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Abstract

Purpose of review: Chronic inflammation is a major component of HIV infection, the effects of 

which can be devastating in the central nervous system (CNS). Protecting the brain is therefore 

critical as efforts proceed to cure HIV infection by reactivating latent viral reservoirs and driving 

immune responses. We review the clinical presentation and pathology findings of inflammatory 

processes in the CNS in patients managed with ART and the drivers of these processes.

Recent findings: Chronic inflammation is associated with increased mortality and morbidity 

and HIV infection increases the risk for chronic diseases, especially cognitive impairment. Latent 

viral reservoirs, including microglia and tissue macrophages, contribute to inflammation in the 

CNS. Inflammation is generated and maintained through residual viral replication, dysregulation 

of infected cells, continuously produced viral proteins and positive feedback loops of chronic 

inflammation. Novel therapeutics and lifestyle changes may help to protect the CNS from immune 

mediated damage.

Summary: As therapies are developed to cure HIV, it is important to protect the CNS from 

additional immune-mediated damage. Adjunctive therapies to restore glial function, reduce neuro- 

and systemic inflammation, and inhibit expression of viral proteins are needed.
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Introduction

Six years ago, President Obama announced the HIV Cure initiative with the aim of HIV 

eradication or development of a functional cure, to eliminate the need for long term 

antiretroviral therapy (ART) (1). Potential curative approaches include activation of the viral 

latent reservoir (2), transfusion of viral specific or viral resistant T cells (3, 4), gene editing 

excision of proviral DNA (5, 6*, 7), and immune checkpoint inhibition (8, 9). The majority 

of these strategies involve activating the latent viral reservoir, which includes T cells (10), 

tissue resident macrophages (11**, 12), microglia (13), and astrocytes (14) with latency-
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reversing agents (LRAs). Re-activated virus can then trigger proinflammatory processes 

involving immune antiviral responses as well as non-specific inflammation. Such 

inflammatory processes can also lead to unwanted collateral tissue damage and result in 

immune-mediated complications. Therefore, it is critical to consider the unintended 

immunological consequences of these curative approaches.

During a chronic inflammatory process immune responses are involved both in tissue 

destruction and in tissue repair (reviewed in (15*)). This results in a positive feedback loop 

of immune responses and damage. Chronic inflammation is a major contributor to the 

pathophysiology of neoplastic, neurodegenerative, autoimmune, and cardiovascular disease; 

conditions that persons living with HIV (PLWH) are at an increased risk for (16*). Having 

HIV increases the risk of developing a chronic illness by up to 80%, the risk being greatest 

for cognitive impairment and dementia (16). HIV-associated neurocognitive disorders 

(HAND) (17) are tightly associated with chronic inflammation (18–20) .

Because of the potential immunological consequences of curative approaches on the CNS, a 

detailed understanding of the contribution and mechanisms of inflammation-mediated 

damage to CNS during HIV infection becomes ever more important. This review highlights 

the most recent advances in our understanding of how HIV infection impacts the brain, 

focusing on the presentation and immunopathology of patients with CNS inflammation, the 

role of microglia in chronic inflammation, and the viral factors that contribute to 

inflammation. Additionally, the importance of protecting the brain while moving towards a 

functional cure will be discussed.

Clinical presentation of PLWH with chronic CNS inflammation

Even after therapeutic viral suppression has been achieved, the incidence of comorbid 

disorders including neurologic and psychiatric disorders, accelerated vascular disease, and 

frailty is very high, and it is increasingly apparent that much of this is linked to or 

exacerbated by chronic CNS inflammation (21).

HIV-associated neurocognitive disorders

Of all the conditions linked to CNS inflammation (Figure 1), the best studied is HAND 

(reviewed in (22)). HAND can be identified in 30–50% of individuals (17, 23–25) and 

encompasses impairments in memory, attention, processing and motor skills that can range 

from mild or asymptomatic to severely debilitating. The most common neurological 

manifestations in the era of ART are mild neurocognitive deficits (see Table 1). Importantly, 

once established, the deficits appear to persist even with successful ART. For example, HIV

+ virally suppressed women showed deficits in verbal learning, verbal memory, executive 

function, attention/working memory, and fluency that persisted over four years of follow-up 

(26).

Although present in all patients across the spectrum of HIV infection, including the pediatric 

population (27**), HAND is more prevalent in older patients and in those with longer 

disease duration (28–30). This is particularly important as the age of PLWH is increasing. 

Indeed, approximately half of the PLWH in the United States are now over the age of 50 
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(31), suggesting a large proportion are at risk for HAND. Aging is also associated with 

enhanced immune activation that paradoxically results in a lack of appropriate immune 

response and is associated with mortality (32**). This inflammation may render older 

PLWH more susceptible to infections and loss of immune mediated clearance of cellular 

debris. Some have described this interaction of chronic CNS inflammation and aging as 

“inflammaging” (33, 34).

