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Measuring robustness of brain 
networks in autism spectrum 
disorder with Ricci curvature
Anish K. Simhal  1,12*, Kimberly L. H. Carpenter2,12, Saad Nadeem  3,12, Joanne Kurtzberg4, 
Allen Song5, Allen Tannenbaum6,7, Guillermo Sapiro1,8,9,10 & Geraldine Dawson  2,4,11

Ollivier–Ricci curvature is a method for measuring the robustness of connections in a network. In this 
work, we use curvature to measure changes in robustness of brain networks in children with autism 
spectrum disorder (ASD). In an open label clinical trials, participants with ASD were administered a 
single infusion of autologous umbilical cord blood and, as part of their clinical outcome measures, 
were imaged with diffusion MRI before and after the infusion. By using Ricci curvature to measure 
changes in robustness, we quantified both local and global changes in the brain networks and their 
potential relationship with the infusion. Our results find changes in the curvature of the connections 
between regions associated with ASD that were not detected via traditional brain network analysis.

The prevalence of autism spectrum disorder (ASD) has been increasing over the past few decades. According to 
one recent study, almost 17% of children in the United States have been diagnosed with a neurodevelopmental 
disorder and approximately 2.5% are diagnosed with ASD1. ASD is clinically characterized by restricted inter-
ests and repetitive behaviors as well as social communication deficits2. Infants who later are diagnosed with 
ASD have atypical white matter developmental patterns compared to those typically developing infants and 
this difference is linked to the severity of ASD symptoms3–5. Previous research suggests that altered white mat-
ter development in ASD may result from neuroinflammation6–11. Autologous umbilical cord blood, a potential 
therapy, is theorized to reduce neuroinflammation12,13 and promote white matter development, thus triggering 
a reconfiguration of connectivity patterns in the brain14. In a previous paper from the same open-label clinical 
trial evaluating treatment with cord blood with young children with ASD, improvements in social functioning 
and communication abilities were described following treatment, which were correlated with an increase in con-
nectivity of the white matter networks underlying the social and communicative functions15,16. These changes 
in both white matter volume and connectivity are usually measured via diffusion tensor imaging (DTI), a form 
of magnetic resonance imaging (MRI) which measures the diffusion of water molecules throughout the brain, a 
correlate for brain connectivity. While typical DTI analyses, such as those employing tractography measures, can 
provide usual information about white matter development in ASD, it does not account for all the connections 
between brain regions or examine the robustness of connections in the brain network. To take advantage of the 
network imaged by DTI, we need a measure that reflects a specific brain region’s relationship with every other 
region in the brain and that quantifies the robustness of such broad network connections. The aim of this work 
is to demonstrate the use of Ricci curvature to measure changes in robustness of white matter connectivity as 
imaged via DTI before and after a cord blood infusion.
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Ricci curvature is a “measure by which a geometrical object deviates from being flat”17. Although there are 
multiple notions of graph curvature18, this work focuses on the Ricci curvature as formulated by Ollivier19, 
because of its positive correlation with the robustness of a network and because of its natural physical interpreta-
tion and computational efficiency. The link between curvature and robustness is as follows: curvature correlates 
positively with entropy; entropy correlates positively with robustness17. Robustness measures the extent to which 
a network can withstand perturbations. For brain networks, robustness measures the extent a region in a brain or 
a connection between two regions in the brain can be affected or withstand damage by a disease or a treatment.

The formal connection of curvature to robustness arises from several sources, including systems and control 
theory. Feedback tends to make a given system less sensitive, i.e., more robust, to parameter variations and exter-
nal disturbances20. For a weighted graph derived from DTI, feedback is represented by the number of invariant 
triangles at a given node. Therefore, the greater the number of triangles21, the higher the curvature value. The 
curvature between two brain regions is computed by using a distance derived from the theory of optimal trans-
port, and gives a novel measure of connectivity and feedback stability based on both local and global network 
geometry19. Thus, the curvature between two brain regions considers the strength of connection between those 
two brain regions in the context of the rest of the brain. This measurement takes into account the context of a 
brain region pair and serves as a useful lens through which to analyze the robustness of the brain.

