEM-based analyses is that GEMs allow for simulation of flux 

through a metabolic network, enabling prediction of growth rates and intracellular reaction 

fluxes. Traditional simulations of human GEMs involve specifying external parameters 
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(such as metabolite uptake rates) and internal parameters (such as specific growth rate and 

internal flux splits) to capture metabolic phenotypes, particularly in cancer (52). 

Measurements to determine these parameters in vivo are challenging or currently 

impossible, resulting in poorly constrained flux predictions and hindering the ability of 

GEMs to describe human metabolism where it matters most—within humans. In this work, 

we presented the construction and analysis of human ecGEMs which integrate enzyme 

kinetics and optionally proteomic data to allow physiologically meaningful flux simulations 

given little or no metabolite exchange information (51). This formalism enables flux 

simulations by specifying internal model constraints using more readily available -omics 

data rather than defining external model constraints based on metabolite exchange rates, 

greatly expanding the application potential of Human1, particularly for modeling 

metabolism of tissues and tumors in vivo.

As a complement to Human1, we developed the Metabolic Atlas web portal. This portal 

supplements and enriches the features of Human1 by providing users with deeper 

information on model components (for example, listing all reactions involving a given 

metabolite) and links to external databases (such as HPA, Ensembl, and MetaNetX). 

Metabolic Atlas also offers interactive compartment and subsystem maps to visualize and 

navigate Human1 content. By presenting the content in a more visual and connected format, 

Metabolic Atlas unlocks the information and potential of Human1 for those who are 

unfamiliar with GEMs but are interested in human metabolism.

Although GEMs provide versatile tools for the exploration of metabolism, their value is 

contingent upon their quality. Researchers rely on GEMs to be meticulously curated and 

frequently updated to ensure that they are consistent with current knowledge. Furthermore, 

this process should be done in a manner that is open, systematic, and reproducible. We 

therefore constructed Human1 in a version-controlled GitHub repository (https://github.com/

SysBioChalmers/Human-GEM), where its latest iteration (v1.3.0 at the time of writing) and 

complete history are publicly available. This formulation allows the implementation of 

improvements and repairs to the model on the order of days to weeks, rather than several 

months to years as is the case with traditional GEM releases. We expect this or analogous 

approaches to become common practice in GEM development, as the rapid progress of the 

field requires a model development framework that can keep pace while maintaining 

transparency and reproducibility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of Human1 generation and curation.
A simplified illustration of the key steps involved in the generation of Human1 from HMR2, 

Recon3D, and iHsa. The bottom of the diagram represents the ongoing open-source curation 

of Human1 using input from databases, literature, other models, and the scientific 

community. The four side panels provide further detail into selected Human1 features: 

extensive reaction mass and charge balancing to achieve 100% stoichiometric consistency; 

incorporation of new enzyme complex information; mapping model components to standard 

database identifiers; version-controlled and open-source model curation framework. In the 

bar graphs in the upper left panel, “Balanced” reactions represent the number of mass-

balanced reactions, “Consistent” metabolites are the number of stoichiometrically consistent 

metabolites, and “R3D model” is the model version of Recon3D.
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Fig. 2. Highlighted features provided by the Metabolic Atlas web portal.
A collection of screen captures from Metabolic Atlas, illustrating key features such as 2D 

and 3D metabolic network maps. A zoomed inset shows a subset of the endoplasmic 

reticulum compartment map, from which further information on components such as 

reactions, enzymes, or metabolites can be accessed in the GEM Browser. Interaction partner 

graphs are dynamically generated for any given enzyme or metabolite in Human1, which 

show the connectivity to other metabolites and enzymes based on their associated reactions.
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Fig. 3. Structural and functional comparison of cancer- and healthy tissue-specific GEMs.
(A) Visualization of differences in models’ reaction content using a tSNE projection to two 

dimensions based on the Hamming similarity. See Fig. S5 for individual point labels. (B) 

Heatmap showing pairwise comparisons of reaction content between GEMs specific to 

healthy liver (CHOL-NT, LIHC-NT, and Liver-GTEx), blood, and their corresponding 

cancers (CHOL, LIHC, and LAML). (C) Relative subsystem coverage (number of reactions 

present in a model that are associated with the given subsystem) compared among GEMs of 

liver and liver tumors. Only subsystems with at least a 10% deviation from mean subsystem 

coverage among the models are shown. (D) Summary of metabolic task performance by the 

healthy and cancerous liver models, showing only the tasks that differed in at least one of the 

models. (E) Comparison of relative subsystem coverage between LAML- and blood-specific 

GEMs, showing only subsystems with at least a 10% deviation between the two models. (F) 

A summary of the five metabolic tasks that could be completed by the LAML GEM but 

failed in the healthy blood GEM. ROS, reactive oxygen species; GSL, glycosphingolipid; 

FA, fatty acid; [p], peroxisomal compartment; DHA, docosahexaenoic acid.
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Fig. 4. Predicted gene essentiality among different cell lines and human GEMs.
(A) Schematic illustration of the generation of cell-line-specific GEMs from HMR2, 

Recon3D, and Human1, and subsequent prediction of gene essentiality based on the GEMs’ 

ability to perform basic metabolic tasks. Genes predicted to be essential by the GEMs were 

compared to experimental measures of gene essentiality (45, 49) obtained from CRISPR 

knockout screens. (B) Comparison of gene essentiality predictions among the three 

reference GEMs and their 5 derivative cell line models with CRISPR screen results from 

Hart et al. (45). Left: Average accuracy, specificity, and sensitivity of predictions across the 

5 cell lines for each reference GEM, with error bars representing the standard error of the 

mean. Right: Comparison of the Matthews Correlation Coefficient (MCC) of the predictions 

for each of the reference GEMs and cell lines. The “All” category indicates genes found to 

be essential in all 5 cell lines. (C) Comparison of gene essentiality predictions among the 

three reference GEMs and their 621 derivative cell line models with CRISPR screen results 

from the DepMap database (49).
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Fig. 5. Generation and analysis of human ecGEMs.
(A) Graphical representation of the pipeline used to construct NCI-60 cell-line specific 

ecGEMs from Human1. (B) Cumulative distribution of flux variability among reactions in 

HOP62-GEM and ecHOP62-GEM. Only the ~3,200 reactions that carried a flux of >10−8 

mmol/gDW h when optimizing biomass production in HOP62-GEM were included in the 

plot. Distributions for all 11 cell lines are shown in Fig. S12. (C) Comparison of predicted 

with measured exchange fluxes (log10-transformed absolute flux values) for the 11 cell-

specific ecGEMs, where only the set of metabolites present in the growth medium (Ham’s 

medium) was specified. Different colored markers represent the different cell lines. 

Metabolites whose fluxes were systematically under- or over-predicted among the different 

models are labeled in circles, whereas the other ~78% lie within the shaded oval. Note that 

metabolites along the bottom of the plot have a predicted flux of zero but are shown here as 

having the absolute minimum measured value to avoid logarithm of zero. (D) Boxplots 

showing the relative error in predicted growth rate for the 11 cell-specific ecGEMs and non-

ecGEMs. “Unbounded” indicates that the solutions are effectively unbounded and therefore 

have unquantifiable (infinite) error. Colored markers on the x-axis denote the exchange 

constraints that were cumulatively added to the models when making predictions. “Media” 

indicates that only the metabolites present in the growth medium were specified, without 
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constraining their exchange rates. “Glucose”, “Lactate”, and “Threonine” indicate that the 

exchange flux for those metabolites in the model were constrained to the measured value.
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