Other disease mechanisms

PLWH have substantial increased risks of cardiovascular disease (CVD) including acute 

myocardial infarction (35, 36), ischemic stroke (35), and heart failure (37) . CVD is strongly 

associated with inflammation and multiple mechanisms have been posited for how 

inflammation and virally driven processes accelerate atherosclerosis (38, 39). CVD risk 

factors including carotid intima-media thickness, central obesity and diabetes are important 

risk factors for the development of HAND (29, 40–42). As the cognitive profile of vascular 

cognitive impairment significantly overlaps with that of HAND (41), it remains to be seen 

whether CVD in PLWH leads to vascular cognitive impairment or accelerates more typical 

HAND, or some complex mix of the two. Concomitant drug use may add to accelerated 

CVD and drive neurological dysfunction (43). Further, given the known associations 

between CVD and Alzheimer disease (AD) it is also possible that HIV accelerates amyloid 

and tau protein deposition leading to AD and neurodegenerative processes.

CNS pathology during HIV infection and HAND

HIV infected cells enter the CNS shortly after systemic infection (44). In the CNS the virus 

infects tissue macrophages (11, 12), microglia (13) and astrocytes (14). Imaging studies have 

revealed ongoing CNS tissue loss in persons with HIV despite effective ART (45). In a 

recent longitudinal imaging study of 155 PLWH on ART, significant brain volume 

decreases, subcortical brain atrophy, ventricular expansion and white matter abnormalities 

were present despite undetectable viral loads (45). Brain atrophy is associated with 

neuroinflammation in HIV infection and HAND (19, 46–48) and recent studies utilizing 

magnetic resonance imaging coupled with metabolite spectroscopy have confirmed 

persistent neuroinflammation in individuals with HAND (49, 50). CSF biomarkers studies 

have also confirmed persistent inflammation and neural injury in virologically suppressed 

individuals (46, 51–61). Likewise, viral proteins, including the HIV transactivator of 

transcription (Tat) protein (62*, 63) and Nef (64), known to drive inflammation, have been 

found in the CSF of PLWH.

Histomorphological changes associated with HIV infection demonstrate evidence of 

ongoing immune processes and neuronal damage in the absence of viral replication. These 

include activation of infected and non-infected microglia and astrocytes (65), CD68+ cells in 

the white matter and vascular disease processes including infarcts, thickening of vessel 

walls, hemorrhage and atherosclerosis (66) as well as decreases in dendritic and synaptic 

complexity (67). Post-mortem studies have also revealed an increased accumulation of 

protein aggregates, especially Aβ, in individuals with HIV (68). This may reflect vascular 

damage as well as enhanced protein aggregate formation driven by Tat (69) . Biopsies from 
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patients with IRIS, the most fulminant and recognizable form of CNS inflammation in 

PLWH, demonstrated CD4+ and CD8+ T cells, including IL-17+ cells, and the viral protein 

Tat, in the parenchyma despite the absence of replicating virus (63, 70). Indeed, patients 

have persistent CD4+ and CD8+ T cell activation in both the periphery and in the CSF 

despite having undetectable viral loads (71). In particular, effector memory T cells are 

elevated (72) and expression of markers of T cell exhaustion are increased (73).

Collectively, clinical and pathology findings indicate that the immune responses in the CNS 

observed in people with HIV includes non-specific chronic inflammatory processes that are 

present even during viral suppression. As chronic inflammation is a key driver in many 

common diseases (15), and is tightly linked with neurodegenerative diseases (74, 75), it is 

important to evaluate what drives the neuroinflammation observed in PLWH and how the 

latent reservoir contributes to these processes.

Drivers of CNS inflammation during HIV infection

Residual viral replication from the latent reservoirs despite ART, and subsequent anti-viral 

immune responses, may account for some of the persistent immune activation noted in the 

CNS (76**, 77). However, because peripheral and CSF viral loads are often undetectable, 

factors other than viral replication likely also drive inflammation. These factors include 

skewing of immune trafficking, dysregulation of gene expression from infected cells, and the 

persistent expression of viral proteins from latently infected cells. Once initiated, positive 

feedback loops of immune-mediated tissue damage and repair processes result in self-

sustained chronic inflammation. Key cells in these processes are brain macrophages and 

microglia.

CNS viral reservoirs mediate chronic inflammation

Microglia and tissue resident macrophages are the principal cells infected with HIV in the 

CNS (13) and recent work has demonstrated that these cells are an important reservoir of 

latent virus (11, 12, 78, 79, 80**, 81**). In an SIV model, infectious virus was produced 

from brain macrophages after the removal of ART (11). This suggests that the viral reservoir 

in the CNS might re-seed the periphery (11, 81). To underline this potential scenario, almost 

half of virologically suppressed individuals with over eight years on ART had HIV infected 

cells in the CSF, although very few participants had detectable viral replication (76). 

