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A B S T R A C T

The unprecedented pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is threa-
tening global health. The virus emerged in late 2019 and can cause a severe disease associated with significant
mortality. Several vaccine development and drug discovery campaigns are underway. The SARS-CoV-2 main
protease is considered a promising drug target, as it is dissimilar to human proteases. Sequence and structure of
the main protease are closely related to those from other betacoronaviruses, facilitating drug discovery attempts
based on previous lead compounds. Covalently binding peptidomimetics and small molecules are investigated.
Various compounds show antiviral activity in infected human cells.

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is the causative agent of the ongoing COVID-19 (coronavirus disease
2019) pandemic. Globally, 10 million infections have been confirmed
with 500,000 fatalities.1 The novel coronavirus had first been reported
in Hubei province of China in late 2019, where it caused a major cluster
of atypical pneumonia.2–4 Despite major efforts to contain the original
outbreak, SARS-CoV-2 has since spread worldwide.5–8 Following the
2002/2003 SARS and 2012 MERS (Middle East respiratory syndrome)
epidemics, this marks the third notable coronavirus outbreak in the 21st

century.6,9

Four additional coronaviruses can infect humans, HCoV-229E,
HCoV-HKU1, HCoV-NL63 and HCoV-OC43,10 which in stark contrast to
the highly contagious and pathogenic SARS-CoV, MERS-CoV and SARS-
CoV-2,7,11,12 cause only mild respiratory illness like the common cold.13

The case fatality rate (CFR) of COVID-19 is estimated to be lower than
for SARS (~10%) and MERS (~35%). However, its basic reproduction
number (R0) is potentially higher than for SARS (~2–3) and MERS
(< 1). The values for CFR and R0 of SARS-CoV-2 are still under con-
troversial debate.14,15 Undetected and asymptomatic infections can
challenge the accuracy of these parameters.16–19 The ongoing COVID-
19 pandemic has had an unprecedented impact on individuals and the
economy, as travel restrictions, social distancing and quarantine mea-
sures were implemented by many countries.20,21

SARS-CoV, MERS-CoV and SARS-CoV-2 belong to the family of
Coronaviridae and the genus Betacoronavirus. Coronaviruses are envel-
oped, positive-sense, single-stranded RNA viruses that feature the lar-
gest known RNA virus genomes ranging approximately from 26 to

32 kb,22–26 containing at least 6 (14 in case of SARS-CoV-2) open
reading frames (ORFs).27,28 The major reading frame ORF 1ab encodes
for two overlapping polyproteins (pp1a, pp1ab), which are cleaved into
16 non-structural proteins (nsp1-16) by the main protease Mpro (also
referred to as 3CLpro) and the papain-like protease PLpro (Fig. 1).27,29–32

In addition, the papain-like protease is also a deubiquitinase.33 The
remainder of the genome encodes for accessory and structural proteins
such as the spike glycoprotein (S), envelope protein (E), membrane
protein (M) and the nucleocapsid phosphoprotein (N).27,29–32 The first
genome sequence of SARS-CoV-2 deposited in Genbank was from the
~30 kb isolate Wuhan-Hu-1 (MN908947),3 which is used for sequence-
related analyses in this article.

SARS-CoV-2 is closely related to other viruses of the Betacoronavirus
genus such as the bat coronavirus BatCoV RaTG13 (~96% sequence
identity) and the SARS-CoV (~80% sequence identity).34,35 SARS-CoV
and MERS-CoV are both of zoonotic origin, with bats being their natural
reservoir. Transmission to humans can occur via their intermediate
hosts palm civets (SARS) and dromedary camels (MERS).36 SARS-CoV-2
is thought to have followed a similar evolutionary transmission cas-
cade.37,38 The spike glycoprotein (S) plays an important role in host
range (tropism) and ‘host jumps’.39,40 In the case of SARS-CoV and
SARS-CoV-2, it recognises the receptor angiotensin-converting enzyme
2 (ACE 2), which both viruses employ for cell entry.41–43 Comparisons
of structural proteins of SARS-CoV-2, such as the spike protein (S), with
those from animal coronaviruses indicate the involvement of bats as
natural reservoir with a possibility for pangolins as intermediate
hosts.38,44–49 As the introduction of coronaviruses into human popula-
tion has been observed on multiple occasions, a better understanding of
the naturally circulating viruses is of high interest for pandemic
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prevention as is antiviral research to prepare for future outbreaks.50,51

The main protease as drug target

The current COVID-19 pandemic has triggered global efforts for the
rapid identification of vaccines and specific antiviral treatments.52–55

