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In eukaryotes, membraneous cellular compartmentation 
essentially requires vesicle trafficking for communications 
among distinct organelles. A donor organelle-generated 
vesicle releases its cargo into a target compartment by fusing 
two distinct vesicle and target membranes. Vesicle fusion, 
the final step of vesicle trafficking, is driven intrinsically by 
complex formation of soluble N-ethylmaleimide-sensitive 
factor attachment protein receptors (SNAREs). Although 
SNAREs are well-conserved across eukaryotes, genomic 
studies revealed that plants have dramatically increased 
the number of SNARE genes than other eukaryotes. This 
increase is attributed to the sessile nature of plants, likely for 
more sensitive and harmonized responses to environmental 
stresses. In this review, we therefore try to summarize and 
discuss the current understanding of plant SNAREs function 
in responses to biotic and abiotic stresses.

Keywords: abiotic stress, biotic stress, plant, SNARE, 
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INTRODUCTION

A plant cell, as a eukaryotic one, contains several mem-

brane-separated compartments such as nucleus, endoplas-

mic reticulum (ER), Golgi body, mitochondria and plastids. 

Although each subcellular compartment performs its own 

tasks, a more complex cellular work requires cooperative 

activities among distinct organelles, even between neigh-

boring cells. For this, cellular compartments communicate 

by exchanging their contents which are transported by small 

membraneous containers called vesicles. A cargo-loaded 

vesicle from a donor organelle moves to a target site and re-

leases its cargo. However, to transport the cargo into a target 

place, membranes between a vesicle and a target compart-

ment should be fused, which is energetically unfavorable. 

To overcome this, eukaryotes have successfully invented a 

membrane-merging machinery that consists of soluble N-eth-

ylmaleimide-sensitive factor attachment protein receptors 

(SNAREs) (Jahn and Scheller, 2006).

	 Simply based on their locations, SNAREs can be catego-

rized as t (target)-SNARE that is placed on the target com-

partment membrane and v (vesicle)-SNARE that is localized 

on the vesicle membrane (Sollner et al., 1993). Based on 

the conserved central amino acid in the SNARE motif that 

is responsible for interactions between SNAREs, they can 

be additionally grouped into Q (Gln)-SNARE that generally 

corresponds to t-SNARE and R (Arg)-SNARE that corre-

sponds to v-SNARE (Fasshauer et al., 1998). Q-SNAREs, on 

the basis of their sequence similarity, can be further classi-

fied into Qa-, Qb-, Qc-, and two SNARE motifs-containing 

Qbc-SNARE (Bock et al., 2001). Although most SNAREs are 

membrane-inserted by transmembrane motif, some SNAREs, 

such as SNAP25 (synaptosome-associated protein 25) Qbc-
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SNAREs and YKT6 R-SNAREs, are peripherally attached to 

the membrane by posttranslational lipidation (Hong, 2005). 

To drive the energy-required mergence of two distinct mem-

branes, SNAREs form a SDS-resistant tight complex that con-

tains four α-helical SNARE motifs (Hanson et al., 1997; Lin 

and Scheller, 2000). In general, four distinct SNAREs (Qa + 

Qb + Qc + R; e.g., AtSYP22 [syntaxin of plant 22] + AtVTI11 

[vesicle transport v-SNARE 11] + AtSYP51 + AtVAMP727 

[vesicle-associated membrane protein 727] in Arabidopsis) 

engage in the fusion between a vesicle and an intracellular 

endomembrane compartment (Fig. 1A), whereas three dif-

ferent SNAREs (Qa + Qbc + R; e.g., AtSYP121 + AtSNAP33 

+ AtVAMP721/722 in Arabidopsis) involve in the fusion 

between the plasma membrane (PM) and a vesicle (Fig. 1B) 

(Antonin et al., 2002; Ebine et al., 2008; Kwon et al., 2008b; 

Sutton et al., 1998).

