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Population-Specific Recombination Maps
from Segments of Identity by Descent

Ying Zhou,1,* Brian L. Browning,2 and Sharon R. Browning1,*

Recombination rates vary significantly across the genome, and estimates of recombination rates are needed for downstream analyses

such as haplotype phasing and genotype imputation. Existing methods for recombination rate estimation are limited by insufficient

amounts of informative genetic data or by high computational cost. We present a method and software, called IBDrecomb, for using

segments of identity by descent to infer recombination rates. IBDrecomb can be applied to sequenced population cohorts to obtain

high-resolution, population-specific recombination maps. In simulated admixed data, IBDrecomb obtains higher accuracy than admix-

ture-based estimation of recombination rates. When applied to 2,500 simulated individuals, IBDrecomb obtains similar accuracy to a

linkage-disequilibrium (LD)-basedmethod applied to 96 individuals (the largest number for which computation is tractable). Compared

to LD-based maps, our IBD-based maps have the advantage of estimating recombination rates in the recent past rather than the distant

past. We used IBDrecomb to generate new recombination maps for European Americans and for African Americans from TOPMed

sequence data from the Framingham Heart Study (1,626 unrelated individuals) and the Jackson Heart Study (2,046 unrelated individ-

uals), and we compare them to LD-based, admixture-based, and family-based maps.
Introduction

Crossover recombination of chromosomes is essential for

proper chromosome disjunction during meiosis. Recombi-

nation rates vary across the genome, tending to increase

with decreasing chromosome length,1 increase near the

telomeres, particularly in males,2 increase in regions with

high GC content,2 and increase in hotspots,3 many of

which are associated with the PRDM9 motif.4 Recombina-

tion rates differ significantly between female and male

meioses,1 although sex-averaged maps are suitable for

many analyses that involve historical recombination,

including estimation of demographic history,5,6 estima-

tion of mutation rates,7–9 estimation of haplotype

phase,10–12 genotype imputation,13,14 and inference of

local ancestry in admixed genomes.15–17 Recombination

rates also differ by age2,18 and by individual.18,19

There are four primary existing approaches to recombi-

nation rate estimation. The first is analysis of family

data.2,18,20,21 In order to estimate recombination rates at

high resolution, extremely large numbers of meioses are

required. One of the largest sources of such meioses is

the deCODE Icelandic data.2 Advantages of the family-

based approach are that it can estimate sex-specific rates

and that it allows investigation of individual-specific fac-

tors influencing recombination rates.2,18 A disadvantage

is that the large family databases required by this approach

are rare, so population-specific rates are not available for

most populations.

A second approach is sperm typing, with recombination

events identified by comparing haplotypes between sperm

cells obtained from the same individual. This approach can

be used to locate recombination hotspots22,23 and
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construct individual genome-wide recombination maps

in males.24,25

A third approach uses admixed genomes such as those

from African Americans.26,27 The local ancestry (i.e., conti-

nental origin of the genetic material at each point in the

genome) is inferred, and positions of change in local

ancestry are positions at which post-admixture recombina-

tion has occurred. This approach can use data from

unrelated individuals, and each individual provides infor-

mation from multiple meioses. One limitation of this

approach is that it is only applicable to admixed

populations. A second limitation is that it utilizes only

post-admixture meioses, which for recently admixed pop-

ulations such as African Americans is around ten meioses

per individual, reducing resolution of the inferred maps

unless sample sizes are very large. A third limitation is

that it relies on local ancestry calls which can be inaccurate

in some cases.28,29

A final approach uses population samples to infer

average past rates of recombination all the way back to

the common ancestors of the samples. Some suchmethods

are based on the coalescent with recombination or an

approximation to it and fit the model to the full genotype

data.30–34 Other methods are based on summary statistics

that capture aspects of linkage disequilibrium (LD) be-

tween loci. Some of the LD-based summary statistic

methods apply population genetic modeling and likeli-

hood-based inference,35–40 while others are based on pop-

ulation genetic simulations and machine learning.41,42 An

advantage of this class of methods is that the results are

based on very large numbers of meioses, reaching far

back into the past. However, if recombination rates have

changed over time, the estimates will be averages across
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time rather than reflecting current rates, which may be a

disadvantage for applications such as local ancestry

inference that are based on recombination in recent gener-

ations. Estimation with many of these methods is compu-

tationally challenging, and results can be biased when the

demographic model used for analysis or simulation is

incorrect.39,40

We present a new approach based on estimated seg-

ments of identity by descent (IBD) in population samples.

