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Abstract

The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor
changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones
are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are
prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act
as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in
protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in
responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological exten-
sion and contraction cycles. It is likely that further study of these interactions — enabled by the development of experimental
methodologies that allow protein contacts to be studied under the application of mechanical force — will expand our understand-
ing of the activity and functions of sHSPs, and of the roles played by chaperones in general.
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Introduction

The ability of cells to respond to stress is central to the health
and lifespan of organisms (Morimoto and Cuervo 2014).
Various types of stress are particularly damaging to folded
proteins, which are only marginally thermodynamically stable
in their functioning environments, making them vulnerable to
even minor changes to cellular conditions (Kim et al. 2013;
Hipp et al. 2014). An increasingly unfolded proteome is func-
tionally impaired and at risk of forming aggregates or amyloid
fibrils. If the cell does not manage to degrade or sequester
these protein deposits in a controlled manner (Miller et al.
2015; Sontag et al. 2017), they can become pathological
(Fig. la) (Kakkar et al. 2014; Henning and Brundel 2017,
Chiti and Dobson 2006).

D4 Justin L.P. Benesch
justin.benesch@chem.ox.ac.uk

Present address: Department of Biology, Stanford University, 318
Campus Drive, Stanford, CA 94305, USA

Department of Chemistry, Chemistry Research Laboratory,
University of Oxford, Mansfield Road, Oxford OX1 3TA, UK

To support the integrity of the proteome throughout the
protein turnover cycle, from the point of synthesis on the
ribosome until degradation, cells across the kingdom of life
have developed an intricate network responsible for
proteostasis (protein homeostasis, or protein quality control).
Comprising an integral part of this network is a family of
proteins known as molecular chaperones (Kim et al. 2013;
Bukau et al. 20006).

Molecular chaperones can be broadly grouped into two
non-exclusive categories: those that assist in de novo folding,
and those that sense and mitigate the effects of misfolding at a
later stage, performing what has been termed conformational
maintenance (Fig. 1b) (Kim et al. 2013). Many of the latter are
heat-shock proteins (HSPs), discovered upon their upregula-
tion following thermal stress (Richter et al. 2010; Lindquist
1986). Although the name points exclusively to stress-related
function, many human HSPs are constitutively expressed un-
der basal conditions (Labbadia and Morimoto 2015). They are
classified by approximate subunit molecular masses into
HSP110, HSP90, HSP70, HSP60, HSP40, and the small
HSP (sHSP; 16-27 kDa) family.

The paradigmatic sHSP populates oligomers hundreds of
kDa in mass which act as a chaperone reservoir. Upon stress,
subunits are released, which then tightly sequester misfolded
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species in a competent state for downstream refolding or deg-
radation to prevent protein aggregation (Fig. 1b) (Haslbeck
et al. 2005; Hilton et al. 2013; Garrido et al. 2012). In this
chapter, we will dissect this canonical view. After providing a
more comprehensive introduction to sHSP function and struc-
ture, we will review evidence that challenges the idea that the
main function of sHSPs is to broadly sequester misfolded
species, suggesting rather that sHSPs may also have special-
ized roles in responding to mechanical stress. We suggest that
further study of sHSP interactions with mechanosensitive cli-
ents may elucidate this role and inform a more comprehensive
view of the functional landscape of sHSPs and molecular
chaperones more broadly.

Small heat-shock proteins

sHSPs are found in archaea, bacteria, and eukarya, meaning
they arose before life diverged, at least 3.5 billion years ago.
Their evolutionary trajectory since hints at extensive function-
al diversity (Basha et al. 2012; Waters 2013). Prokaryotes
typically contain very few sHSPs, while most eukaryotes have
significantly more — the human genome encodes 10; teleost
fish, 13; C. elegans, 16; and some land plant species have
more than 30 (Marvin et al. 2008; Haslbeck et al. 2005;
Waters 2013).

Vertebrate SHSP expression varies with tissue, stage of de-
velopment, and level of stress (Klemenz et al. 1993; Lutsch

b

Unfolded

et al. 1997; Doran et al. 2007). They are generally abundant,
constituting up to 40% of soluble protein in the eye lens
(Horwitz et al. 1999) and up to 3% in non-lenticular tissues
in the absence of stress (Klemenz et al. 1993; Kato et al. 1991;
Dimauro et al. 2017). Some sHSPs serve as a first line of
defense when the proteome is compromised by acting as
holdases to triage aggregation-prone species (Hilton et al.
2013).