	 The first functionally identified SNARE in plants is the 

Arabidopsis AtSYP111 (also called KNOLLE) (Lauber et al., 

1997; Lukowitz et al., 1996). Mitosis-specific expression of 

AtSYP111, division plane localization of AtSYP111, and cy-

tokinesis defect in atsyp111 (Lauber et al., 1997; Lukowitz 

et al., 1996) indicate that AtSYP111 is specifically involved in 

cell division, especially cytokinesis, in plants. Later biochemi-

cal works revealed that AtSYP111 forms two distinct SNARE 

complexes to drive cytokinesis with either AtSNAP33 Qbc-

SNARE and AtVAMP721/722 R-SNAREs (ternary SNARE com-

plex) (Heese et al., 2001), or AtNPSN11 (novel plant SNARE 

11) Qb-SNARE, AtSYP71 Qc-SNARE and AtVAMP721/722 

R-SNAREs (quaternary SNARE complex) (El Kasmi et al., 

2013). Failure of other Qa-SNAREs except AtSYP132 in res-

cuing the cytokinesis-defective atsyp111 phenotype indicates 

that AtSYP111 is specialized for cytokinesis (Muller et al., 

2003; Reichardt et al., 2011). Partial rescue of the atsyp111 

phenotype by AtSYP132 and the presence of an AtSYP132 

but not AtSYP111 counterpart in lower plants suggest that 

AtSYP111 is an AtSYP132-derived Qa-SNARE evolutionarily 

specialized for cytokinesis in angiosperms (Park et al., 2018; 

Reichardt et al., 2011). This may explain why the number of 

SNARE genes are increased in higher plants, most likely due 

to complex physiological processes under their sessile nature.

	 Unlike animals, plants are immobile once rooted in the 

soil. This indicates that plants are continuously exposed to 

potential threats. However, they are healthy and well living in 

nature, suggesting that plants have evolved a sophisticated 

system to effectively resist to variable environmental stresses. 

Such a system includes correct detection of extrinsic stress-

es, proper signaling to synthesize defense molecules, and 

accurate delivery of those molecules to right places. Since 

these stress-resistant molecules are likely harmful to plants 

themselves, they have to be transported in a safely mem-

brane-separated vesicle. SNAREs are the minimal core factors 

to drive the vesicle fusion with a destination compartment to 

discharge the cargo. Therefore, we will discuss in this review 

the current understanding of the importance of SNAREs in 

stress responses in plants.

SNAREs IN BIOTIC STRESS RESPONSES

Due to the lack of the circulatory system and mobile im-

mune cells, plants solely depend on the cell-autonomous 

innate immunity. Plants detect a pathogen by recognizing a 

pathogen-associated molecular pattern (PAMP) by a surface 

receptor called a pattern-recognition receptor (PRR) (Dodds 

and Rathjen, 2010; Jones and Dangl, 2006). A cognate PRR-

PAMP pairing initiates an immune signal that leads to the 

transcriptional reprogramming in a pathogen-challenged 

plant cell via the mitogen-activated protein kinase (MAPK) 

cascade and WRKY transcription factors (Dodds and Rathjen, 

2010; Jones and Dangl, 2006). To expel extracellular patho-

gens, plant cells finally secrete immune molecules to patho-

gen-attempting sites (Yun and Kwon, 2017).

	 So far, two distinct immune secretory pathways have been 
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Figure 1Fig. 1. Two distinct types of SNARE complexes containing four αα-helices to drive vesicle fusion events. While four different SNAREs (Qa 

+ Qb + Qc + R) form a quaternary SNARE complex for fusing a vesicle with an intracellular compartment (A), three different ones (Qa 

+ Qbc + R) do a ternary SNARE complex for exocytosis (vesicle fusion with the PM) (B). Known Arabidopsis SNARE complexes are; (A) 

AtSYP22-AtVTI11-AtSYP51-AtVAMP727 (Qa-Qb-Qc-R) quaternary SNARE complex (Ebine et al., 2008), and (B) AtSYP121-AtSNAP33-

AtVAMP721/722 (Qa-Qbc-R) ternary SNARE complex (Kwon et al., 2008b).
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identified (Kwon et al., 2008a; Yun and Kwon, 2017). One 