The endpoints of IBD segments are points at which past

recombination has occurred. Since the IBD segments result

from shared ancestry in the past 100 or so generations, the

estimates of recombination rates reflect recent rates while

incorporating information from a large number of meio-

ses. Our approach is computationally efficient so that it

can be applied to samples of thousands of individuals,

resulting in highly precise estimates.When applied to sam-

ples from distinct populations, our approach provides pop-

ulation-specific sex-averaged rates of recombination.
Material and Methods

Method Overview
IBD segment endpoints are positions of past recombination

events. The density of endpoints of IBD segments originating

from common ancestors more recent than a reference time point

is thus proportional to the recombination rate. We use this rela-

tionship to estimate relative recombination rates based on the

endpoints of IBD segments.

There are two main challenges that must be addressed: inaccu-

rate estimation of IBD endpoints and the unknown time to the

most recent common ancestor. Because of genotype error and

phasing error, IBD segment endpoints can be incorrectly deter-

mined. In our method, we apply a gap-filling strategy to address

inaccurate IBD endpoints. When two or more IBD segments

from the same pair of individuals are separated by only a small

gap, and the gap contains very few (at most one for the analyses

presented here) discordant homozygous genotypes, we merge

the segments into a single segment.43 This strategy is very efficient

at removing incorrect IBD endpoints, even in the presence of sig-

nificant genotype error (see simulation results below) and recent

gene conversion.9

A naive algorithm for IBD-based recombination rate estimation

would simply count the ends of all reported IBD segments in an

interval. However, when we detect an IBD segment, we don’t

generally know the number of generations to the most recent

common ancestor. In some regions we may detect IBD segments

due to more distant ancestry, leading to higher rates of detected

IBD segments, and thus higher estimated recombination rates in

those regions. If the lengths in centimorgans (cM) of the segments

were known, we could filter the IBD segments by length, as a

proxy for age, and thus obtain uniform rates of detected segments

across the genome. But when the true recombination map is un-

known, the cM lengths of the segments cannot be used as a

filtering criterion. In the next paragraph we describe our approach

which avoids this problem.

Our ideal data would include all IBD segments with cM length

greater than some threshold. In such data, the distribution of

ages of segments would be the same (except for sampling varia-
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tion) at each point in the genome, and hence the rate of IBD end-

points along the genome would be equal in terms of cM distance

and would thus allow estimation of recombination rates. Since we

cannot obtain such data without knowing the recombination

map, we use an iterative approach. Given the current estimate of

recombination rates across the chromosome (the initial estimate

has a constant rate of recombination per basepair), we obtain esti-

mated cM lengths of all IBD segments. We then selectively remove

shorter segments in regions with higher rates of IBD segments un-

til IBD coverage across the chromosome is approximately equal.

To achieve this coverage equalization, we first divide the chromo-

some into intervals of equal physical length and place within each

interval the IBD segments that cover all or part of the interval. We

determine the smallest number of IBD segments in any interval,

and we remove the shortest (in estimated cM length) IBD seg-

ments from each interval to reduce the number of segments in

the interval to that smallest number. After this procedure, each in-

terval contains the same number of IBD segments (Figure 1). After

the coverage equalization, we count the remaining IBD endpoints

within each interval to estimate the relative recombination rate

for the interval. We repeat the procedure using the updated esti-

mates of recombination rate. We find that 20 iterations suffice

for accurate estimation.
Counting IBD Ends to Estimate Recombination Rates
The IBD coverage of an interval (a genomic region of specified

physical length) is the number of IBD segments covering the inter-

val. IBD segments that partially cover the interval contribute a

fractional value to the coverage equal to the proportion of the in-

terval covered. The coverage is calculated for each interval, and the

minimal value is determined. Then, in each interval, the segments

with shortest cM length are removed until removing an additional

segment from the interval would reduce the coverage below this

minimal level. An IBD segmentmay be removed from one interval

but retained in another.

