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Abstract

Summary: In fields, such as ecology, microbiology and genomics, non-Euclidean distances are widely applied to
describe pairwise dissimilarity between samples. Given these pairwise distances, principal coordinates analysis is
commonly used to construct a visualization of the data. However, confounding covariates can make patterns related
to the scientific question of interest difficult to observe. We provide adjusted principal coordinates analysis as
an easy-to-use tool, available as both an R package and a Shiny app, to improve data visualization in this context,
enabling enhanced presentation of the effects of interest.
Availability and implementation: The R package ‘aPCoA’ and Shiny app can be accessed at https://cran.r-project.
org/web/packages/aPCoA/index.html and https://biostatistics.mdanderson.org/shinyapps/aPCoA/.
Contact: cbpeterson@mdanderson.org or rrjenq@mdanderson.org

1 Introduction

Non-Euclidean distances, such as Bray–Curtis dissimilarity (Bray
and Curtis, 1957), unweighted UniFrac distance (Lozupone and
Knight, 2005) and weighted UniFrac distance (Lozupone et al.,
2007) are widely used in fields such as ecology and microbiology
to describe pairwise dissimilarity between samples. In these appli-
cations, non-Euclidean distances have critical advantages over
Euclidean distances, such as handling extreme values and incorpo-
rating phylogenetic information. Given a non-Euclidean pairwise
distance matrix, principal coordinates analysis (PCoA), also
known as classic or metric multidimensional scaling, can allow
researchers to visualize variation across samples and potentially
identify clusters by projecting the observations into a lower
dimension.

A long-standing challenge in PCoA visualization is that con-
founding covariates can mask the effect of the primary covariate.
For instance, in a study on the impact of diet on the microbiome,
clustering due to site may be more visually prominent than diet
if patients are recruited from two different locations. Though
there have been several methods proposed to adjust for covariates
in principal component analysis (Chang and Du, 1999; Lin et al.,
2016), there are no existing methods to adjust for covariates
in PCoA. In this work, we develop a novel visualization
approach, adjusted principal coordinates analysis (aPCoA), which
allows adjustment for covariates in creating the PCoA
projection, and provide easy-to-use R tools implementing this
method.

2 Materials and methods

In this section, we first review the standard steps in creating a PCoA
projection from an N�N distance matrix D summarizing the pair-
wise dissimilarity among the N samples in the dataset. We then de-
scribe how we modify this approach to incorporate covariate
adjustment. The standard steps for PCoA are:

1. Transform D to a new matrix A ¼ ½Ahi�, where ahi ¼ �1=2D2
hi.

2. Center A to get Gower’s centered matrix G ¼ ðI� 110

N Þ
AðI� 110

N Þ.
3. Calculate the eigendecomposition of G.

4. Project the N samples into two dimensions determined by the

two leading eigenvectors.

If the distances are Euclidean embeddable, there exists an N�P
data matrix Y ¼ ½Y1;Y2; . . . ;YN �0, such that Gower’s centered ma-
trix can be equivalently calculated from G ¼ YCY0C, where YC is Y
centered by the sample mean (Gower, 1966; Legendre and
Legendre, 2012). To construct the aPCoA projection, we adjust for
the effect of covariates on Gower’s matrix, in a manner similar to
MANOVA. The S covariates we want to adjust for can be repre-
sented in a N� S matrix, X ¼ ½X1;X2; . . . ;XN�0, where each X0k is
an 1� S vector. We use a matrix E to denote the error term which
cannot be explained after doing a linear regression on X:

E ¼ ðI�HÞYC; (1)
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where H ¼ XðX0XÞ�1X0 is the hat matrix used in linear regression.
The error covariance matrix, which is also used in pseudo F statistics
calculation (Pan, 2011; Zapala and Schork, 2006) can be
calculated by:

D ¼ EE0 ¼ ðI�HÞYCY0CðI�HÞ: (2)

For any non-Euclidean distance, if we substitute Y0CYC in (2)
with the corresponding Gower’s centered matrix G, we can get the
generalized error matrix, which is also the covariate adjusted
Gower’s centered matrix.

D� ¼ ðI�HÞGðI�HÞ: (3)

After calculating the eigenvectors and eigenvalues of D�, we can
visualize this covariate adjusted Gower’s matrix as in a normal
PCoA plot.

We provide aPCoA as both an R package and Shiny app. The
Shiny app allows for the adjustment of one covariate, which can be
either continuous or categorical, and provides options for visualiza-
tion including the plotting of 95% confidence ellipses and lines
linking cluster members to the cluster center. Our R package add-
itionally enables adjustment for multiple covariates.

3 Illustrating example

The first illustrating dataset is from a study on the effects of disturb-
ance from a soldier crab on 56 species of meiobenthos, which are
small invertebrates (Wang et al., 2019). Eight of the sixteen observa-
tions in the dataset correspond to crab disturbances. Besides the
crab disturbance, there are also four different locations in the study
design, where observations from each location comprised two dis-
turbed and two undisturbed ones. Here, we use the Bray–Curtis
dissimilarity, which is commonly used in the ecology field to visual-
ize observations.

The second illustrating dataset is from a two-center pancreatic
cancer study (Riquelme et al., 2019), which includes 25 patients
from one hospital and 43 patients from another hospital. The inves-
tigator compared the tumor microbiota between the 36 long-time
survivors (LTS) and 32 short-time survivors (STS) across study
centers. The metric used for visualization is the weighted UniFrac
distance, which incorporates both the taxa abundance and
phylogenetic relatedness of the bacterial taxa.

As shown in the uppermost panels of Figure 1A, the original
PCoA plot of the meiobenthos dataset is affected by the location,
and all locations are separated from each other. After removing the
effect of location using aPCoA, the separation between the disturbed
and undisturbed groups becomes more prominent, whereas the sep-
aration due to location is less apparent, as shown in the bottom pan-
els of Figure 1A.

In the pancreatic cancer example, the original PCoA plot with
weighted UniFrac distance does not clearly separate the LTS and
STS patients due to the confounding effect of hospital site, as shown
in the upper part of Figure 1B. After adjusting for the site effect, the
two clusters become more visually separable, as shown in the
aPCoA plots provided in the bottom two panels.

4 Conclusion

We introduce covariate adjusted PCoA visualization along with an
R implementation, which can help researchers visualize main effects
in datasets with strong confounders. We expect our method to be a
useful tool for microbiome and ecology researches in the future.
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Fig. 1. Comparison between original PCoA plot and aPCoA plot for two illustrative

examples. The position of the points is identical between the left and right columns,

with coloring and lines used to illustrate grouping variables. (A) Meiobenthos data-

set using the Bray-Curtis dissimilarity. (B) Pancreatic cancer dataset using the

weighted UniFrac distance
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