Amongst the coronaviral targets that have been studied in the past, the
main protease (Mpro, 3CLpro, nsp5) received major attention,25,56 par-
ticularly following the first SARS-CoV outbreak in the early 2000s.23,57

Alternative coronaviral targets include the spike protein (S), RNA-de-
pendent RNA-polymerase (RdRp, nsp12), NTPase/helicase (nsp13) and
papain-like protease (PLpro, part of nsp3).50,58 The papain-like protease
also recognises the C-terminal sequence of ubiquitin. Therefore, sub-
strate-derived inhibitors of PLpro would be expected to also inhibit host-
cell deubiquitinases, making drug-discovery campaigns against PLpro

challenging. In stark contrast, the main protease Mpro exclusively
cleaves polypeptide sequences after a glutamine residue, positioning
the main protease as an ideal drug target because, to the best of our
knowledge, no human host-cell proteases are known with this substrate
specificity.59–61

Viral proteases are well validated drug targets that have led to
various approved drugs, for example, against chronic infections with
human immunodeficiency virus (HIV) or hepatitis C virus (HCV), which
employ aspartyl and serine proteases, respectively.62 The SARS-CoV-2
Mpro proteolytically cleaves the overlapping pp1a and pp1ab poly-
proteins to functional proteins (Fig. 1), which is a critical step during
viral replication.29,63,64 Replication-essential enzymes such as RdRp or
nsp13 cannot fully function without prior proteolytic release,56 posi-
tioning Mpro as a key enzyme in the viral replication cycle. Conse-
quently, its inhibition can stall the production of infectious viral par-
ticles and thus alleviate disease symptoms.23,50,65–68 Capitalising on
knowledge gained on structure and inhibitors of Mpro from previous
epidemical coronaviruses, Mpro is one of the most attractive viral targets
for antiviral drug discovery against SARS-CoV-2.

Structure and function of the main protease

Early homology models of SARS-CoV-2 Mpro indicated close struc-
tural relation to other coronaviral main proteases.69 Amino acid se-
quence alignments reveal ~99% identity with BatCoV RaTG13 Mpro

and ~96% with the previous SARS-CoV Mpro. In contrast, sequence
identity with MERS-CoV Mpro is only ~50% (Fig. 2).

Superimposition of the X-ray crystal structures of the main proteases
of SARS-CoV-2, SARS-CoV and MERS-CoV indicates a high degree of
structural similarity and conservation of the active site (Fig. 3). This
might prove valuable for the development of pan-coronaviral drugs and
has already been employed for the development of SARS-CoV-2 Mpro

inhibitors that were based on previous compounds targeting the SARS-

CoV or MERS-CoV main proteases.
Mpro is a cysteine protease with a catalytic dyad (cysteine and his-

tidine) in its active centre (Fig. 3). While other cysteine and serine
proteases contain a third catalytic residue, a buried water molecule
occupies this place in the active site of Mpro.23,25,71 The proteolytic
process is believed to follow a multi-step mechanism. After the cysteine
side chain proton is abstracted by the histidine’s imidazole, the re-
sulting thiolate nucleophile attacks the amide bond of the substrate.
The N-terminal peptide product is released by proton abstraction from
histidine before the thioester is hydrolysed to release the C-terminal
product and restore the catalytic dyad.72,73

Mpro (nsp5) autocleaves itself between nsp4 and nsp6,74,75 before
processing the overlapping polyproteins pp1a and pp1ab at 11 cleavage
sites (Fig. 1).29,63,64 While the Mpro monomer is basically inactive, the
homodimer is the primary active species with both protomers almost
orthogonally aligned to each other (Fig. 4a).68,72 Each protomer con-
sists of three domains (Fig. 4b). In case of SARS-CoV and SARS-CoV-2,
domains I and II comprise residues 8–101 and 102–184, respectively,
and include an antiparallel β-barrel with similarities to trypsin-like
serine proteases.57 Domain II is connected to Domain III (residues
201–306) via a longer loop region (residues 185–200). Domain III is
characterised by a cluster of five α-helices.57,59,76–79

The protomers bind to each other via an N-terminal finger (residues
1–7) located between domains II and III, which is involved in the for-
mation of the substrate-binding site in a cleft between domains I and
II.57,59,76–78 It is known that the mutations Ser284Ala, Thr285Ala and
Ile286Ala in SARS-CoV Mpro result in a 3.6-fold increase in catalytic
activity.80 Two similar mutations (Thr285Ala and Ile286Leu) are pre-
sent in SARS-CoV-2 Mpro, potentially explaining higher activity ob-
served for SARS-CoV-2 Mpro compared to SARS-CoV Mpro.59 The
Thr285Ala mutation is believed to bring domain III of both protomers
closer to each other.59,79

