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ABSTRACT

The COVID-19 epidemic represents an unprecedented global health emergency, further aggravated by the lack of effective therapies. For this reason, several clinical
trials are testing different off-label drugs, already approved for other pathologies. Mesenchymal stem/stromal cells (MSCs) have been tested during the last two
decades for the treatment of various pathologic conditions, including acute and chronic lung diseases, both in animal models and in patients. In particular, promising
results have been obtained in the experimental therapy of acute respiratory distress syndrome, which represents the most threatening complication of COVID-19
infection. Furthermore, more recently, great interest has been devoted to the possible clinical applications of extracellular vesicles secreted by MSCs, nanoparticles
that convey much of the biological effects and of the therapeutic efficacy of their cells of origin. This review summarizes the experimental evidence underlying the
possible use of MSCs and of MSC-EVs in severe COVID-19 infection and underlines the need to evaluate the possible efficacy of these therapeutic approaches through

controlled studies under the supervision of the Regulatory Authorities.

1. Introduction

The ongoing health emergency related to the COVID-19 epidemic is
mainly due to the pulmonary complications of the disease, for which
there are no proven effective therapies. According to recent studies, the
cell entry receptors of the virus are represented by the angiotensin
converting enzyme II ACE2 [1] and by the serine protease TMPRSS2
[2]. Both types of proteins are highly expressed on alveolar type II cells
(AT2), while the ACE2 receptor is also widely distributed on several
human cells, including cardiac and kidney cells, as well as endothelial
and smooth muscle cells in several organs, explaining the ability of this
virus to generate a systemic disease [3,4]. The binding of the SARS-
CoV-2 spike protein to ACE2 has been suggested to cause the down-
regulation of ACE2 from the cell membrane [5], resulting in an

imbalance between ACE and ACE2 activity and contributing to acute
lung injury [6]. Indeed, ACE2 has opposite effects to ACE [7]. ACE-
catalyzed conversion of Angiotensin I to Angiotensin II promotes va-
soconstriction, inflammation and oxidative stress, while ACE2 converts
angiotensin II into angiotensin 1-7, a peptide inducing vasodilatation
and exhibiting anti-oxidant and anti-inflammatory properties [6,8,9].
Acute respiratory distress syndrome (ARDS) and an exuberant in-
flammatory response characterized by high blood cytokine levels have
been associated with critical and fatal illnesses [10]. ARDS is a devas-
tating hypoxemic respiratory failure, characterized by disruption of the
alveolar-capillary membrane barrier [11]. Despite decades of research,
current management for ARDS remains supportive [11]. Several clinical
trials are currently underway in a collective effort to fight COVID-19
pneumonia, including both new drugs and “off label” drugs, i.e. drugs
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that can be used in diseases other than those for which they have been
authorized [12]. This is the case of some antivirals and some biological
anti-cytokine drugs (such as anti-interleukin 6 and anti-TNF), tested on
these patients based on their established mechanisms of action.

2. Mesenchymal stromal cells for the treatment of acute
inflammatory lung diseases

A recent report described the possible therapeutic efficacy of me-
senchymal stem/stromal cells (MSCs) in patients with severe COVID-19
pneumonia [13]. MSCs are a heterogeneous population containing stromal
cells, progenitor cells, fibroblasts and stem cells [14,15]. They can be
isolated from different tissues including bone marrow, adipose tissue, cord
blood, Wharton jelly and placenta, and are currently being used to treat a
number of clinical conditions, as well as being tested in several clinical
trials around the world due to their immunomodulatory and tissue re-
generative properties [16-21] together with their considerable safety [22].

The study of Leng et al. [13] enrolled seven confirmed COVID-19
patients, including one critically severe type, four severe types and two
common types in the MSC-treated group, while three severe type pa-
tients were enrolled in the placebo control group. Of note, “standard”
treatment in the placebo group was not specified. Treated patients re-
ceived 1 x 10° MSCs per Kg body wt. intravenously. No adverse effects
were observed. The pulmonary function and symptoms of treated pa-
tients were significantly improved within 2 days after MSC transplan-
tation. Chest CT imaging also showed significant improvement. In this
group, three patients (two common and one severe type) recovered and
were discharged within 10 days. In the placebo group, one patient died
and two were reported to worsen, although their outcome is not de-
scribed. MSC infusion was associated with increased peripheral lym-
phocyte count and with decreased systemic markers of inflammation
compared to the placebo group.