Despite the penetrance of this model of sHSPs as generalist
chaperones, the description does not faithfully capture the
entire protein family (Basha et al. 2012; McHaourab et al.
2009; Vos et al. 2009). Humans express 10 sHSPs (and the
related protein HspB11), categorized based on the presence of
a conserved domain (Kappe et al. 2010). Fewer than half of
these are upregulated at the onset of stress (The Big Book on
Small Heat Shock Proteins 2015), and fewer than half can
suppress the aggregation of a broad range of model substrates
in vitro, with the rest displaying highly substrate-dependent
activity (Table 1) (Mymrikov et al. 2017).

Functions and interactors

Evidence suggests that in vitro substrate dependence reflects
in vivo specificity. sHSP interactomes, though difficult to de-
termine comprehensively, contain proteins that are shared be-
tween multiple members of the family and others that are tied
to a single sHSP (Mymrikov et al. 2017; Arrigo and Gibert
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Fig. 1 Chaperones modulate the stability of the proteome toward a
variety of stressors. a A protein energy landscape. Unfolded proteins
sample conformations to reach a flexible functional or ‘native’ state.
Destabilized proteins can attract intermolecular interactors through
exposure of hydrophobic regions, prompting a cascade to aggregation
which can be either protective (Sontag et al. 2017) or pathological
(Hipp et al. 2014). Some oligomeric precursors can also form highly
thermodynamically stable fibrillar aggregates, which are associated with
diseases (Chiti and Dobson 2006). Chaperones affect various pathways
along this energy landscape. b. The most prominent roles of mammalian
heat-shock proteins during cellular response to stress, as part of the
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maintenance stage of the protein 'life cycle’. An environmental, biochem-
ical, or mechanical change causes native protein to misfold. It is then
either bound by ATP-dependent HSP machinery (HSP40, HSP70, and
HSP90) for refolding or sequestered by sHSPs to prevent aggregation
rapidly with less metabolic cost to the cell. Most sHSPs form large olig-
omers often disrupted by stress conditions (Haslbeck et al. 2016).
Additional chaperone complexes (involving HSP40, HSP70, and
HSP110) promote aggregate clearance through disassembly or degrada-
tion. HSP60 (not pictured) is a mitochondrial chaperone. Schematics
influenced by (Kim et al. 2013; Carver et al. 2018; Richter et al. 2010;
Garrido et al. 2012)
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Table 1 Features of human
SHSPs Original name New MW?* (kDa) Tissue Stress- Promiscuous
nomenclature distribution® inducible?* chaperone?d
Hsp27 HspBl1 22.8 Ubiquitous Yes Yes
MKBP HspB2 20.2 Muscle No No
HspL27 HspB3 17.0 Muscle No No
xA-crystallin HspB4 19.9 Eye lens No Yes
aB-crystallin HspB5 20.1 Ubiquitous Yes Yes
Hsp20 HspB6 17.1 Muscle, brain No No
cvHsp HspB7 18.6 Muscle No No
Hsp22 HspB8 21.6 Muscle, brain Somewhat No
CT51 HspB9 17.5 Testis No No
ODF1 HspB10 28.4 Testis No No

# Molecular weight of the monomer, based on sequences in the UniProt database
® Collated from reviews (The Big Book on Small Heat-Shock Proteins, Chapter 1, 2015 and Garrido et al. 2012)

and mRNA levels (Vos et al. 2009)

¢ From The Big Book of Small Heat-Shock Proteins, Chapter 1.
9 From Mymrikov et al. (2017), where Yes denotes significant ability to suppress aggregation in 6 of 6 model

substrates

2013; Arrigo 2013). sHSPs therefore appear to act within a
two-tiered specialist-generalist framework, with a majority
seemingly adopting specialist functions under physiological
conditions. It is as yet unclear whether specialists evolved
from generalists, or vice versa. However, it is clear that
sHSPs from both types are implicated in human diseases —
alterations to certain genes or expression levels are associated
with myopathies, neuropathies, cataract, neurodegenerative
disease, and cancer (Kakkar et al. 2014; Bakthisaran et al.
2015; Treweek et al. 2015). sHSP-targeted therapeutics are a
potential treatment avenue (Salinthone et al. 2008; Henning
and Brundel 2017), and their development requires in-depth
analyses of the interactions underlying these phenotypes.
Thus, an improved understanding of the specialist role of the
sHSPs — and with it, their interactors — is potentially of bio-
medical as well as purely biological interest.