Substrate specificity and inhibitor design

According to the nomenclature introduced by Schechter and
Berger,81 Mpro mainly recognises substrate residues ranging from P4 to
P1′.82 Prime site recognition beyond P1′ is not conserved (Fig. 5). Spe-
cificity is mostly determined by P1, P2 and P1′, which show the highest
degree of conservation amongst the cleavage sites.63 Glutamine in P1 is
highly conserved in all polyprotein cleavage sites of SARS-CoV, MERS-
CoV and SARS-CoV-2 (Fig. 5). In P2 more hydrophobic amino acids are
tolerated with a clear preference for leucine. P1′ tolerates small residues
like serine or alanine.56,60,61,83–85 Analysis of all polyprotein cleavage
sites processed by Mpro for SARS-CoV, MERS-CoV and SARS-CoV-2 il-
lustrates very similar substrate recognition profiles amongst these
viruses (Fig. 5). Particularly important is the pronounced preference for
glutamine in P1, strongly informing inhibitor design.84 Since no human

Fig. 1. (a) Organisation of the RNA genome of SARS-CoV-2 with selected genes (Wuhan-Hu-1 isolate MN908947). (b) Schematic representation of polyprotein
cleavage sites of SARS-CoV-2. The papain-like protease PLpro cleaves at 3 distinct sites. The main protease Mpro (also referred to as 3CLpro) cleaves at 11 distinct sites.
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host-cell proteases with similar specificity are reported, reduced off-
target effects are assumed for peptidomimetic inhibitors.60,61

The catalytic dyad of Mpro is located in a cleft between domains I
and II (Fig. 4b).23,71 Despite the minor mutation S46A in close proxi-
mity, the active sites of SARS-CoV and SARS-CoV-2 Mpro are highly
conserved. The influence of the S46A mutation on shape, size, flex-
ibility and plasticity of the active site and its relevance for inhibitor
design is under debate.87,88

As the monomer of Mpro is principally regarded as inactive, the di-
merization interface offers an alternative target site for drug dis-
covery.68,72 Although strong dimerization inhibitors are yet unavail-
able, the principle has been proven with the N-terminal octapeptide of
SARS-CoV Mpro.89

Inhibitors

Inhibitors of SARS-CoV Mpro have been reviewed comprehensively
by Pillaiyar et al. in 2016.72 MERS-CoV inhibitors have been reviewed
by Liang et al. in 2018.90 Peptidomimetics and small molecules have
been reported with affinities in the micro- to nanomolar range. They
often depend on warhead-based design strategies, employing different
reactive groups to covalently attack the catalytic cysteine residue.
Warheads utilised include Michael acceptors, aldehydes, epoxy ketones

and other ketones.72

Although SARS-CoV-2 emerged only very recently, several in-
hibitors have already been identified and successfully co-crystallised
with Mpro (Fig. 6).59,79,91 They are often derived from previous cam-
paigns which targeted the main proteases of SARS-CoV or MERS-CoV
and contain cysteine-reactive warheads (Fig. 6).

The first reported inhibitors were covalently binding peptidomi-
metics (1–3) addressing the major substrate-recognition motif from P1′
to P3.59 They all comprise an α-ketoamide functionality that forms a
hemithioacetal with Cys145. α-Ketoamides are already used as viral
serine protease warheads in the approved HCV drugs telaprevir and
boceprevir.62 Compound 1 has previously been investigated as a broad-
spectrum corona- and enteroviral protease inhibitor.60 Like many other
Mpro inhibitors, the P1 side chains of 1–3 employ a γ-lactam as a glu-
tamine mimetic. P2 comprises hydrophobic cyclohexyl (1, 2) or smaller
cyclopropyl (3) groups as leucine mimetics and P1′ contains cyclopropyl
(2) or benzyl (1, 3) residues. Compounds 2 and 3 feature pyridone rings
between P2 and P3 as well as N-terminal Boc groups, which were as-
sociated with increased plasma half-life, kinetic solubility and ther-
modynamic solubility. Pharmacokinetic profiling of 2 and 3 in mice
also indicated favourable lung tropism. Compounds 1 and 3 displayed
sub-micromolar Mpro inhibition (Fig. 7). Compound 3 is similarly active
against the SARS-CoV and MERS-CoV main proteases and inhibits

Fig. 2. Alignment of the amino acid sequences of
crystallised main proteases of SARS-CoV-2 (PDB:
6Y2E), SARS-CoV (PDB: 2BX4) and MERS-CoV
(PDB: 5C3N). Domains I, II and III comprise residues
8–101, 102–184 and 201–306, respectively. The
catalytic dyads are indicated by asterisks. The
alignment was generated using T-Coffee and shaded
with Boxshade.