Clearly, it is premature to draw any conclusion based on a single
study with a limited number of patients likely receiving multiple
treatments, as warned by scientific societies in the field [23-25]. On the
other hand, more rigorous studies excluding possible confounding
treatments in the placebo group could raise serious ethical concerns.
Due to the complexity of the disease, a large sample size will probably
be required to reach statistical significance, and it could be difficult to
meet such a requirement with a decreasing prevalence of the infection.
However, it is reasonable to put forward some considerations based on
the knowledge accumulated over twenty years of experience with the
use of these cells in various autoimmune, inflammatory and degen-
erative diseases. Indeed, the rationale for the use of MSCs in COVID-19
associated pneumonia is manifold.

The anti-inflammatory and immune modulatory properties of MSCs
are well established and have been exploited in a large number of both
preclinical and clinical studies [16,26,27]. Moreover, MSCs behave as
tissue-protecting agents, inhibiting apoptosis, limiting oxidative injury
and enhancing regeneration [18]. MSCs are massively retained in the
lung following intravenous infusion [28] and they have been successfully
tested in several animal models of acute and chronic lung injury such as
idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease,
obstructive bronchiolitis, and bronchopulmonary dysplasia [29-35].

Documented biological activities supporting the use of MSCs/MSC-
EVs as therapeutic agents in COVID-19 pneumonia include immune
modulation, tissue protection and anti-bacterial/antiviral activity.

As stated above, the cytokine release syndrome (CRS) characterized
by fever and multiple organ dysfunction is a major cause of death in
COVID-19 patients. Data from recent studies suggest that SARS-CoV-2
infection can lead to a complex immune dysregulation affecting dif-
ferent subsets of immune cells [11]. This is probably the reason why
targeting specific immune pathways has so far brought only partially
beneficial effects to severe COVID-19 patient [36]. For instance, al-
though Interleukin 6 (IL-6) seems to hold a key role in CRS patho-
physiology, treatment with selective inhibitors such as Tocilizumab, a
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blocker of IL-6R that can effectively block IL-6 signal transduction
pathway, did not reduce mortality in COVID-19 patients. The beneficial
effects of MSCs in different models of lung injury and fibrosis are as-
sociated with a reduction in proinflammatory cytokines such as tumor
necrosis factor-a and IL-6 and an increase in anti-inflammatory cyto-
kines such as IL-10. Alveolar macrophages are crucial in orchestrating
the initiation and resolution of lung inflammation, first by polarizing
toward the M1 phenotype releasing pro-inflammatory cytokines and
then by switching to the alternative M2 phenotype, releasing IL-10 and
promoting the resolution of inflammation [37]. MSCs (activated by LPS
or TNF-a via Toll-like receptor 4) can reprogram macrophages to an
alternative phenotype by releasing prostaglandin E2 [38]. More re-
cently, Lv et al. have demonstrated in an animal model of acute lung
injury that the stress response protein stanniocalcin-2 can have a cen-
tral role in MSC immunomodulation [39]. These results were obtained
in animal models of toxic or LPS-mediated lung injury that could elicit
different responses by MSCs when compared to SARS-CoV-2 infection.
Interestingly, however, the clinical study by Leng et al. reported that
the levels of TNF-a was significantly decreased, while IL-10 increased
in COVID patients treated with MSCs compared to the placebo control
group. These findings suggest that MSCs might help re-equilibrating the
dysregulated immune response observed in these patients.

Lung pathology of COVID-19 pneumonia in critically ill patients in-
clude exudative and proliferative phases of diffuse alveolar damage and
microvessel thrombosis suggestive of early ARDS [40,41], whose pa-
thogenesis include altered alveolar permeability and neutrophil infiltra-
tion [42]. Administration of MSC-EVs was found to reduce protein per-
meability and to increase alveolar fluid clearance in an ex vivo model of
human perfused lung injured with severe E. coli pneumonia [28,43,44].
These functional improvements were associated with decreased neu-
trophil infiltration. The MSC therapeutic potential was correlated with
the secretion of cytoprotective agents such as keratinocyte growth factor
(KGF), anti-inflammatory products such as PGE2 or lipoxin A4, anti-
permeability factors such as angiopoietin-1 (Angl). Interestingly, culture
media of bacteria-stimulated MSCs were found to contain antimicrobial
products [45], and in murine sepsis models treatment with MSCs in-
creased bacterial clearance, in part due to enhanced phagocytotic ac-
tivity of the host immune cells [46]. Moreover, MSC-EVs exhibited an-
tiviral activity, both by suppressing influenza virus replication after virus
entry in lung epithelial cells in vitro and by decreasing viral load in a pig
model of influenza virus-induced lung injury [47].