Terminology has been proposed to distinguish between
sHSP interactors that are destabilized under stress and those
that are bound physiologically by referring to these as sub-
strates and clients, respectively (Strauch and Haslbeck 2016),
although the boundaries between the two are not always clear.
In muscle for example, which expresses the greatest variety of
sHSPs in humans (Table 1), several sHSPs interact with cyto-
skeletal components and associated proteins (Mounier and
Arrigo 2002; Bennardini et al. 1992; Houck and Clark 2010;
Wau et al. 2017; Tessier et al. 2003). In striated muscle, many
also colocalize with the sarcomere, the basic unit of muscle
contraction (Mercer et al. 2018; Golenhofen et al. 2004).
These interactions have been reported under basal conditions
as well as following oxidative, thermal, and mechanical stress
(Koh and Escobedo 2004; Pivovarova et al. 2007; Golenhofen
et al. 1999; Shimizu et al. 2016; Ke et al. 2011). They are not

yet understood with enough clarity at the molecular level to
know whether the sHSPs are targeting native-like proteins in a
client-based mechanism, or misfolding proteins in a substrate-
based mechanism (Seit-Nebi et al. 2013). Whichever the case
may be, these interactions play critical roles in the mainte-
nance of cytoskeletal and muscle structural integrity
(Wettstein et al. 2012; Liao et al. 2017; Dreiza et al. 2010),
with disruption leading to cardiac and skeletal myopathies
(Henning and Brundel 2017; Inagaki et al. 2006;
Kumarapeli et al. 2010; Juo et al. 2016; Unger et al. 2017).

Another prominent class of in vivo sHSP interactors is
other sHSPs themselves. Dynamic oligomerization is a com-
mon feature of the protein family (Fig. 1b). While most olig-
omeric proteins related by gene duplication do not co-
assemble (Hochberg et al. 2018); hetero-oligomerization is
common among human sHSPs (Mymrikov et al. 2012;
Arrigo 2013; Bakthisaran et al. 2015; Fontaine et al. 2005).
This implies an evolutionary constraint in the form of shared
function, meaning not only do individual sHSPs perform spe-
cialist roles, but the complexes they form may do so as well.
The hypothesis is bolstered by tightly balanced constitutive
tissue co-expression profiles (Vos et al. 2009; Sugiyama et al.
2000). Disease-linked mutations have been observed to affect
heteromerization (Weeks et al. 2018; Simon et al. 2013;
Morelli et al. 2017), but this area remains largely unexplored.
Elucidating the functional purpose and biophysical determi-
nants of co-assembly is a key aim for the sHSP field.

Dynamic structure

Structural characterization of sHSPs has proven challenging
due to their high degree of plasticity at several levels of protein
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organization. At the quaternary level, many sHSPs can popu-
late multiple stoichiometries at once (McHaourab et al. 2009;
Basha etal. 2012). This is commonly termed “polydispersity,”
as opposed to “monodispersity,” where a protein adopts a
single quaternary organization. Here, “more” or “less” poly-
disperse will refer to the relative breadth of stoichiometric
distributions.

sHSP polydispersity is dynamic, involving the continual
recycling of subunits (Aquilina et al. 2003; Bova et al.
2000). It is also tuneable: in non-metazoa and plants, they
are usually monodisperse under non-stressed conditions and
become polydisperse with heat stress (The Big Book on Small
Heat Shock Proteins 2015). This has enabled structural char-
acterization of several sHSP oligomers by X-ray crystallogra-
phy from yeast, wheat, archaea, and bacteria (Strauch and
Haslbeck 2016). These structures reveal polyhedral or
stacked-ring arrangements composed of dimeric building
blocks.

Stress-inducible human sHSPs are highly polydisperse un-
der basal conditions. HspBS, for example, forms oligomers
ranging from 10 to almost 50 subunits (Hochberg and
Benesch 2014). Consequently, these have not yet been fully
structurally characterized at high resolution, since their plas-
ticity hampers many biophysical techniques that require ho-
mogeneity or report on ensemble averages (Basha et al. 2012).
Truncated, and as a result less polydisperse, forms of the pro-
teins have yielded several partial X-ray structures of dimers.
HspB6 does not assemble beyond a homo-dimer in its full-
length form, and is the only human sHSP that has been crys-
tallized without truncation (Sluchanko et al. 2017). The cor-
responding structure, in complex with a binding partner, is
missing approximately a third of each subunit chain due to
high flexibility, making it very similar to truncated structures
of other members of the family (Sluchanko et al. 2017). The
quaternary organization of vertebrate sSHSPs is susceptible to
change not just upon heat stress, but also posttranslational
modification (PTM), which is very rarely observed in sHSPs
across plants, bacteria, archaea, or fungi (Garrido et al. 2012).