is a transporter-mediated secretion which involves the mito-

chondrium/peroxisome-localized AtPEN2 (penetration 2) my-

rosinase and the PM-residing AtPEN3 ABC transporter (Fuchs 

et al., 2016; Lipka et al., 2005; Stein et al., 2006). The other 

is a SNARE-assisted exocytosis. The first identified SNARE that 

is required for plant immunity is the Arabidopsis PM-residing 

AtSYP121 (also called AtPEN1) Qa-SNARE, whose barley 

ortholog is HvROR2 (required for mlo-specified disease resis-

tance 2) (Collins et al., 2003). Elevated fungal penetration in 

syp121 plants suggests that AtSYP121 at the PM facilitates 

the immune exocytosis to fungal pathogens (Collins et al., 

2003). Later biochemical and genetic approaches revealed 

that AtSYP121 Qa-SNARE forms the SDS-resistant immune 

SNARE complex with the AtSNAP33 Qbc-SNARE and func-

tionally redundant AtVAMP721/722 R-SNAREs (Kwon et 

al., 2008b) (Fig. 1), which is the first report to identify the 

whole component SNAREs to form a SNARE complex in 

plants. Interestingly, the dicotyledonous Arabidopsis AtS-

YP121-AtSNAP33-AtVAMP721/722-driven immune exocy-

tosis is conserved in the monocotyledonous barley as the Hv-

ROR2-HvSNAP34-HvVAMP721-assisted exocytosis (Kwon et 

al., 2008b). This indicates that the SNARE-mediated immune 

exocytosis has been invented in plants before the mono-

cot-dicot divergence. The requirement of SNAREs involved in 

this immune exocytosis for basal growth and development in 

plants additionally suggests that plants have co-opted a de-

fault exocytosis for immunity (Kwon et al., 2008b).

	 SYP121 is required for resistance to fungal and oomycete 

pathogens but not to bacterial ones (Kwon et al., 2008b). 

The compromised defense against Pseudomonas syringae 

pathovar (pv.) tabaci bacterium by silencing NbSYP132 Qa-

SNARE gene but not NbSYP121 in Nicotiana benthamiana 

suggests that SYP132 rather than SYP121 is engaged in im-

mune responses to bacterial pathogens (Kalde et al., 2007). 

Since AtSYP132 specifically interacts with AtVAMP721/722 

in plant cells (Yun et al., 2013a), and since AtSNAP33 is 

the major SNAP25-like genes that is expressed in the leaf 

tissue (Kwon et al., 2008b), it is likely that the SYP132-

SNAP33-VAMP721/722 SNARE complex drives an immune 

exocytosis to bacterial pathogens in plants (Fig. 1). This ad-

ditionally suggests that plants employ common SNAP33 and 

VAMP721/722 but distinct PM Qa-SNAREs depending on 

pathogen types for immune responses.

	 Although AtVAMP721/722 are engaged in multiple im-

mune responses to distinct types of pathogens, what are 

transported and secreted via AtVAMP721/722 vesicles remain 

poor yet. Recent proteomic approaches for either Arabidopsis 

seedling-grown liquid media (likely containing plant-secreted 

proteins) or leaf apoplastic fractions revealed that AtSYP121 

and AtVAMP721/722 are important for the secretion of 

many cell wall-associated proteins (Uemura et al., 2019; 

Waghmare et al., 2018). A reciprocal proteomic approach to 

compare intracellular proteins between wild-type (WT) and 

AtVAMP721/722-depleted plants additionally found that a 

lignin biosynthetic enzyme, caffeoyl-CoA O-methyltransferase 

1 (CCOAOMT1), might be transported out of plant cells by 

AtVAMP721/722 vesicles (Kwon et al., 2020). AtVAMP722 

vesicles were found to directionally move to the fungal entry 

sites where AtSYP121 is focally accumulated at the PM (As-

saad et al., 2004; Kwon et al., 2008b). In addition, AtSYP121 

and AtVAMP721/722 are required for the timely formation 

of secondary cell walls called papillae at fungal challenging 

sites in plant cells (Assaad et al., 2004; Kwon et al., 2008b). 

This suggests that AtVAMP721/722 vesicles deliver cell 

wall-modifying proteins and/or cell wall materials to reinforce 

the local cell walls at pathogen attempting areas. Beyond cell 

wall-related molecules, the powdery mildew resistance pro-

tein RPW8.2, whose precise function is unknown, is the only 

identified immune protein transported by AtVAMP721/722 

vesicles. Its colocalization with AtVAMP721/722 and delayed 

trafficking to plant-fungal interface in AtVAMP721/722-de-

pleted plants suggest that AtVAMP721/722 vesicles focally 

deliver RPW8.2 to fungal entry sites for immunity (Kim et 

al., 2014). Extracellular release of those immune molecules 

in plants is likely to be mediated by SYP121-VAMP721/722 

interactions for defense against fungal pathogens but by 

SYP132-VAMP721/722 interactions against bacterial ones.