Currently, there are several ongoing clinical trials on the use of MSCs
in the treatment of several pulmonary diseases including idiopathic pul-
monary fibrosis, chronic obstructive pulmonary disease, obstructive
bronchiolitis and bronchopneumodysplasia [19] as well as for the treat-
ment of ARDS [48] and of septic shock [49]. Interestingly, Leng et al. also
showed that MSCs do not express ACE2 and TMPRSS2 receptors, sug-
gesting that the virus should not infect this cell population. Moreover, it
was shown that MSC administration to a rat model of hyperoxia-induced
lung injury reduced to normal level the hyperoxia-induced overexpression
of angiotensin II, angiotensin II type 1 receptor, and of angiotensin-con-
verting enzyme [50]. Very recently, Simonson et al. [51] reported a long-
term follow up of two patients with the most severe form of ARDS that in
the acute phase needed ECMO support in combination with mechanical
ventilation and at the same time were treated with a single systemic in-
fusion of allogeneic MSCs. Remarkably, 5 years after the treatment both
patients had fully recovered their physical and mental capacities, which is
unusual for ARDS survivors. Moreover, the patient that had the most
severe form of ARDS and was on ECMO support for 28 days before the
MSC-infusion, had no signs of pulmonary fibrosis five years after the MSC
treatment as demonstrated using CT scan with dual energy.

As mentioned above, no firm conclusion can be drawn by the study
of Leng et al., but both the reported preliminary results and the scien-
tific background should encourage further investigation on MSC treat-
ment for COVID-19 pneumonia with well-designed clinical trials under
the control of Regulatory Authorities.
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3. The new therapeutic potential of extracellular vesicles

The provision of large amounts of MSCs at affordable cost is how-
ever an issue. Industrial GMP production of clinical-grade MSCs is both
cumbersome and expensive [52]. To date, MSCs have been authorized
by Regulatory Authorities for diseases involving a limited number of
patients, such as GVHD in pediatric patients or anal fistulas resistant to
conventional therapy in Crohn's disease. Clearly, the use of MSCs in a
large number of patients such as the one encountered in a pandemic
disease would require a significant cost reduction, also considering the
relatively high dose used in the study of Leng et al.

MSCs exert most of their therapeutic effect via paracrine mechan-
isms [53-56], including the secretion of extracellular vesicles (EVs).
EVs, including exosomes and microvesicles, are complex biological
machines secreted by all cell types and ranging from 0.03 to 1 um in
size. EVs carry.

a variety of proteins, lipids and nucleic acids, with profound effects
on target cells [57-59]. In the case of MSC-derived EVs, both others and
we have demonstrated their immunomodulatory effects in vitro
[60-64] and revealed a remarkable anti-inflammatory and pro-re-
generative capacity in several animal models of disease [65,66]. More
specifically, both others and we demonstrated that MSC-EV adminis-
tration shows therapeutic effects in animal models of lung injury, in-
cluding hyperoxia [67-69], severe bacterial pneumonia [70] and viral
pneumoni [47]. Moreover, administration of MSC-EVs showed bene-
ficial effects in ex vivo perfused human lungs injured with severe E. coli
pneumonia [71]. Finally, MSC-EVs were effective in rehabilitating
marginal donor human lungs, by increasing alveolar fluid clearance in a
dose-dependent manner, decreasing lung weight gain following perfu-
sion and ventilation, and improving both airway and hemodynamic
parameter [59]. Based on these promising data, the role of MSC-EVs in
mitigation and repair of lung injury in ARDS is being increasingly re-
cognized [54,70,72,73]. Finally yet importantly, MSC-EVs can prevent
the development of fibrosis following experimental lung injury, simi-
larly to their cells of origin [34,74]. Of note, anecdotic descriptions of
fibrotic sequelae with reduced lung function in patients recovered from
COVID-19 pneumonia are being reported [75]. Indeed, the risk of de-
veloping idiopathic pulmonary fibrosis in increased following viral in-
fections [76], and this long term complication was also reported in
some patients following SARS infection [77]. Actually, there is growing
interest in the potential use of EVs as therapeutic tools (see graphical
abstract for a proposed effect of MSC/ MSC-EVs on COVID-19 mediated
tissue injury). EVs are considered safer than their cells of origin, and are
easier and cheaper to produce, isolate, store and administer [78], which
should result in reduced cost and larger availability of the product. It
should be mentioned that EVs seem to be extremely versatile products
that can be engineered by various techniques, such as manipulation of
their parent cells through genetic engineering, by introducing exo-
genous material that is subsequently incorporated into secreted EV
[79-81]. A similar strategy has been used to deliver exogenous mi-
croRNA-let7c via MSC-EVs to attenuate renal fibrosis in mice with
unilateral ureteral obstruction [82]. EVs can also be loaded with ther-
apeutic molecules to improve targeting to the desired site of action
[81,83-85].