sHSPs assemble via a hierarchy of oligomeric interfaces
(Fig. 2a). The «a-crystallin domain (ACD), which is highly
conserved and defines the family, is located in the middle of
the primary sequence and adopts a relatively stable 3-strand-
rich tertiary structure (Hilton and Benesch 2012). The sHSP
dimer, the basic unit of assembly, forms via 3-strand pairing
within the ACD. (3-strands are conventionally numbered, with
metazoan sHSPs dimerizing via a combined and extended
[36 + 7 -strand in an antiparallel (AP) arrangement in all struc-
tures observed to date (Fig. 2a) (Haslbeck et al. 2016; Treweek
etal. 2015). This interface is not especially rigid; in the case of
HspB5, the ACD-ACD binding affinity is in the low micro-
molar range, and several distinct registers have been observed
in X-ray structures (AP}, APy, APyyp) (Fig. 2b) (Hochberg et al.
2014).
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The ACD is flanked by a disordered N-terminal domain
(NTD) and a shorter but similarly flexible C-terminal region.
The C-terminus is critical for higher order oligomerization.
The shortest C-termini are found in the least polydisperse
members of the family (Weeks et al. 2014; Boelens et al.
1998); longer C-termini bridge ACD dimers by binding a
groove between strands 34 and 38 via a conserved motif,
which consists of three residues I-X-I (in some sHSPs, valine
replaces one or both isoleucine) (Fig. 2a) (Hilton and Benesch
2012). Finally, inter-subunit interactions involving the NTD
with another NTD or ACD have been observed (Jehle et al.
2011; McDonald et al. 2012). These are particularly affected
by phosphorylation, which seems to occur exclusively within
this domain (Garrido et al. 2012; Heirbaut et al. 2017).

Variability across the three regions of human sHSPs, but
particularly the termini (Kriehuber et al. 2010), is believed to
underlie differences in target recognition both directly through
sequence motifs, and indirectly through modulation of quater-
nary structure and dynamics. Although there is still much to
learn about their mechanisms of action, a clear portrait has
emerged of a sHSP system that is finely tuned to aid in ad-
dressing the cellular need to maintain a healthy proteome.
Constitutive expression, broad interactomes, and rapid mech-
anisms of energy-independent responsiveness suggest a range
of functions from physiological to pathological conditions.
Their complexity of structure and function poses many exper-
imental challenges; thus, methods that can tolerate heteroge-
neity are particularly useful for disentangling sHSP behavior.

A role for sHSPs in mechanical stress

Two main lines of evidence support the idea that sHSPs may
play a role in cellular responses to mechanical stress. The first
is indirect: patterns of sHSP expression and subcellular local-
ization suggest biomechanical relevance. sHSPs have been
found to colocalize with and bind to components of the cyto-
skeleton and other proteins involved in muscle function and
responses to mechanical stress. sHSP expression has also been
found to be relatively high in cells that populate particularly
stiff (e.g., spinal cord, skeletal muscle) or continually moving
(e.g., heart, diaphragm, developing tissues) microenviron-
ments. The reasons for these colocalization and expression
patterns have been presumed to relate to the sHSPs’ role in
preventing protein aggregation. The second line of evidence
comprises direct links between sHSP functions and pathways
involved in sensing and responding to mechanical cues.
Building on prior reports of colocalization with direct obser-
vation of a sHSP in a stress-response role, our laboratory and
collaborators confirmed the interaction of a sHSP (HspB1)
with a protein important in musculoskeletal mechanosensing
— the actin-binding protein filamin C (FLNC). We elucidated
molecular determinants of this sSHSP-client interaction and
showed that both proteins are upregulated in the context of
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both acute and chronic biomechanical stress in heart tissue.
Below, we briefly highlight evidence supporting sHSP action
as mechanical stress sensors, and then summarize our findings
on the HspB1-FLNC interaction.

Evidence for sHSPs as mechanoresponsive
chaperones

sHSPs affect muscle contraction and elasticity and colocalize
with various proteins that are key components of the cytoskel-
eton, including actin, titin, and intermediate filament proteins.
These interactions have been shown to increase following
mechanical loading on cells or tissues, often with accompany-
ing modification of the sHSPs.

HspB1 and HspBS5 colocalize with various types of inter-
mediate filaments. HspB1 associates with vimentin (Lee et al.
2005). Vimentin filaments are highly elastic, and can with-
stand larger deformations than actin and microtubules, which
helps them protect the nucleus during cell migration (Patteson
et al. 2019). Whether HspB1 binds dynamic vimentin and
affects its capacity for mechanical protection is unknown,
and would be of interest to investigate. HspB1 also associates
with keratin, which remodels extensively in response to rou-
tine mechanical stress experienced by the outer epidermal lay-
er (Kayser et al. 2013).