	 Pathogenesis-related (PR) proteins are well-known plant- 

secreted immune proteins through the default secretory 

pathway in response to pathogen attack (van Loon et al., 

2006). Indeed, disruption in ER translocation or modification 

of default-secreted proteins reduces the secretion of PR1, a 

representative PR, resulting in impaired immune responses 

to P. syringae pv. maculicola ES4326 bacterium (Wang et al., 

2005). AtBET12 Qc-SNARE that exports the ER and localizes 

to the Golgi and trans-Golgi network (TGN) is regarded to be 

engaged in the ER-to-Golgi anterograde protein trafficking 

(Chung et al., 2018). Intriguingly, in plant cells expressing 

the ER export-defective BET12 mutant, the Golgi-localized 

AtMEMB12 Qb-SNARE but not other Golgi-localized ones is 

trapped in the ER (Chung et al., 2018). Increased extracellu-

lar PR1 levels accompanied by elevated resistance to bacterial 

pathogens, but WT-like growth phenotype in atmemb12 

plants suggest that AtMEMB12 is specifically involved in 

the Golgi-to-ER retrograde trafficking of immune proteins 

(Zhang et al., 2011). In planta interactions between AtBET12 

and AtMEMB12, and elevated PR1 retention in the ER by 

overexpressing either AtBET12 or AtMEMB12 suggest that 

these SNAREs are specialized for controlling the ER-Golgi 

trafficking of immune proteins (Chung et al., 2018). The 

TGN is regarded as a sorting platform of endocytosed and 

PM- or vacuole-targeted vesicles. The TGN-localized AtS-

YP41/42/43 Qa-SNAREs are required for immune responses 

to fungal pathogens in Arabidopsis (Uemura et al., 2012; 

2019). No more redirected AtVAMP721 vesicles to fungal 

entry sites in AtSYP4s-depleted plants (Uemura et al., 2019) 

suggests that VAMP721/722 vesicles containing immune 

proteins bud at the TGN, which is aided by SYP4s. There-

fore, it is likely that secreted immune proteins including PR 

proteins are translated and modified in the ER, transported 

from the ER to the Golgi by BET12-MEMB12 interactions, 

packed into VAMP721/722 vesicles in the TGN by SYP4s, and 

finally released out of plant cells by SYP121/132-SNAP33-

VAMP721/722 SNARE complex-driven exocytosis (Fig. 2A).

	 Orthologous ternary SNARE complexes required for im-

mune responses between Arabidopsis (AtSYP121-AtSNAP33- 

AtVAMP721/722) and barley (HvROR2-HvSNAP34-Hv-
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VAMP721) (Collins et al., 2003; Kwon et al., 2008b) indicate 

that this SNARE complex-driven exocytosis is a conserved an-

cient secretory pathway for immunity in plants. Recently, Os-

SYP121 that interacts with OsSNAP32 and OsVAMP714/724 

was reported to be required for rice resistance to the Mag-

naporthe ryzae rice blast fungus (Cao et al., 2019). In ad-

dition, overexpression of AtSNAP33 orthologs (CkSNAP33 

in Cynanchum komarovii and GhSNAP33 in Gossypium 

hirsutum) in Arabidopsis results in elevated resistance to the 

Verticillium dahliae fungus (Wang et al., 2017; 2018). These 

results support that the SYP121-SNAP33-VAMP721/722 

SNARE complex is the common immune exocytosis-driving 

machinery in plants. However, requirement of GmSYP31 

Qa-SNARE in soybean for defense against the Heterodera 

glycines nematode and TaSYP71 Qc-SNARE in wheat for 

resistance to the Puccinia striiformis fungus (Liu et al., 2016; 

Pant et al., 2014) suggests that different plant species may 

have adopted additional SNAREs to the above-mentioned 

common SNARE complex for immunity depending on patho-

gen types.

SNAREs IN ABIOTIC STRESS RESPONSES

Plants are also continuously exposed to a variety of abiotic 

stresses such as drought, high salinity, heat, cold, freezing, 

UV-B and osmotic stresses as well as to biotic stresses during 

their life cycles. The existence of a large number of SNARE 

genes in plants (Sanderfoot, 2007) implies that at least a frac-

tion of SNAREs could be involved in abiotic stress responses. 

Indeed, several genetic and biochemical studies isolated 

many SNAREs participating in abiotic stress signaling, mostly 

based on phenotypic analysis according to their altered ex-

pressions. In spite of their functional involvement in abiotic 

stress responses, however, their detailed action mechanisms 

are largely unknown.