Additionally, there appeared to be enrichment of virally infected cells within the CSF as 

compared to the periphery which was correlated with neurocognitive impairments (76). 

However, this study could not discern if infected cells were trafficking into the CNS at 

increased rates or if uninfected cells were becoming infected from virus present in the brain.

Microglia are long-lived cells that are responsible for initiating immune responses, recruiting 

peripheral immune cells into the CNS, and maintaining CNS homeostasis (82). Microglia 

are likely the key cell for initiating and sustaining positive feedback loops of chronic 

inflammation in the CNS. Microglia undergo functional, morphologic and phenotypic shifts 

when activated and in vivo PET imaging has demonstrated microglial activation during HIV 

infection (83, 84). Once activated, gene expression changes result in increased proliferation 

and alterations in cellular communication, notably the synthesis and release of 
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proinflammatory cytokines, chemokines and effector molecules (85, 86). The release of 

these molecules, such as matrix metalloproteinases and reactive oxygen species, directly 

damage neurons resulting in loss of neuron function and neurotoxicity (87, 88). This, in turn, 

drives microglial activation. Additionally, the virally driven secretion of chemokines, such as 

CCL2 (53, 77, 89, 90), contribute to the propagation of chronic inflammation. CCL2 

activates microglia, modulates their migration and encourages self-proliferation (91) as well 

as recruits peripheral macrophages and T cells into the CNS. These cells drive further 

immune-mediated damage, microglial activation, and immune cell recruitment. Viral 

infection early in life, as occurs in the pediatric population, may also generate an increase in 

proinflammatory brain resident T cells (92). These cells tend to cluster in regions of 

microglial activation and have also been shown to increase with age (93), promoting long-

lasting proinflammatory CNS environments. The contribution of these cells during HIV 

infection is an area of current interest.

Astrocytes are the most common cell type in the brain (94). Although relatively few 

astrocytes are thought to become infected, and this infection is restricted and non-productive 

(14, 95) those that are may drive neuroinflammation by inducing apoptosis in uninfected 

astrocytes, secreting proinflammatory cytokines, altering synaptic integrity (96) and causing 

disruptions to the blood brain barrier (BBB) by impairing gap junctions (97, 98). In addition 

to the immune-mediated damage caused by activated glia, these same cells do not function 

in their normal role of synapse maintenance, glutamate uptake, BBB regulation, 

phagocytosis of dead cells and removal of protein aggregates such as Aβ (99–101), 

processes all critical for CNS health. Both the proinflammatory processes and the loss of 

brain homeostatic mechanisms contribute to CNS immunopathology. Therefore, not only 

eliminating HIV from the microglial and astrocyte populations, but restoring glial function is 

important to consider as cure strategies are implemented.

Viral proteins drive inflammation

Viral proteins produced during ART also drive inflammation. Even during ART pressure, 

provirus is capable of producing proteins, including Tat (62, 63) and Nef (64), which are 

secreted from infected cells. Tat is readily endocytosed by cells where it modulates gene 

expression and cellular function (102). Tat is directly neurotoxic and is potently 

neuroinflammatory, driving astrocyte, microglial and T cell activation as well as inducing 

secretion of inflammatory cytokines in both animal and in vitro models, and activating 

inflammasomes (63, 103–109). For example, Tat drives the production of CCL2, which 

recruits peripheral macrophages and T cells into the CNS and also activates these cells 

through chromatin remodeling. Not only does this facilitate further infection by HIV but it 

also causes aberrant secretion of cytokines such as granzyme B and interleukin (IL)-17 (63) 

which have been shown to be directly neurotoxic and to modulate the BBB (110, 111). Nef 

has also been shown to increase BBB permeability and drive neuroinflammation (112*, 

113). Specifically, IL-1 dependent vascular changes and immune cell infiltration were noted 

in both the lung and the gut of animals expressing Nef in the hippocampus. These findings 

are of particular importance as they demonstrate that viral driven changes in the CNS can 

induce systemic immune responses that further damage the brain.
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Protecting the brain while moving towards a cure

Neuroprotection and reducing neuronal inflammation will become even more important as 

cure initiatives move forward. Several LRAs are being developed to activate the viral 

reservoir prior to immune-mediated clearance and some consideration is being given to the 

use of Tat as an LRA during cure strategies (114). As discussed in this review, Tat is not 

only directly neurotoxic, but also drives substantial neuroinflammatory processes. Further, 

trials have already begun exploring the use of checkpoint inhibitor therapy in patients with 

HIV and have shown that some individuals have transient increased antiviral T cell 

responses (8). In an HIV+ patient treated with PD1 blockade for cancer, there was an 

increase in activation of antiviral T cells (115*). Lymphocytes transferred from elite 

controllers into patients with HIV also increased recipient CD8+ T cell activation with 

enhanced production of perforin and granzyme B (116). Importantly, antigen specific HIV 

responses in the brain can induce gliosis (117) and further contribute to neuronal injury. 