HspBS3, and to a lesser degree HspB1, associates with glial
fibrillary acidic protein (GFAP), the major intermediate fila-
ment protein in astrocytes. GFAP is important for cell shape,
strength, and motility; and is expressed at lower levels in as-
trocytes in the brain compared to higher levels in spinal cord

a
$2  p3 B4 Bs p6+7

astrocytes, which need to be stiffer (Gorter et al. 2018). HspB5
also associates with desmin, an intermediate filament protein
specific to striated muscle. HspB5 mutation R120G is linked
to hereditary skeletal muscle desminopathy, which can also be
caused by mutations in the DES gene. The disease features
large desmin-containing aggregates in muscle tissue that are
positive for HspB5 and HspB1 (Clemen et al. 2013).

Many sHSPs have been implicated in actin binding and in
modulation of the dynamics of actin polymerization into mi-
crofilaments. Reports of this aspect of sHSP activity have at
times conflicted with one another, and our understanding con-
tinues to be refined. HspB1 affects actin polymerization
in vitro in a phosphorylation-dependent manner, pointing to
a direct interaction (Mounier and Arrigo 2002). Mechanically
stressing fibroblasts through cyclical stretch activates p38
MAPK signaling, leading to HspB1 phosphorylation and its
recruitment to actin structures at the sites of highest traction
force (Hoffman et al. 2017). Similar observations of recruit-
ment to actin fibers have been reported for HspBS, through
testing the effects of heat stress (Singh et al. 2007; Yin et al.
2019). Both HspB1 and HspBS5 associate with myotube-
specific actin bundles (Sugiyama et al. 2000).

HspB6, conversely, was at one time believed to bind actin
but has since been postulated to instead affect the cytoskeleton
indirectly via its interaction with 14-3-3 proteins, particularly
in smooth muscle (Seit-Nebi and Gusev 2010). HspBS also
exerts indirect effects on actin structures in conjunction with
its binding partner BAG3, as discussed in more detail below.
Most recently, an actin-related role has emerged for HspB7:
cardiac-specific HSPB7 KO is lethal in mouse embryos, with

g8 p9 1-X-1
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N-terminal domain

b

Fig. 2 Structural regions of sHSPs and hierarchy of assembly. a. The
primary sequence encodes three domains: a central (3-sheet rich ACD
flanked by N- and C-terminal regions. Truncating the termini (faded
regions) reduces polydispersity and facilitates crystallization. b. X-ray
structure of the HspB5 ACD and partial C-terminus, showing 4 mono-
mers (Laganowsky et al. 2010). The ACD dimerizes via an antiparallel
(AP) interface between strands (36 + 7. The C-terminus bridges dimers by

a-crystallin domain

C-terminus

docking into a groove between strands (34 and 38 via the I-X-I motif
(sticks; in HspBS5, X = proline). ¢. The contacts comprising the AP inter-
face may shift under different conditions, evidenced by the observation of
three registers of the HspBS dimer by X-ray crystallography (PDB IDs
3L1G, 2WJ7, 4M5S). Multiple registers of the HspB1 ACD dimer have
also been captured in X-ray structures (H. Gastall, unpublished)
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abnormally long actin filaments and aberrant bundles leading
to disorganized sarcomeres (Wu et al. 2017). Loss of HspB7
also leads to upregulation of Lmod2, an actin-nucleating pro-
tein that contributes to cardiomyocyte force generation (Wu
et al. 2017). HspB7 may therefore interact with Lmod2, or be
able to partially compensate for it in somehow surveilling the
initial assembly of actin-based structures under force. The
molecular features of sHSP interactions with actin and mac-
romolecular actin-based structures, and how they are altered
by the forces exerted on actin filaments in vivo, will be an
interesting area of future work.

In addition to sarcomeric actin filaments, the large, elastic
sarcomeric protein titin is known to be a target of HspB1 and
HspB5. These associations were first confirmed following
ischemic stress (Golenhofen et al. 2002), and later mechanical
perturbation by subjecting mouse skeletal muscle to cycles of
extension and contraction (Koh and Escobedo 2004). Titin
binding by HspB1 and HspBS5 has since been confirmed in
patient samples exhibiting a variety of skeletal muscle myop-
athies (Unger et al. 2017). While studies have tended to focus
on the translocation of sHSPs to titin following major stress,
HspBS in particular also affects the mechanical properties of
recombinant titin segments in vitro that have not undergone
prior conformational disruption (Bullard et al. 2004; Zhu et al.
2009). As for actin, structural characterization of sHSP-titin
interactions under different force regimes will be informative
to better understand these processes.