We use a constant recombination rate (1 cM/Mb) to initiate the

iterative estimation procedure. In each iteration, we re-estimate

the cM lengths of the IBD segments using the current recombina-

tionmap, and we re-apply the coverage threshold.We then update

the recombination rates for each interval based on the number of

IBD endpoints located in the interval:

Ri ¼ XiP
Xj

L

B
(Equation 1)

For the ith interval, Ri is the estimated recombination rate and Xi

is the number of IBD segment endpoints in the interval (thus
P

Xj

is the number of IBD segment endpoints across all intervals). L is

the cM length of the chromosome, and B is the physical length of

the interval (which is the same for each interval). The cM length of

the chromosome is obtained from an external source such as a

family-based recombination map.

In order to improve convergence, we use the average of the two

previous estimates as the input recombination map to the next

iteration (starting with the third iteration).
Estimation at Chromosome Ends
We need to treat the ends of the chromosome differently, because

IBD segments cannot continue beyond the end of the chromo-

some. Thus, IBD segments starting or ending at a chromosome

end are shorter on average, and fewer of these IBD segments will

be detected. This results in a lack of right ends of IBD segments
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Figure 1. An Illustration of the Procedure
for Enumerating IBD Endpoints for Recom-
bination Rate Estimation
In each iteration, IBD segments with short
estimated cM length are filtered out to
achieve the required level of IBD coverage
in the target interval, which is delineated
with vertical dashed lines. In this example,
segments in light blue are filtered out and
the three remaining IBD endpoints falling
within the interval (marked by red stars)
are counted as recombination events corre-
sponding to this interval.
in intervals near the left end of the chromosome, and of left ends

of IBD segments near the right end of the chromosome.

When estimating the recombination rate in an interval near the

chromosome end, we make several changes to the algorithm

described above. In order to describe these changes, we define

chromosome end regions and their neighboring adjunct regions

(Figure 2). The end region starts at the chromosome end and has

cM length equal to the median cM length of all IBD segments

that extend to that chromosome end, plus any additional length

required in order to have the end of this region correspond to a

breakpoint between intervals (the cM lengths are obtained from

the current estimate of the recombination map). The remaining

region between the two ending regions is the mid region. The

adjunct region corresponding to an end region immediately fol-

lows the end region (on the side toward themiddle of the chromo-

some) and has the same physical length as the end region. During

this procedure, we are not estimating the recombination rates of

the intervals in the adjunct region. Rates in this region are esti-

mated using the unmodified procedure described earlier. In what

follows, we describe the changes to the algorithm with respect

to the left end of the chromosome; the right end is analogous.

The first change is that we count only the left ends of the IBD

segments, rather than both endpoints of the IBD segments. This

is because there will be a relative lack of right ends of IBD segments

near the left chromosome end because many IBD segments that

are censored by the left chromosome end will not be detected.

In contrast, there will be no reduction in left ends of IBD segments

close to the end of the chromosome.