	 Suppression of the AtVAMP7C genes (AtVAMP711, At-

VAMP712, AtVAMP713, and AtVAMP714) expression results 

in enhanced tolerance to salt stress (Leshem et al., 2006). 

Moreover, functional defect of AtVAMP711 leads to a slower 

stomatal closure through enhancement of PM H+-ATPase 

activity, after drought and abscisic acid (ABA, plant abiotic 

stress hormone) treatments (Leshem et al., 2010; Xue et 

al., 2018). Collectively, these results show a regulatory role 

of AtVAMP7C proteins in salt and drought stress responses. 

AtVAMP721/722-depleted lines display retarded growth pat-

tern compared to WT after ABA application (Yi et al., 2013). 

Decreased AtVAMP721/722 protein levels by ABA and salin-

ity treatments (Yi et al., 2013; Yun et al., 2013b) imply their 

involvement in drought and salt stress responses.

	 In addition to R-SNAREs, Q-SNAREs are also found to be 
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Fig. 2. Cellular routes of stress-related proteins in Arabidopsis. (A) PR1 is regarded to be secreted via ER, Golgi, TGN and secretory 

vesicle as shown by an arrow. For the secretion of PR1, AtBET12 and AtMEMB12 control the ER-Golgi trafficking, AtSYP4s 

(AtSYP41/42/43) does the budding of AtVAMP721/722 vesicles at the TGN, AtSYP121/132-AtSNAP33 at the PM regulate the fusion 

of AtVAMP721/722 vesicles with the PM. (B) K+ channels and aquaporins are thought to be delivered from the TGN to the PM via 

AtVAMP721/722 secretory vesicles. Their transport is controlled by AtSYP4s/AtSYP61 at the TGN and by AtSYP121/AtSNAP33 at the PM.
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engaged in abiotic stress responses. Before the identification 

of AtSYP121 in plant immunity in Arabidopsis, its tobacco 

ortholog, NtSYP121 (also called NtSyr1 [syntaxin-related 

protein 1]), was isolated as a component to be required for 

ion channel control at the PM in response to ABA (Leyman 

et al., 1999). Although functional loss mutant of AtSYP121 

(atsyp121) does not affect stomatal closure in response to 

high Ca2+ levels or ABA, stomatal reopening is retarded in 

the light and following Ca2+-evoked closure, and K+ uptake 

process for stomatal opening is suppressed in the atsyp121 

mutant (Eisenach et al., 2012), indicating that SYP121 is re-

sponsible for stomatal control. Moreover, under conditions 

of low humidity and high light intensities, atsyp121 exhibits 

low stomatal conductance and retardation of vegetative 

growth (Eisenach et al., 2012), implying its involvement in 

drought stress response. Indeed, it was revealed that the AtS-

YP121-AtSNAP33-AtVAMP721 SNARE complex is involved in 

the delivery of K+ channels to the PM (Honsbein et al., 2009; 

Waghmare et al., 2019; Zhang et al., 2015). The AtSYP4 

group consisting of AtSYP41, AtSYP42, and AtSYP43 posi-

tively affects tolerance to salinity and osmotic stresses (Uemu-

ra et al., 2012). In addition, defect of AtSYP61, a component 

in the AtSYP41 complex, leads to altered osmotic stress 

tolerance and stomatal responses (Zhu et al., 2002). A co-im-

munoprecipitation assay with AtSYP41 identified a large 

At-SYP41-interacting protein called AtTNO1 (TGN-localized 

SYP41-interacting protein 1) (Kim and Bassham, 2011). The 

loss-of-function of AtTNO1 results in increased sensitivity to 

salt and osmotic stresses, accompanied by partial secretion of 

vacuolar proteins to the apoplast (Kim and Bassham, 2011). 

Rescue of the attno1 phenotypes, abnormal salt sensitivity 

and vacuolar trafficking, by overexpression of AtSYP41 or At-

SYP61 suggests AtTNO1 as a tethering factor to regulate At-

SYP41-AtSYP61 complex (Yang et al., 2019). These findings 

reveal the importance of SYP4s/SYP61-mediated process in 

those stress responses. Moreover, AtSYP61 and AtSYP121 

together regulate the water permeability of PM through co-

ordinating trafficking process of aquaporin AtPIP2;7 (PM in-

trinsic protein 2;7) (Hachez et al., 2014; Piofczyk et al., 2015). 