To measure the safety and feasibility of cord blood infusions in children with ASD in an open-label clinical 
trial, nineteen participants were imaged via DTI and participated in a series of behavioral exams before and after 
the treatment. A full characterization of the sample is provided in15. The brain regions for each participant were 
delineated and defined as nodes of a network, while edges described structural connectivity between them. The 
DTI parcellation was done using the UNC Pediatric Brain Atlas. Ricci curvature was computed for the edges 
and a version of scalar curvature at the nodes by taking the weighted average of the Ricci curvature over all the 
neighboring edges. This is described in detail in the methods section. When analyzing the data, we looked at the 
change in behavioral scores and change in curvature. These changes were compared via Spearman correlation. 
The results presented are the changes in curvature between two nodes which correlate significantly ( p < 0.05 ) 
with the change in behavior with two or more clinical tests. Potentially due to the relatively small data sample, 
none of the scalar (node) or edge (connection between ROIs) curvature correlations survived a false discovery 
rate (Benjamini–Hochberg correction22) with an alpha value of 0.05.

The results (Figure 1) highlight regions which have been previously indicated in ASD, but were not evident 
when constrained to the differences in white matter connectivity between pairs of individual brain regions16. In 
particular, using Ricci curvature, we see a relationship between clinical improvement and altered robustness in 
three white matter pathways that are implicated in the social and communication abilities that improved follow-
ing treatment. The first novel connection for which we demonstrate a relationship between clinical improvement 
(as shown in Table 1) and increased curvature (robustness) is in a white matter pathway connecting the right 
dorsolateral prefrontal cortex (dlPFC) to the right insula. As shown in Table 2 and Figure 1, increased robust-
ness within this pathway was correlated with improvements across all three clinical measures. Plots showing 
the correlation between the clinical scores and edge curvature are included in Supplemental Figure 1. Both of 
these regions have been implicated in autism23,24, with the insula in particular serving as a key structural and 
functional brain hub25. Resting state MRI (rsMRI) studies have suggested a role of the insula in one of the three 
canonical rsMRI networks, the salience network, which plays a critical role in detecting salient information from 
the sensory environment and engaging other functional networks, including the central-executive network of 
which the dlPFC is part26. The central-executive network is then responsible for integrating multiple cognitive 
processes, including working memory and attentional control, in the support of goal directed behaviors. Further, 
rsMRI studies of these networks have demonstrated that aberrant connectivity in these canonical networks cor-
relate with social and communication abilities in children with ASD27. The two additional pathways for which 
we describe a novel relationship between clinical improvement and altered robustness were between the orbital 
frontal gyrus and the temporal cortex, as well as the rostral anterior cingulate and the hippocampus, both in the 
left hemisphere. These pathways both lie along major white matter tracts within the limbic system, namely the 
uncinate fasciculus and the cingulum, respectively28. Both of these pathways have demonstrated roles in social 
and communication abilities29–31 and have been previously implicated in autism32–34. Importantly and as previ-
ously mentioned, these three pathways did not show correlations with clinical improvement using canonical DTI 
analysis techniques as described in16, demonstrating the added value of using Ricci curvature.

In addition to identifying novel white-matter pathways showing a relationship between clinical improvement 
and alterations in robustness as measured via Ricci Curvature, we also show some concordance with findings 
from the more traditional DTI analyses. Specifically, we report a significant relationship between clinical improve-
ment robustness between the right frontal pole and the inferior temporal gyrus, which lies along the uncinate 
fasciculus. The right uncinate fasciculus which is a major white matter pathway that has been implicated in 

Table 1.   Changes in behavioral scores. Change in behavior is computed as the behavior measured at the end 
of the study minus the behavior measured at the beginning of the study. VABS-SS, Vineland Adaptive Behavior 
Scales-II Socialization Subscale; EOW, Expressive One-Word Picture Vocabulary Test; CGI-I, Clinical Global 
Impression Scale—Improvement.

�VABS-SS �EOW �CGI-I

Change in behavioral scores (mean ± SD) 3.37 ± 6.71 4.95 ± 6.34 2.79 ± 1.82
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emotion processing, memory, and language abilities28,35,36, has been shown to be related to decreased social and 
communicative abilities in individuals with autism34, 37–40, and was implicated in our previous study16. Addition-
ally, we also find significant correlations between clinical improvement and altered metrics white matter connec-
tivity in pathways involving the right basal ganglia using both classic DTI analyses and the novel Ricci Curvature 
described in this manuscript. The basal ganglia have been implicated in the pathophysiology of autism and may 
play a role in social motivation41. In both of the pathways within the uncinate fasciculus and the basal ganglia, 
the specific region pairs identified by Ricci curvature in the current study are not the same as those described 
using classic DTI tractography approaches as described in16. However, taken together these results support the 
right uncinate and the basal ganglia as a potentially important white matter pathway linked to improved social 
communication functioning in young children with autism.