Tension-related functions of sHSPs

Beyond expression profiles and binding partners, observations
that sHSPs can directly alter cellular functions involving biome-
chanical force transduction and regulation — such as cell adhe-
sion and mitotic spindle alignment — strengthen the case for their
involvement in responses to mechanical stress. In the context of
cellular adhesion, a reduction in HspB1 in tumoral breast cells
or of HspBS5 in glioma cells led to reduced cell adhesiveness, as
well as other effects downstream of cytoskeletal rearrangement
such as altered morphology (Loones et al. 2000). The impor-
tance of HspB5 for cell adhesion was reinforced in a more
recent study, which emphasized that stress was not a prerequisite
for this function. HspB5 knockdown causes both glial and myo-
blast cells to migrate faster in 2D culture as a result of being less
adherent. The phenotype is sensitive to actin and tubulin depo-
lymerization, and features changes in the position and possibly
the turnover of vinculin, a critical protein linking cell adhesion
complexes to actin stress fibers (Shimizu et al. 2016). Thus
future work will delineate the direct and downstream mecha-
nisms by which HspBS5 affects adhesiveness, and how these
may overlap with HspB1, which has a similar effect on the
migration of NIH3T3 fibroblasts (Lee et al. 2008). These mech-
anisms may also yield insight into the unclear physiological
roles of sHSPs in development (Dubinska-Magiera et al.
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2014); a period when proper cell migration and positioning is
heavily guided by mechanotransduction cues (Haack and
Abdelilah-Seyfried 2016).

HspB5 also safeguards cardiomyocytes through a direct
interaction with focal adhesion kinase (FAK). FAK mediates
the stretch response and protects against apoptosis in
cardiomyocytes, but it can be cleaved by calpains and lose
this function. HspB5 binds FAK in a cell-stretch-dependent
manner, shielding it from proteolysis; the HspB5-FAK inter-
action was barely detected in the absence of mechanical stress.
Levels of FAK remained the same before and after the cellular
stretch response, which resulted in HspBS phosphorylation.
These effects were validated in vivo by analysis of the hearts
of transgenic mice. Altogether, these findings point to a
mechanosensitive mechanism for HspB5 at the molecular
scale (Pereira et al. 2014).

Mechanotransduction occurs in widespread cellular pro-
cesses. During cell division, force sensing is required for the
alignment of mitotic spindles; spindles will self-assemble in a
cell extract, but without environmental cues, the orientation is
random. Fuchs et al. (2015) showed that the HspB8/BAG3
complex aids in the process of transducing the cues to position
the spindle, with depletion of HspB8 (or BAG3 or p62)
resulting in disorganized chromosome retraction fibers, which
normally exert pulling forces on the spindle. Biochemical
stiffening of the mitotic actin cortex rescued the phenotype.

Whereas its function in spindle alignment was described in
HeLa cells and may occur in a variety of cell types, the
HspB8/BAG3 complex also plays a specific role in muscle
tissue. In concert with Hsp70, HspB8 and BAG3 are required
for the only known autophagic pathway induced by external
tension, termed chaperone-assisted selective autophagy
(CASA) (Arndt et al. 2010). CASA helps to maintain the
integrity of the sarcomeric Z-disk by recognizing mechanical-
ly damaged filamin, an actin-binding protein, and releasing it
from the sarcomere for degradation (Ulbricht et al. 2013).
BAG3 performs a range of functions in protein quality con-
trol, through interactions with multiple proteostasis factors
including Hsp70 chaperones, ubiquitin ligases, autophagy re-
ceptors, and trafficking cargo (Klimek et al. 2017). Any in-
volvement of BAG3 in force-mediated quality control path-
ways described to date, however, requires HspBS.

HspB1 interacts with filamin C
in a phosphorylation-dependent
and mechanosensitive manner

As discussed above, the sHSPs are frequently associated with
both cytoskeletal proteins (Robinson et al. 2010; Snoeckx et al.
2001) and with other cellular machinery that enables muscle
contraction (Golenhofen et al. 2004), suggesting that SHSP-
client interactions may play a role in mechanosensitivity. To
test this hypothesis, we conducted a detailed analysis of an
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sHSP-client pair — HspB1 and filamin C (FLNC) — that was
previously reported to potentially interact in vivo.