Fig. 3. Superimposition of X-ray crystal structures of
the main proteases of SARS-CoV (pink, PDB: 2BX4),
MERS-CoV (cyan, PDB: 5C3N) and SARS-CoV-2
(green, PDB: 6Y2E). Only the monomers are shown.
Residues of the catalytic dyad are indicated (His41/
Cys145 for SARS-CoV and SARS-CoV-2 and His41/
Cys148 for MERS-CoV). The root-mean-square de-
viation (RMSD) of the superimpositions is 0.934 Å
for SARS-CoV/MERS-CoV, 0.532 Å for SARS-CoV/
SARS-CoV-2 and 0.905 Å for MERS-CoV/SARS-CoV-
2. This figure was generated with UCSF Chimera.70.
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SARS-CoV-2 replication in human Calu3 lung cells.
Compound 4 is another peptidomimetic Mpro inhibitor co-crystal-

lised in complex with SARS-CoV-2 Mpro (Fig. 6b).79 It originated from
previous campaigns targeting SARS-CoV Mpro.92 Its Michael acceptor
irreversibly modifies Cys145. Compound 4 shows anti-SARS-CoV-2
activity in Vero cells.

Compounds 5 and 6 are the strongest known SARS-CoV-2 Mpro in-
hibitors with inhibition constants in the two-digit nanomolar range.
These small peptidomimetics feature an indole moiety at the N-ter-
minus (P3) and a C-terminal aldehyde warhead which binds covalently
to Cys145, as proven by X-ray crystallography (Fig. 6c).91 Similar
peptide-aldehydes have previously been explored as inhibitors of SARS-

CoV Mpro.93,94 Compound 5 and the previously investigated α-ketoa-
mides 1 and 2 are structurally identical in P1 and P2; however, 5 in-
hibits one order of magnitude stronger, which is likely caused by the
increased electrophilicity of the aldehyde warhead compared to the
more drug-like α-ketoamide. Despite, the high reactivity of the alde-
hyde function, compounds 5 and 6 displayed sub-micromolar antiviral
activity in Vero cells (Fig. 7). In agreement with compound 3, the in
vitro activity of 5 and 6 was one order of magnitude weaker than the
direct Mpro inhibition in the enzymatic assay. Notably, 5 exhibited only
low toxicity in animal models despite its aldehyde warhead.91

A high-throughput screening campaign of a library of approved
drugs and clinical candidates revealed six small molecules, ebselen,
disulfiram, carmofur, tideglusib, shikonin and PX-12, as inhibitors of
SARS-CoV-2 Mpro (Fig. 7).79 Mass spectrometry experiments showed
that ebselen, carmofur and PX-12 covalently modify Cys145. Small
covalent modifiers like these may bind unspecifically, a characteristic
associated with pan-assay interference compounds (PAINS).95 Ebselen
showed antiviral activity in Vero cells in the low micromolar range. In
case of carmofur, a crystal structure of SARS-CoV-2 Mpro revealed
transfer of the hexylurea side chain to Cys145, forming a hex-
ylcarbamothioate interacting with the S2 subsite (PDB: 7BUY).96

Crystal structures of SARS-CoV-2 Mpro in complex with X77 and
baicalein (Fig. 7) have been deposited in the protein data bank under
the accession codes 6W63 and 6M2N, respectively. Notably, both
compounds bind non-covalently to the active site. X77 and derivatives
have previously been investigated as low-micromolar inhibitors of
SARS-CoV Mpro, where a strong stereochemical bias for the (R) en-
antiomer of the pyridyl side chain has been observed.97,98 In the X-ray
co-crystal structure of X77, the aforementioned pyridyl side chain acts
as a P1 mimetic. Baicalein is a flavonoid found in Scutellaria baicalensis,
a plant used in traditional Chinese medicine.99 Several flavonoids and
derivatives had previously been reported to inhibit the activity of SARS-
CoV Mpro.72,100

A fragment screening has produced several crystal structures of
fragments bound to SARS-CoV-2 Mpro, including covalent modifiers of
Cys145.101 While the majority of fragments bind to the active site, some

Fig. 4. X-ray crystal structure of the Mpro homodimer of SARS-CoV-2 (PDB: 6Y2E). Residues of the catalytic dyad (His41/Cys145) are indicated. (a) Protomers are
indicated. (b) Protomer domains are indicated. This figure has been generated with UCSF Chimera.70.