Therefore, strategies to monitor and protect the brain while activating HIV immune 

responses are needed.

Previous efforts at neuroprotection have been fraught with challenges. Anti-inflammatory 

strategies have been tested in over 20 clinical trials for HAND with few successes (22). 

None of these have entered mainstream therapy. However, recent work has demonstrated 

that protecting the CNS during HIV infection is possible. Intranasal delivered insulin 

reversed neuronal injury in an animal model of HAND (118), and is now being tested in 

PLWH. This benefit may be from a reduction in microglial activation and dampening of 

chronic inflammation (119). Other animal studies have shown that inhibiting JAK/STAT 

signaling reduces inflammation and reverses cognitive deficits (120). Further, pharmacologic 

inhibition of glutamate synthesis reduced the overproduction of glutamate from microglial 

cells and restored cognitive function in treated animals (121). Examples of targeting 

inflammation from outside the HIV field may also provide lessons for HIV. Immune-based 

therapies which lower inflammation, including IL-1β inhibition with the monoclonal 

antibody canakinumab, may reduce CVD in individuals without HIV (122). A recent pilot 

study in 10 PLWH on ART with viral suppression suggested that a single dose of 

canakinumab reduced plasma inflammatory markers and arterial inflammation. This finding 

suggests that attenuating inflammation may modulate atherosclerosis pathogenesis in HIV 

infection (123).

While these exciting developments suggest promising future therapeutics, some of the 

greatest benefits to patients are lifestyle changes. Moderate exercise improves learning and 

memory, which may be due to strengthening cardiovascular function, reducing inflammation 

and enhancing neurogenesis (124–128). Additionally, improving sleep, nutrition and social 

health have been linked to better cognition in PLWH (129), as has eliminating the use of 

drugs, alcohol and smoking (130). Importantly, these interventions are inexpensive and 

rapidly implementable (131).
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Conclusion

Chronic inflammation is associated with mortality and significant morbidity and is a major 

complication in PLWH. While efforts are underway to cure HIV, a more nuanced 

consideration of the “unintended consequences” of further immune activation in the CNS are 

needed because the CNS is especially vulnerable to inflammatory processes. Residual viral 

replication, infected cell dysfunction, particularly long-lived microglia, and continuous 

expression of viral proteins all contribute to sustained chronic inflammation in PLWH. 

Importantly, activation of the latent viral reservoir, as part of cure initiatives, may well lead 

to further CNS damaging proinflammatory processes. Future research efforts should be 

focused on mitigating virally driven inflammation and preventing chronic inflammation.
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Key Points

• Tissue macrophages and microglia are functional viral reservoirs and 

contribute to chronic inflammation during HIV infection.

• Inflammation is a key mediator of CNS damage and is driven by residual viral 

replication, expression of viral proteins despite viral suppression, immune cell 

dysfunction and positive pro-inflammatory feedback loops.

• HIV cure strategies include activating viral reservoirs and triggering immune 

responses. Protecting the brain during these processes will be critical for their 

success.
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Figure 1. The immunopathology of HIV CNS disease.
The immune response during HIV infection can damage the CNS through direct and indirect 

mechanisms. Shortly after HIV infection, the virus enters the CNS and infects resident cells, 

inducing immune responses within this compartment that result in edema and bystander 

tissue damage. HIV infection is also associated with a lymphocytic meningitis, often 

occurring within weeks or months of initial infection (132). Encephalitis, primarily driven 

by CD8+ T cells can also occur in the absence of opportunistic infections (OIs) and is 

typically due to immune reconstitution inflammatory syndrome (IRIS). IRIS phenomena 

unrelated to OIs are relatively rare, but is the best direct example of a harmful effect of 

inflammation on neurological function (133). The immune system can also damage the CNS 

through indirect mechanisms. The best studied neurological complication associated with 

chronic inflammation is HAND. However, chronic inflammation within the context of HIV 

infection also contributes to the development of cardiovascular disease, a major contributor 

to CNS pathology in the era of ART, and neurodegenerative diseases.
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Table 1.

HAND in the era of ART: Key Clinical Features.

• Dysexecutive syndrome with prominent disruption of attention, multitasking, impulse control, and judgment.

• Apathy and depressive symptoms

• Impairments in memory, specifically encoding and retrieval.

• Motor impairment ~ fine fractionated movements, mild rigidity, and imbalance
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