Furthermore, the curvature analysis also identified regions for which the robustness of their connections 
with the rest of brain increased in relation to clinical outcomes, including the left fusiform gyrus, right pars 
orbitalis, left pericalcarine, and the left transverse temporal gyrus as shown in Table 3. Plots showing the cor-
relation between the clinical scores and node curvature are included in Supplemental Figure 2. Both the pars 
orbitalis, which lies within the inferior frontal gyrus (IFG), and the fusiform gyrus are key components of the 
social brain network42. Previous research has linked the structure and function of both the fusiform gyrus and 
IFG to social cognition in autism43,44. The left pericalcarine and transverse temporal gyrus are components of 
the primary visual and auditory cortices, respectively. Both of these regions have been demonstrated to show 
anatomical differences that are associated with clinical functioning in autism45–48. Specifically, the left transverse 
temporal gyrus (aka Heschl’s gyrus) has been linked to language abilities in children with ASD47. Differences 

Table 2.   Table of edge curvature results. Table showing the node pairs where the change in behavioral 
scores and change in curvature correlate with a p < 0.05 for two or more behavioral exams. For each edge 
pair, the correlation between the change in curvature and change in behavioral score is listed, along with 
the associated p-value. The associated change in curvature is listed as mean ± standard deviation. Change in 
curvature is measured as ratio of the curvature of a node at the end of the study over the curvature of the node 
at the beginning of the study. VABS-SS: Vineland Adaptive Behavior Scales-II Socialization Subscale, EOW: 
Expressive One-Word Picture Vocabulary Test, CGI-I: Clinical Global Impression Scale - Improvement.

Edge pairs VABS-SS EOW CGI-I �Curvature

R. Frontal Pole–R. Inferior Temporal
r: 0.575 r: 0.673 r: − 0.320

1.25 ± 1.49
p: 9.96e−3 p: 1.60e−3 p: 1.82e−1

R. Rostral Middle Frontal–R. Insula
r: 0.634 r: 0.656 r: − 0.583

1.14 ± 0.861
p: 3.53e−3 p: 2.30e−3 p: 8.86e−3

R. Bankssts–R. Accumbens Area
r: 0.638 r: 0.576 r: − 0.330

1.10 ± 0.458
p: 3.30e−3 p: 9.85e−3 p: 1.68e−1

R. Putamen–R. Pallidum
r: 0.590 r: 0.254 r: − 0.661

0.979 ± 0.106
p: 7.79e−3 p: 2.93e−1 p: 2.08e−3

L. Lateral Orbitofrontal Gyrus–L. Inferior Temporal Gyrus
r: 0.736 r: 0.367 r: − 0.646

1.83 ± 6.85
p: 3.31e−4 p: 1.22e−1 p: 2.82e−3

L. Rostral Anterior Cingulate–L. Hippocampus
r: 0.294 r: 0.623 r: − 0.607

0.901 ± 1.00
p: 2.21e−1 p: 4.38e−3 p: 5.88e−3

Table 3.   Table of scalar curvature results. Table showing the nodes where the change in behavioral scores and 
change in curvature correlate with a p < 0.05 for two or more behavioral exams. For each node, the correlation 
between the change in curvature and change in behavioral score is listed, along with the associated p-value. 
The associated change in curvature is listed as mean ± standard deviation. Change in curvature is measured as 
ratio of the curvature of a node at the end of the study over the curvature of the node at the beginning of the 
study. VABS: Vineland Adaptive Behavior Scales-II Socialization Subscale, EOW: Expressive One-Word Picture 
Vocabulary Test, CGI: Clinical Global Impression Scale - Improvement.

Node VABS-SS EOW CGI-I �Curvature

Right pars orbitalis
r: 0.651 r: 0.606 r: − 0.401

1.00 ± 0.060
p: 2.53e−3 p: 5.94e−3 p: 8.85e−2

Left pericalcarine
r: 0.581 r: 0.510 r: − 0.461

1.01 ± 0.083
p: 9.14e−3 p: 2.55e−2 p: 4.70e−2

Left fusiform
r: 0.577 r: 0.423 r: − 0.706

1.02 ± 0.121
p: 9.68e−3 p: 7.14e−2 p: 7.27e−4

Left transverse temporal gyrus
r: 0.498 r: 0.566 r: − 0.210

1.02 ± 0.072
p: 3.01e−2 p: 1.15e−2 p: 3.88e−1
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in the functional connectivity of the pericalcarine cortex with the frontal gyrus has been linked to higher levels 
of symptom impairment in both children and adolescents with autism46. Though preliminary due to the small 
sample size and fact that the trial was open-label, these results provide targets for investigation that will be 
explored in larger ongoing randomized, placebo-controlled trials.  