The second change is that we need to modify the application of

the IBD coverage threshold so that it has equal effect in all inter-

vals in the end region, regardless of how close they are to the chro-

mosome end. The left chromosome end left-censors the IBD seg-

ments that reach that chromosome end, so the visible lengths of

the segments are shorter than they would otherwise be. For inter-

vals other than the leftmost one, we can mimic this censoring by

removing those parts of IBD segments that fall beyond the left

boundary of the interval. This trimming reduces the lengths of

the IBD segments and is performed only with respect to a given in-

terval. The part of an IBD segment that is trimmed off when calcu-

lating segment lengths for one interval may be retained when

calculating lengths for another interval. Thus, for each interval,

not only for the leftmost interval, the IBD segments that intersect

the interval are left-censored by the left side of the interval. These

adjusted IBD lengths are used when excluding the shortest IBD

segments to equalize IBD coverage in each interval.
The Am
Recombination rates calculated with our method are relative.

We use a user-specified total chromosome cM length to normalize

them. Since the estimation procedure for the end region and the

mid region differ, we must put the two sets of results on the

same scale. We do this by applying the end-region procedure for

censoring IBD segments and equalizing IBD segment coverage to

the adjunct region. Since we also have IBD end counts from the

mid-region procedure for the adjunct region, we normalize the re-

sults from IBD endpoint counts for the end region by multiplying

by the ratio of the IBD end counts in the adjunct region obtained

from the mid-region and end-region methods.

Thus, for intervals in the end region, we obtain an estimate of

what the two-sided end count would be if the interval was not

affected by the chromosome end censoring:

bXE

i ¼YE
i

P
XA

jP
YA
j

where YE
i is the left-sided IBD end count for interval i in the left

end-region;
P

YA
j is the total count of left-sided IBD ends for inter-

vals in the adjunct region, applying the end-region algorithm

described in this section; and
P

XA
j is the total count of IBD

ends (left and right) for intervals in the adjunct region, based on

the original (mid-region) algorithm. The value bXE

i is the adjusted

end count for interval i in the end-region; this is used in place of

Xi in the recombination rate estimation formula (Equation 1).
Fine-Scale Estimation
We have proposed a procedure for estimating recombination rates

from IBD endpoints in the previous two sections. This procedure

works well when the number of detected IBD segments is large due

to a large sample size and the interval size is large. However, when

the interval size decreases for fine-scale estimation, the coverage

threshold tends to decrease, resulting in loss of information at small

sample sizes. We thus improve fine-scale estimation by running our

algorithm in two steps. First, we construct a recombinationmap at a

large scale, for examplewith an interval size of 500 kb.We obtain es-

timates of cM length for each large interval, and we fix these large-

scale lengths in the second step. In the second step, we divide each

large interval into many smaller sub-intervals at the desired scale.

For example, if results at a 10 kb scale are desired, sub-intervals of

length10kbareused. The estimationprocedure for these short inter-

vals is slightly modified from the algorithm described above.

For the fine-scale estimation, the IBD coverage threshold is

based on the minimal coverage of the sub-intervals within a large
erican Journal of Human Genetics 107, 137–148, July 2, 2020 139



Figure 2. Chromosome Regions for Recombination Rate Estimation
The end region has cM length equal to the median cM length of IBD segments that extend to the chromosome end, plus any additional
length required to extend the end of the region to an interval boundary. The adjunct region is next to the end region and has the same
basepair length as the end region.
interval, rather than on the minimal coverage of intervals across

the whole chromosome. The local coverage threshold tends to

be larger than the global threshold used in the large-scale estima-

tion because there is typically less variability in recombination rate

across an interval than across a whole chromosome.

After the large-scale estimation, the lengths of the large intervals

in the end region are known and it is no longer necessary to use an

adjunct region to normalize lengths in the end region. However,

we do still need to use only the one-sided IBD end counts and to

censor the IBD segments intersecting each interval when applying

the IBD coverage threshold in the end region. As in the large-scale

step, we adjust the cM lengths by trimming off that part of the IBD

segment that extends beyond the sub-interval in the direction of

the nearby chromosome end.

Within each large interval (whether within an end region or

not), we estimate the recombination rates of the sub-intervals us-

ing the formula in Equation 1, using the previously calculated cM

length of the large interval as the region length L. For intervals

that are not in the end regions, we use two-sided IBD end counts

for the Xi, while for intervals within the two end regions, we

replace these with the one-sided IBD end counts.