Fig. 5. Polyprotein cleavage sites recognised by Mpro of SARS-CoV-2, SARS-CoV
and MERS-CoV. Peptide sequences cover residues P5 to P5′ according to the
nomenclature of Schechter and Berger.81 Data were generated from pp1ab
polyprotein sequences reported in the UniProt database with the accession
codes P0DTD1 (SARS-CoV-2), P0C6X7 (SARS-CoV) and K9N7C7 (MERS-CoV).
The consensus sequence over all cleavage sites was plotted using WebLogo.86.
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bind near the dimer interface of SARS-CoV-2 Mpro. These fragments
may inform the development of small-molecule inhibitors that are not
substrate-derived.

While this manuscript was under peer-review, a study assessing
known protease inhibitors for their anti-SARS-CoV-2 Mpro activity was
published.102 Amongst the compounds that displayed Mpro inhibition
and reduction of cytopathic effect were the α-ketoamides boceprevir
(Ki = 1.18 μΜ, EC50 = 1.31 μM) and calpain inhibitor XII (Ki = 0.13
μΜ, EC50 = 0.49 μM), the peptide-aldehyde calpain inhibitor II
(Ki = 0.40 μΜ, EC50 = 2.07 μM) and the sulfonate-featured peptide
GC-376 (k2/Ki = 40,800 M−1 s−1, EC50 = 3.37 μM). A crystal structure
of SARS-CoV-2 Mpro in complex with GC-376 was also reported (PDB:
6WTT).

Conclusion and outlook

The COVID-19 pandemic poses a major challenge to mankind. In
view of the magnitude of the current global crisis, numerous attempts
to develop vaccines and antiviral treatments are obviously underway.
With respect to drug development, the main protease of SARS-CoV-2
stands out as a promising viral target, as it differs significantly from
human proteases. Given the conserved structure and specificity of Mpro

amongst SARS-CoV, MERS-CoV and SARS-CoV-2, pan-coronaviral main
protease inhibitors might become available. However, in line with
previously successful examples like HIV or HCV, the development of
novel specific protease inhibitors and their approval will take several
years. Although this process will likely take too long to impact on the
current COVID-19 crisis, protease inhibitors would be worth pursuing

as they may provide specific drugs for upcoming coronavirus outbreaks.
Pharmacodynamic and pharmacokinetic properties of peptidomi-

metic Mpro inhibitors like 2, 3, 5 or 6 already point into the right di-
rection.59,91 Although peptide-aldehydes have entered clinical trials
before (e.g. efegatran),103,104 5 and 6 are likely to face challenges
during further drug development. The α-ketoamide in 1–3 or Michael
acceptor in 4 are covalent modifiers with precedents in approved drugs
(e.g. telaprevir or afatinib).62,105 Potential problems associated with
limited drug-likeness of peptidomimetics could be circumvented by
pursuing alternative small molecules, which might, for example, be
accessible from fragment-based drug discovery campaigns.101,106

Repurposing of known drugs can provide an accelerated route to
approval, which is likely the only option to address the current COVID-
19 crisis. Small molecules like ebselen or carmofur are Mpro inhibitors
with anti-SARS-CoV-2 activity in cells;79 however, their thiol reactivity
might prove challenging. Repurposing approved protease inhibitors is
an alternative approach.102 Attempts to repurpose the approved com-
bination of HIV protease inhibitors, ritonavir and lopinavir, was un-
successful in clinical studies, which is not entirely unexpected, given
the differences between the proteases of HIV and SARS-CoV-2.107

It is likely that SARS-CoV-2 is not the last human coronavirus
emerging from animals. It is therefore important to closely monitor
virus populations to understand their replication mechanism early on
and investigate druggable targets. A sharp decline in research funding
had been noted a few years after the first SARS epidemic.61 Given the
long-term nature of drug discovery projects, this has proven disastrous
with respect to the current crisis. Now is the best time to progress
protease inhibitors to anti-coronaviral drugs.

Fig. 6. X-ray co-crystal structures of SARS-CoV-2 Mpro with covalently binding peptidomimetic inhibitors. Mpro is shown as hydrophobicity surface (red indicating
hydrophobic and blue hydrophilic surface areas) and grey ribbon with amino acid side chains (UCSF Chimera).70 Inhibitor groups binding to protease subsites are
indicated according to the Schechter Berger nomenclature.81 Electrophilic warheads covalently binding to Cys145 are circled. (a) Compound 3 with an α-ketoamide
warhead (PDB: 6Y2F). (b) Compound 4 with a Michael acceptor warhead (PDB: 7BQY). (c) Compound 5 with a C-terminal aldehyde warhead (PDB: 6LZE).
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