These results must be considered in light of some limitations. Because this was an open label trial, it is not pos-
sible to determine whether the clinical and curvature changes were a result of normal trajectories of improvement 
and development or whether they were a consequence of the treatment itself. However, the current data provides 
targets for exploring brain-related changes in future randomized, placebo-controlled double-blind trials, which 
are currently taking place. Due to the number of DTI directions that were captured and the resolution of the data, 
cross hemisphere brain connections were removed. Future studies using higher-dimensional data are warranted.

Despite significant progress in understanding the underlying neurobiology of ASD, there are still few reli-
able and objective measures of change in social and communication function ASD and their relationship with 
underlying brain structures. We show that Ricci curvature identifies changes in robustness in brain regions that 
are correlated with improvements in social communication over time. Thus, this study lays the foundation for a 
new approach to assess both the robustness of a specific brain region and brain region pairs.

Methods
Study design and sample.  The current study is a secondary data analysis of DTI data collected as part 
of a phase 1 open-label trial of a single intravenous infusion of autologous umbilical cord blood in 25 children 
with ASD who were between 24-72 months of age at baseline. The methods of this trial and the accompanying 
DTI analyses have been described in detail elsewhere15,16,50,51. Children with a confirmed diagnosis of ASD and 
a banked autologous umbilical cord blood unit of adequate size and quality participated in the trial. Nineteen 
participants provided high quality, artifact-free data for the DTI at both baseline and 6-month visits (17 males 
and 2 females). All caregivers/legal guardians of participants gave written, informed consent, and the study 
protocol was approved by the Duke University Health System Institutional Review Board. Methods were carried 
out in accordance with institutional, state, and federal guidelines and regulation. All methods and the trial were 
approved by the Duke Hospital Institutional Review Board and conducted under IND #15949. The ClinicalTri-
als.gov Identifier is NCT02176317.

Clinical measures.  The current study focuses on clinical measures for which clinical improvement was 
demonstrated in response to treatment15. Social abilities were measured with the Vineland Adaptive Behavior 

Figure 1.   Overview of the results. Axial projection of pairs where the change in curvature correlated 
significantly with behavioral exams. Cross hemisphere brain connections were removed for this analysis. The 
brain graphics were visualized with the BrainNet Viewer (http://www.nitrc​.org/proje​cts/bnv/)49. L: left, R: right.

http://www.nitrc.org/projects/bnv/


5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:10819  | https://doi.org/10.1038/s41598-020-67474-9

www.nature.com/scientificreports/

Scales-II Socialization Subscale (VABS-SS)52. The Vineland Adaptive Behavior Scale is a well-standardized par-
ent report measure that yields an overall composite score of adaptive functioning, as well as subscale scores 
that include the socialization subscale. The VABS-SS was selected because of a priori hypotheses that treatment 
would impact social behavior in particular. Higher scores on the VABS-SS indicate better social functioning. The 
change in the VABS-SS (6 month-baseline) was used to measure change in social behavior. Expressive language 
was assessed with the Expressive One Word Picture Vocabulary Test 4 (EOW). The EOW is a clinician-admin-
istered assessment which measures an individual’s ability to match a spoken word with an image of an object, 
action, or concept53. Like the VABS-SS, higher scores on the EOW indicate better expressive language. The 
change in the raw score (6 month-baseline) was used to measure change in expressive language. Finally, clinical 
improvement was measured with the Clinical Global Impression Severity (CGI-S) and Improvement (CGI-I) 
scales54, which are commonly used rating scales that rate the children’s overall level of core ASD symptoms and 
related functioning and support requirements (CGI-S), as well as the amount of improvement or worsening 
of overall core ASD symptoms in addition to related functioning and need for supports from the time of the 
previous CGI-S rating (CGI-I). In the current study, the 6 month CGI-I rating was used to measure change in 
behavior between baseline and 6 month visits. Notably, lower scores on the CGI-I indicate more improvement.

Magnetic resonance imaging acquisition and analysis.  MRI scanning was conducted on a 3.0 T 
GE MR750 whole-body 60cm bore MRI scanner (GE Healthcare, Waukesha, WI). Participants were sedated 
to reduce motion artifacts in the MRI. Diffusion weighted images were acquired using a 25-direction gradient 
encoding scheme at b = 1000 s/mm2 with three non-diffusion-weighted images, an average (std) echo time (TE) 
of 85ms (2ms), and a repetition time (TR) of 12, 000ms. An isotropic resolution of 2mm3 was achieved using a 
96× 96 acquisition matrix in a field of view (FOV) of 192× 192mm2 at a 2 mm slice thickness. T1-weighted 
images were obtained with an inversion-prepared 3D fast spoiled-gradient-recalled (FSPGR) pulse sequence 
with a TE of 2.7ms, an inversion time (TI) of 450ms, a TR of 7.2ms, and a flip angle of 12◦ , at a 1mm3 isotropic 
resolution.