We have implemented this two-step procedure in the IBDre-

comb program, and the fine-scale estimation step is automatically

applied when the fine interval size parameter (for the second stage

of estimation) is set to a value that is smaller than the large interval

size parameter (for the first stage of estimation; 500 kb by default).

For all the results presented in this paper, 500 kb was used as the

interval size for the first stage of estimation, and we ran multiple

analyses with different second stage interval sizes. In each case,

the results shown for a given scale (e.g., 1 kb) correspond to ana-

lyses run with that interval size at the second stage.
Data Processing
We used a coalescent-based simulator, msprime,44 to simulate ge-

netic data under different scenarios. We set the mutation rate to

10�8 per basepair per generation in all simulations, except as

otherwise noted. We removed the phase information from the

simulated haplotypes and added genotype error. Given a genotype

error rate ε, and considering each genotype in turn, we added an

error to the genotype with probability ε. When adding an error

to a genotype, we selected one of the genotype’s two alleles at

random and changed that allele to its alternative form (all simu-

lated markers are bi-allelic). Then we filtered sites to keep those

with minor allele frequency larger than 5% and phased the data

with Beagle 5.010,14 (v.04Jun18.a80).

We applied our method to TOPMed whole-genome sequence

data from the Framingham Heart Study (FHS, downloaded from

dbGaP, phs000974.v2.p2) and the Jackson Heart Study (JHS,

downloaded from dbGaP, phs000964.v2.p1). The individuals in
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the FHS data are European Americans, while the individuals in

the JHS data are African Americans. To control genotype error,

we only used bi-allelic SNPs passing all quality filters and with mi-

nor allele frequency larger than 5%. We used Beagle 5.010,14

(v.04Jun18.a80) to infer haplotype phase for each dataset. We

then used King v2.2.245,46 to select unrelated individuals separated

by more than two degrees of relatedness. After filtering, we have

1,626 unrelated individuals in the FHS data and 2,046 unrelated

individuals in the JHS data. The purpose of removing relatives is

to improve computational efficiency. Accuracy is unchanged

when relatives are included (data not shown).

We also applied our method to data from the UK Biobank (data-

set accession: EGAD00010001497). We excluded 958 outliers

identified by the UK Biobank and 9 samples that showed third

degree or closer relationship withmore than 200 individuals (indi-

cating possible sample contamination). We also excluded the par-

ents from 850 parent-offspring trios.47 We estimated haplotype

phase using Beagle 5.0 and randomly sampled 5,000 individuals

for the IBD analysis and map estimation.

When phasing haplotypes, detecting IBD segments, and gap-

filling IBD segments, we used a 1 cM/Mb recombination rate.

The IBD segments for our method were obtained by applying

Refined IBD48 (LOD threshold ¼ 1, minimum length 300 kb)

with gap-filling (maximum gap distance ¼ 500 kb, maximum

number of discordant sites ¼ 1). The thresholds (LOD 1 and min-

imum length 300 kb) used in Refined IBD are quite low. However,

in conjunction with the gap-fill step they allow the procedure to

find as much IBD as possible, some of which will have a large

cM length and hence pass the subsequent filtering for IBD

coverage (see the next section). The low thresholds used with

Refined IBD will result in some short reported IBD segments that

are actually the conflation of several shorter IBD segments.49 How-

ever, for the purpose of estimating the recombination map, the

benefit of the increased number of IBD segments is greater than

the additional noise due to some IBD segment conflation. Use of

a larger minimum physical length for IBD segments results in

loss of accuracy (Figure S1).