Filamins are involved in cellular signaling, motility and
differentiation, and cytoskeletal organization (Razinia et al.
2012). Human filamins exist as homodimers with a molecular
weight of about 280 kDa, with each monomer consisting of an
actin-binding domain at the N-terminal and 24 immunoglob-
ulin (Ig)-like domains. FLNC is found in striated muscle and
associates with thin filaments of sarcomeric actin (van der Ven
etal. 2000). Alterations of the FLNC gene have been linked in
humans to skeletal myopathies, and to cardiac abnormalities
and pathologies (Furst et al. 2013; Ortiz-Genga et al. 2016;
Brodehl et al. 2016). There is evidence that FLNC can sense
local force (Sutherland-Smith 2011; Lad et al. 2008; Fujita
et al. 2012), though the mechanism by which it does so is
not yet fully elucidated.

HspBl1 is also generally highly expressed in striated mus-
cle. Results from a yeast two-hybrid assay first indicated that
HspB1 may interact with FLNC (van der Ven et al. 2006).
HspB1 has also been found to be prevalent in protein aggre-
gates collected from patients with skeletal myopathies caused
by FLNC mutations (Kley et al. 2013) and colocalizes at sar-
comeric lesions with FLNC (Chevessier et al. 2015), suggest-
ing that it may associate with FLNC during stress. Based on
reports that HspB1 is phosphorylated in response to mechan-
ical cues in cells and tissue, we also had reason to suspect this
modification may be important for modulating the interaction
of HspB1 with mechanosensitive clients such as FLNC.
Phosphorylated HspB1 translocates to the sarcomeric Z-
discs in striated muscle (Koh and Escobedo 2004; Hu et al.
2017) and to tension-bearing cytoskeletal fibers in fibroblasts
(Hoffman et al. 2017).

We explored in more depth the interaction between HspB1
and FLNC, and the role that HspB1 phosphorylation plays in
modulating that interaction (Collier et al. 2019). We con-
firmed, using immunoblotting and immunoprecipitation, that
HspB1 and FLNC are upregulated and interact in mouse
hearts subjected to biomechanical stress (Collier et al. 2019).
This upregulation was consistently observed in hearts subject-
ed to three different models of biomechanical stress (disease,
chemical treatment and mechanical treatment) (Fig. 3a). We
also found that HspB1 undergoes phosphorylation in the
stressed heart, and that this results in structural rearrangements
within HspB1 in vitro that make its FLNC-binding region
more flexible and thus accessible (Collier et al. 2019).

To recreate experimentally the mechanical forces FLNC
undergoes in cells, we applied a coulombic force-unfolding
approach where mass-selected molecules are extended, isolat-
ed in vacuum. The unfolding experiment allowed us to ob-
serve how the phosphorylated region of HspB1 affects FLNC
extension, despite phosphorylation having no measurable ef-
fect on affinity to FLNC without extension (Fig. 3b). We
found that HspB1 phosphorylation inhibited a partially

unfolded form of FLNC from unfolding further, potentially
protecting it from over-extension during mechanical stress.
Phosphorylated HspB1 peptide bound FLNC and modulated
its unfolding while the same peptide, when unphosphorylated,
bound FLNC but had no effect on unfolding (Fig. 3c). The
phosphorylated peptide also remained bound to FLNC do-
mains longer through their unfolding trajectory than when
unphosphorylated (Fig. 3d).

Altogether, our results demonstrate that HspB1 has an im-
portant role in regulating how FLNC responds to mechanical
stress — a role that goes beyond preventing aggregation of an
already misfolding population of a protein. Further questions
to explore in the context of the HspB1-FLNC interaction in-
clude whether the interaction depends on the rate of force
loading on FLNC, and how HspB1 phosphorylation may af-
fect FLNC stability and turnover in vivo. It has also been
reported that HspB7 binds to FLNC, though at a different site
(Juo et al. 2016); this raises the question of why multiple
sHSPs would be targeted to a mechanosensing protein, and
whether hetero-oligomerization plays a role. Finally, it will be
informative to explore how the “molecular decision” is made
whether to protect FLNC with HspB1 or target it for degrada-
tion via chaperone-assisted selective autophagy involving the
HspB8/BAG3 chaperone complex.

Conclusion

In this chapter, we have presented an overview of the sHSPs,
including their function, interactors and dynamic structure.
We have also outlined evidence of specialist, rather than gen-
eralist, functions for sHSPs in responding to mechanical
stress. This evidence encompasses over two decades of reports
that sHSPs colocalize with proteins involved in bearing and
transducing mechanical cues, and that sHSPs are functionally
implicated in mechanical stress responses. We have also sum-
marized the recent discovery of phosphorylation and upregu-
lation of HspB1 in the hearts of a mouse model of heart failure
alongside an interaction with FLNC, pointing to a force-
dependent mode of strengthened client binding upon HspB1
phosphorylation.