Taken together, it is therefore likely that abiotic stress-related 

proteins such as K+ channels and aquaporins are delivered 

to the PM via VAMP721/722 vesicles with the aid of SYP4s/

SYP61 at the TGN and SYP121/SNAP33 at the PM (Fig. 2B). 

Furthermore, it was reported that growth inhibition by UV-B 

is reduced by functional defect of AtNPSN12 (Piofczyk et 

al., 2015). These additionally imply that other SNAREs than 

SYP121/SYP4s/SYP61 are also involved in plant responses to 

UV-B stress, as well as drought and salt stresses.

	 Abiotic stress response-related SNAREs from other plant 

species than Arabidopsis have also been recently reported. A 

SNARE-like superfamily protein-encoding gene, SbSLSP, was 

identified from an extreme halophyte Salicornia brachiata 

(Singh et al., 2016). In agreement with its inducibility to salt 

and drought stresses, SbSLSP-overexpressing tobacco lines 

show enhanced tolerance to salt and drought stresses by 

modulating membrane stability, K+/Na+ ratio and ROS levels 

(Singh et al., 2016). HbSYR1 protein from Tibetan barley 

(Hordeum vulgare) possesses a SNARE family characteristic 

motif (Xu et al., 2017). Alleviated drought tolerance in Hb-

SYR1-silenced transgenic lines indicates that HbSYR1 posi-

tively affects drought resistance in barley (Xu et al., 2017). 

Overexpression of TaVAP (vesicle-associated membrane 

protein-associated protein gene in Triticum aestivum) and 

GsSNAP33 (a SNAP25-like gene in Glycine soja) in Arabidop-

sis plants confer tolerance to drought stress, showing their 

possible contribution to drought stress tolerance (Nisa et 

al., 2017; Singh et al., 2018). Transcriptomic profiling under 

salt stress indicates that six differentially expressed genes 

(c92920_g1_i1, c64313_g1_i1, c45795_g1_i2, c49659_

g1_i1, c98985_g1_i1, c33236_g2_i1) by salt stress are cat-

egorized into “SNARE interactions in vesicular transport” in 

asparagus bean, supporting recent reports that SNARE-medi-

ated membrane trafficking is required for proper response of 

plants to salt stress (Pan et al., 2019).

CONCLUDING REMARKS

In response to environmental stresses, plants utilize SNAREs 

to transport pathogenesis-terminating and abiotic stress-alle-

viating molecules. Since SNAREs drive vesicle fusion between 

donor and target compartments, those otherwise harmful 

molecules might be safely delivered to the working places via 

membrane-contained vesicles. The understanding of those 

transported molecules during stress responses undoubtedly 

helps to improve crop productivity especially in this rapidly 

climate-changing era. However, a single molecule of known 

secreted PR proteins and secondary metabolites in response 

to pathogen infection has a limited immune activity. This 

indicates that stress-relieving molecules may work in a more 

complex way than expected, likely as a cocktail rather than a 

single compound. Therefore, precise and comparative isola-

tion and identification of trafficked molecules in response to 

a single pure stress would be critical to correctly understand 

how those molecules act in a specific combination for plant 

resistance to an environmental stress.

	 Additional difficulty in understanding molecules that are 

SNARE-transported in a specific response is that a same 

SNARE is engaged in multiple stress responses. For exam-

ple, AtSYP121 and AtVAMP721/722 are required for both 

biotic and abiotic stress responses in Arabidopsis (Collins et 

al., 2003; Eisenach et al., 2012; Kwon et al., 2008b; Leyman 

et al., 1999; Yi et al., 2013; Yun et al., 2013a). Interestingly, 

plant SNAREs promiscuously form a SNARE complex in vitro 

(Kwon et al., 2008b), indicating that their specific in plan-

ta interactions should be regulated by an accessory factor. 

Indeed, KEULE also called SEC11 is found to control the for-

mation of AtSYP121-AtSNAP33-AtVAMP721/722 and AtS-

YP111-AtSNAP33-AtVAMP721/722 (Karnik et al., 2013; Park 

et al., 2012). In addition, ARA6, a plant-unique RAB5 small 

GTPase required for salt stress tolerance, promotes unexpect-

ed AtSYP121-AtVAMP727 interaction (Ebine et al., 2011). 

Therefore, in addition to pure isolation, the knowledge on a 

biological function of a SNARE complex-regulating protein 

would be greatly helpful to understand the exact nature of 

transported molecules for a specific stress response in plants.
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