The estimated recombination maps are normalized by the cM

length of each chromosome from the deCODE map, or by the

true total cM length for the simulated data. For comparison with

our maps, we lifted over the AA map26 and the AfAdm map27

from build 36 to build 37 and the deCODE map from build 38

to build 37 using the following strategy. First we converted the

target map to the bed interval and rate format, as ‘‘chr#:from-to

rate.’’ Then we lifted over using the UCSC online tool (Web Re-

sources), outputting the interval positions in bed format. We

removed intervals that failed to be converted or for which the in-

terval length changed by more than 1%. In total, 133.7 Mb was

removed from the deCODE map, 139.6 Mb was removed from

the AA map, and 283.8 Mb was removed from AfAdm map.
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Figure 3. Recombination Rate Estimation Accuracy with Different Sample Sizes
100Mbof datawere simulatedusing theHapMap II combined LDmap and a constant effectivepopulation size of 10,000. Sample sizeswere
250 (A), 500 (B), or 1,000 (C). Genotype errors were added at three different rates. The x axis gives the estimation scale (size of intervals in
which recombination rates are estimated and for which correlation coefficients are calculated). The y axis gives the Pearson correlation co-
efficient between the estimated and true recombination rates. The black dashed line shows a correlation coefficient of 0.9 for reference.
Finally, we mapped the recombination rates from each original

map to the remaining intervals in build 37. The intervals that

were removed from one or more maps were ignored when

computing the correlation coefficients between any pair of maps.
Results

Validation by Simulations

To evaluate whether our method produces unbiased esti-

mates of recombination rate, we simulated data using a

podium-like recombinationmap andwe simulated data us-

ing the first 20 Mb region of chromosome 1 from the

HapMap II combined map (Figure S2). We added genotype

error to the simulated data (Material and Methods). When

the genotype error rate is low (0.01%), the average across

100 replicates of the estimated recombination rate closely

matches the true recombination rate; at higher error rates

(0.1%–0.5%), the estimates have some bias. With high-

quality sequence data, the genotype error rate for SNPs

passing quality control filters is around 0.02%,50 so in

such data our method’s estimates are expected to be

approximately unbiased.

Although our method accounts for censoring of IBD seg-

ments at the ends of chromosomes and provides accurate

estimates of recombination rates at the chromosome

ends when the genotype error rate is very low, the esti-

mates of recombination rates are inflated at the chromo-

some ends when the genotype error rate is high. This is

because the gap-filling step to fix breaks in IBD segments

resulting from genotype errors is less effective near the

chromosome ends. In our tests, the regions with inflated

recombination rates at the ends of the chromosomes are

generally shorter than 1 Mb when the genotype error is

%0.1%. We recommend that normalization of relative

recombination rates using an external map be calculated

using the central portion of the chromosome, excluding

1 Mb on each end. For maps estimated using high-quality

data, we don’t recommend removing the end regions since

the amount of inflation is low.
The Am
We simulated additional data to evaluate the impact of

sample size and resolution on the precision of our method.

The resolution, which we refer to as ‘‘scale,’’ is the size of

the intervals in which recombination rate is estimated.

For example, with a 10 kb scale, the recombination rate

is estimated in intervals of size 10 kb, and the resulting

map has cM positions at grid points that are 10 kb apart.

We simulated 250 individuals, 500 individuals, and 1,000

individuals under a Wright-Fisher model with constant

effective population size (Ne ¼ 10,000). The recombina-

tion map used for this simulation is the Hapmap II com-

bined LD map on chromosome 1:10 Mb–110 Mb.51 Pear-

son correlation coefficients between the estimated rates

and the true rates across intervals increase for larger inter-

val sizes and larger sample sizes (Figure 3). For the largest

sample size, we obtain correlation coefficients over 0.9

for resolutions of 10 kb or greater and genotype error rates

%0.1%. With smaller sample sizes, we obtain correlation

coefficients over 0.9 for resolutions of 50 kb or greater

and genotype error rates %0.1%.

