Skip to main content
. Author manuscript; available in PMC: 2021 Jul 1.
Published in final edited form as: IEEE Trans Pattern Anal Mach Intell. 2019 Feb 26;42(7):1713–1728. doi: 10.1109/TPAMI.2019.2901688

Algorithm 1.

Sample-Feature Selection (SFS)

Input: Regularization scheme X, hyperparameter λ (and r for partial regularization), number of desired features τ, number of desired samples k and k+, and threshold ϵ.
Initialization: Let (β(0),β0(0))p× be arbitrarily chosen such that β(0)0=τ. Set t = 0 and f(0) = ∞.
1: repeat ▹ Beginning of BCD
2:  Update sample weights α(t+1):
 2.1: liσ(yi((xi)β(t)+β0(t)))
 2.2: {i1+,,i|I(+1)|+}Sort ‘+1’ samples, s. t. lij++lij+1+
 2.3: I+{i1+,,ik++}
 2.4: {i1,,i|I(1)|}Sort ‘−1’ samples, s. t. lij+lij+1
 2.5: I{i1,,ik}
 2.6: αi(t+1){1,ifiI+I0,otherwise
3:  Update features weights and bias (β(t+1),β0(t+1)) via Algorithm 2 (X = H) or Algorithm 3 (X = P)
4:  Update f(t+1)fX(α(t+1),β(t+1),β0(t+1))
5: tt + 1
6: until min(|f(t)f(t1)||f(t)|,|f(t)|)<ϵ ▹ Stopping Criteria
Output: (α^,β^,β^0)=(α(t),β(t),β0(t))