Connectome analysis pipeline.  The full connectome analysis pipeline is described in detail elsewhere16. 
Briefly, each participant’s T1 image and the first non-diffusion weighted image (b0) of the DTI acquisition were 
skull-stripped using the FSL brain extraction tool55,56. The T1 image was registered to the b0 image with an aff-
ine registration created using FSL FLIRT57,58. Region of interest (ROI) parcellation was performed by warping 
the dilated UNC Pediatric Brain atlas (available publicly at http://www.nitrc​.org/proje​cts/unc_brain​_atlas​/) into 
each participant’s T1 in diffusion image space via the Advanced Normalization Tools (ANTs) toolkit59,60. A total 
of 83 regions were defined for each participant, 41 gray matter regions in each hemisphere, and a single region 
encompassing the brainstem. FMRIB’s Automated Segmentation Tool (FAST) was used to calculate whole brain 
white matter volume for each participant at both baseline and 6 month visits61. Following this, a standardized 
pipeline for deterministic tractography based on the Connectome Mapper (CMP) was used to analyze par-
ticipant data at both baseline and 6 month visits (http://www.cmtk.org)14,62. The parcellated gray matter ROIs 
included in this analysis are defined as nodes. Edges are defined as the volume of voxels containing valid stream-
lines that originate and terminate within a pair of nodes. For each participant, edge volumes were calculated and 
normalized by whole-brain white matter volume at both baseline and 6-month visits.

Curvature analysis.  In this section, we outline how we compute the Ricci curvature on discrete metric 
measure spaces including weighted graphs. The motivation of the Olliver-Ricci19 definition of curvature on a 
weighted graph is based on the following characterization of Ricci curvature from Riemannian geometry63. For 
X a Riemannian manifold, consider two very close points x, y ∈ X and two corresponding small geodesic balls. 
Positive curvature is reflected in the fact that the distance between two balls is less than the distance between 
their centers. Similar considerations apply to negative and zero curvature. An increase in curvature corresponds 
to an increase in robustness which implies stronger pathways between nodes. When there is a strong correlation 
between improved behavioral scores and increased robustness, the implication could be that increased signal 
processing may be affecting behavioral outcomes.

For this work, the brain network is represented as an undirected and positively weighted graph, G = (V ,E) , 
where V is the set of n vertices (nodes) in the network and E is the set of all edges (links) connecting them with 
weights {w} . Consider the graph metric d : V × V → R

+ on the set of vertices V where d(x, y) is the number 
of edges in the shortest path connecting x and y. (d may be any intrinsic metric defined on V.) We let denote 
wxy > 0 denoting the weight of the edge between node x and y. (If there is no edge, then wxy = 0. ) For any two 
distinct points x, y ∈ V  , the Ollivier–Ricci (OR) curvature is defined as

where W1 denotes the Earth Mover’s Distance (Wasserstein 1-metric). We define the weighted degree at node 
x, dx as

and we define the probability measure at x, µx as

(1)k(x, y) := 1−
W1(µx ,µy)

d(x, y)
,

(2)dx :=
∑

z

wxz , the sum is taken over all nodes z adjacent to x,

http://www.nitrc.org/projects/unc_brain_atlas/
http://www.cmtk.org
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The scalar curvature at a given node x (the contraction of Ricci curvature) is defined as

where the sum is taken over all neighbors of x. Given the discussed, positive correlation of robustness and cur-
vature, in our work, we propose to use curvature as a proxy for robustness. Various advantages of using Ricci 
curvature in this framework are described in more detail in17. The code to compute curvature and to perform 
this analysis is shared at https​://githu​b.com/aksim​hal/Curva​ture-ASD-Analy​sis.

Statistical analysis.  Correlations between changes in curvature and changes in behavioral scores were 
determined via Spearman correlation. Change in behavior is computed as the difference between the scores at 
the end of the study and the scores at the beginning of the study. Change in curvature is measured as ratio of 
the curvature of a node at the end of the study over the curvature of the node at the beginning of the study. The 
ratio of curvature is used instead of the difference because the curvature value has no inherent units associated 
with it to provide context about its meaning. For the results to be reported, the change in behavioral scores and 
change in curvature correlate with a p < 0.05 for two or more behavioral exams. Individual correlations between 
behavioral scores and change in curvature were examined using a false discovery rate (Benjamini–Hochberg) 
correction22 with an alpha value of 0.05.
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