So far, clinical experience is limited to a few trials on the use of EVs
derived from dendritic cells in adoptive immune therapies for cancer
[86] and to a single patient successfully treated with MSC-derived EVs
for steroid-resistant GVHD [87]. A clinical trial on the use of MSC-EVs
in premature neonates at high risk for bronchopulmonary dysplasia is
currently recruiting [88].

However, there are still significant barriers in the development of
MSC-EVs as therapeutic tool [89]. Some of these challenges are shared
with their parent cells, including the variability in tissues of origin and
culture conditions, [90,91]. Although MSCs from different sources ex-
hibit different immune suppressive and differentiation capacity, the
optimal source(s) of MSCs for immunomodulation have not been
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conclusively determined [92] and no comparative studies on MSC-EVs
from different tissues are available. Large scale production of MSC-EVs
suitable for clinical applications remains a major challenge. Refined
isolation methods yielding EVs with a high degree of purity may not be
applicable at industrial level [93]. Moreover, some “contaminants” co-
isolating with EVs may contribute to their therapeutic efficacy [94].
The heterogeneity of EV subpopulations represents an additional chal-
lenge [95]. Indeed, so far all published studies have used a hetero-
geneous population of EVs, even if in some cases a partial size selection
(“small” EVs <200 nm) is performed. Of note, it was shown that EV
populations of different sizes secreted by dendritic cells can induced
different patterns of polarization of activated T cells [96]. Quantifying
EV preparations is also an unresolved problem, since accurate EV
counting is hampered both by lack of standardization and by the in-
ability of currently used devices to distinguish membrane- enclosed
vesicles from non-vesicular particles [95]. The above issues highlight
the need for reliable potency assays, which according to regulatory
authorities should measure the biological activity of the product that
mediates the therapeutic effect of a given drug [97]. Unfortunately, as
stated above, the mechanism of action of MSC-EVs is complex and
poorly understood, and potency assays for this therapeutic product are
not validated and are still experimental [87]. It should be noticed that it
took about two decades of preclinical and clinical tests before some
MSC-based treatments were approved by Regulatory Authorities. Even
if knowledge in the field has progressed fast, additional improvements
in EV production and better understanding on their mechanisms of
action will be required for EV-based treatments to become more clini-
cally applicable. On the clinical side, little is known regarding optimal
therapeutic doses and optimal route(s) of administration [89]. Re-
garding safety, MSC-EVs have been shown to exhibit procoagulant ac-
tivity, similarly to their cells of origin [98], a property that could cause
concern in patients prone to thrombotic events such as those with
SARS-CoV-2 infection.

When this manuscript was under review, a first-in-man trial on 24
patients with severe COVID-19 pneumonia treated with MSC-EVs was
published [99]. The study included both outpatients (cohort A) and
hospitalized patients without (cohort B) or with (cohort C) artificial
ventilation and a follow-up period of 14 days following MSC-EV ad-
ministration. Associated treatments included hydroxychloroquine and
azythromycin. The patients received a single IV dose of MSC-EVs over
60 min. Unfortunately, neither the origin of MSCs nor the EV dose were
specified. The study met its primary safety endpoints, with no reported
adverse events in the immediate (<24 h), intermediate (<72 h) or
delayed (>72 h) period following EV infusion. Overall survival rate
was 83% (4 deaths/24 patients, 2 in cohort B and 2 in cohort C), and
13% of the patients (3/24) remained critically ill, still requiring me-
chanical ventilation and intensive care at the end of the follow up
period. Eighty percent of patients (20/24) exhibited improved PaO2/
FiO2 ratio within 3 days of treatment. Again, no conclusion on efficacy
can be driven from a small phase I study. Interestingly, however, in-
flammatory markers and absolute neutrophil count significantly de-
creased while total lymphocyte and CD8 + count significantly increased
within 5 days following EV treatment. Moreover, D-dimer was sig-
nificantly decreased, a reassuring finding in view both of the throm-
boembolic syndrome often associated with serious SARS-CoV-2 infec-
tion and of the above-cited potential procoagulant activity of MSC-EVs.

In conclusion, MSC-EVs should also be considered in parallel with
MSCs as an experimental therapeutic tool in seriously compromised
patients at the risk of life and/or for the prevention of fibrotic com-
plications after the acute phase, following the current regulations of the
phase I / II clinical trials or for compassionate use.
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