A proposal for force-focused proteostasis research

Overall, we do not believe that the totality of sSHSP functions
in mechanical stress can be entirely explained by prevention
of protein aggregation or by modulating the kinetics of cyto-
skeletal (de)polymerization. In our view, emerging findings
indicate that further study of sHSPs with putative
mechanosensing interactors could be highly revealing. Such
exploration, taking advantage of increasingly sensitive exper-
imental techniques that allow protein-protein interactions to
be quantified under the application of force, would likely
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Fig. 3 Phosphorylated HspB1 modulates the extension of FLNC with
implications for cardiac function under mechanical stress. a. Western
blots of FLNC, HspB1, and GAPDH as loading control from mouse
hearts reveal upregulation of both proteins following mechanical stress.
WT = wild-type; KO = muscle LIM protein knockout, a transgenic model
of biomechanical dysfunction; Sh =sham surgery control; TAC =
transverse aortic constriction; S =saline control; IsoPE = isoprenaline/
epinephrine treatment. b. Measurement of FLNC domains 18-21 binding
to peptides derived from HspB1 residues 80-88, without and with

uncover novel mechanisms of protein quality control and con-
formational surveillance. In addition, cell- and tissue-scale
screens seeking sHSP mechanical stress roles, and associated
binding partners in refolding and disposal pathways, could
uncover instances of specialized activity that have evaded

Pathological

phosphorylation at Ser§2. ¢. Coulombically steered unfolding of FLNC
domains 18-21 bound to a single HspB1 peptide, unmodified (top) or
phosphorylated (bottom). Lines designate the activation required to tran-
sition half of an intermediate FLNC state to a more unfolded state, which
is delayed when bound to HspB1 phosphopeptide. d. Schematic of force-
induced changes to FLNC captured by coulombic unfolding, in relation to
full-length FLNC, HspB1 peptide binding, and HspB8/BAG3 mediated
clearance. This figure is derived from Collier et al. 2019 (DOI: https://doi.
org/10.1126/sciadv.aav8421), licensed under CC BY 4.0

detection without accounting for tension dependence. Lastly,
these functions raise the question of whether sHSPs them-
selves, in addition to their binding partners, access function-
ally relevant force-dependent conformations. It would be in-
teresting to turn to single molecule techniques, for example,
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and test whether force magnitudes and rates affect sHSP client
binding or the registers and affinities of sHSP oligomeric in-
terfaces. The results could demand that we rethink our under-
standing of the role and activities of sHSPs and, given reports
of other interactions between HSP family proteins and clients
unfolded by force (Mashaghi et al. 2016; Perales-Calvo et al.
2018; Simoes-Correia et al. 2014), potentially enlighten our
understanding of the specific roles molecular chaperones play
in mechanically responsive cells.

A framework for categorizing sHSP function

Bringing together the broader literature on the processes in-
volving sHSPs, we conceptualize their function in a frame-
work that encompasses a multitude of roles from physiolog-
ical to pathological conditions. This landscape can be
subdivided coarsely into four quadrants (Fig. 4). Under min-
imal stress, when most proteins in the cell can be presumed to
populate their native states, SHSPs are primarily engaged in
specialist client-binding (lower left). Also in the specialist
descriptor, we include self- and co-assembly, since these in-
teractions are both native-state and precise (lower right).
With mounting stress, the proteome becomes increasingly
destabilized. Some sHSPs then adopt generalist roles, se-
questering misfolded substrates in contained membraneless
inclusions (upper right) or forming soluble complexes with
themin orderto prevent cascades to amorphous aggregates or
amyloid fibrils in canonical holdase fashion (upper left).

Thus, the left and right division arises between func-
tions that serve to prevent interactions that should not
occur (left) and ones that facilitate interactions that are
protective (right); for example, oligomerization can shield
promiscuous interfaces when they are not needed. Certain
sHSPs cover more of this landscape than others, and bio-
chemical changes — to the environment or in the form of
protein modification — can shift their focus between quad-
rants. Of particular note are native partner sHSP interac-
tions, which have received little mechanistic attention
compared to roles fitting the generalist paradigm. We
place biomechanical systems in the preventative-client
quadrant, and note that the term ‘"native’ as it applies to
these systems must account for the routine structural dis-
tortions induced by physiological force, which may bridge
a biophysical gap between misfolding substrates and more
rigid clients. Studies from our laboratory and others, as
well as sHSP abundance in muscle and implications in
musculoskeletal pathologies, strongly hint at the existence
of other clients that may fit into this piece of an expanded
sHSP paradigm.
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