Comparison with Admixture-Based Recombination Rate

Estimation

Wesimulated genotypedata fromanadmixedAfricanAmer-

ican demographicmodel in order to compare our IBD-based

approach with RASPberry,27 an admixture-based approach,

andwithLDhat,37 anLD-basedapproach. In this simulation,

we used demographic parameters for the reference popula-

tions from previous work,43 based on a published model in-

ferred from 1000 Genomes Project data.52 Then, we created

an admixed population with 80% ancestry from the simu-

lated African population and 20% from the simulated Euro-

pean population. The admixture occurred 6 generations

before present and the admixed population grew at a rate

of 5%per generation froman initial size of 30,000.We simu-

lated 2,500 admixed individuals and 100 individuals from

each reference population (representing European ancestry

and African ancestry). RASPberry uses the reference individ-

uals to call local ancestry in the admixed individuals.
erican Journal of Human Genetics 107, 137–148, July 2, 2020 141



Figure 4. Comparing Recombination Rate Estimation Accuracy across Methods
The results are based on simulated data from an admixed population, with different levels of added genotype error: 0.01% (A), 0.1% (B), and
0.5%(C).The IBDrecombanalysisused2,500admixedindividuals, theRASPberryanalysisused2,500admixed individuals and200reference
individuals, and the LDhat analysis used 96 admixed individuals. The x axis gives the estimation scale, and the y axis gives the Pearson cor-
relation coefficient between the estimated and true recombination rates. Each end of the region was trimmed by 5 Mb before calculating
correlation coefficients.
Because RASPberry is computationally intensive, we simu-

lateda20Mbregion rather than100Mb.The recombination

map in the simulation is the HapMap II combined LDmap,

chr1:10 Mb–30 Mb.51 We added genotype errors to the ad-

mixed and reference individuals, removed variants withmi-

nor allele frequency< 5%, and phased the data with Beagle

5.0 (Material andMethods) before running the analyses.Our

IBD-based method and LDhat were applied to the admixed

data only, without the unadmixed reference individuals.

The purpose of removing low-frequency variants was to

reduce computing times. In previous analysis RASPberry

was applied to SNP array data,27 while the 1000 Genomes

LDhat maps (see Web Resources) were estimated using data

from an Illumina Omni SNP array rather than using the

low coverage sequence data. Thus, the inclusion of low-fre-

quency variants is not necessary for the successful applica-

tion of these methods.

RASPberry uses the HapMix algorithm for ancestry infer-

ence, which analyzes each admixed individual indepen-

dently and allows for parallelized computation over ad-

mixed individuals.16,27 To reduce RASPberry’s wallclock

compute time, we divided the 2,500 admixed individuals

into 250 sets of 10 individuals. We analyzed the data using

a compute server with two 6-core Intel Xeon E5-2630 2.6

GHz processors and 128 GB memory running CentOS Li-

nux. RASPberry required 20.1 cpu h on average to estimate

the ancestry switches for each set of 10 individuals, and

hence required a total of more than 5,000 cpu h. For com-

parison, our method required 11.1 cpu h (1.0 h of wall

clock time, multi-threaded) to call the IBD segments, fill

IBD gaps, and estimate the recombination map for the

whole set of 2,500 admixed individuals.

We analyzed data from 96 simulated individuals with

LDhat, which is the largest number of individuals for

which a pre-computed likelihood lookup table is available.

Generation of new lookup tables is very computationally

expensive, especially for larger sample sizes. We ran the in-

terval37 method with a block penalty of 5 and ran the
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method for 22.5 million iterations with a sample being

taken from the MCMC chain every 15,000 iterations.

The first 7.5 million iterations were discarded as burn-in.

These are the same parameters that were used in the

1000 Genomes LDhat analysis (see the README file with

the 1000 Genomes recombination maps; Web Resources).

The computing time for this analysis was 70 min.

In assessing the accuracy of the estimates, we trimmed 5

Mb from each end of the simulated region (Figure 4) before

computing the Pearson correlation coefficient between the

estimated and true recombination rates, because accuracy

is reduced near chromosome ends (results without this

trim are shown in Figure S3). Estimates from our IBD-based

method (IBDrecomb) have much higher correlation than

RASPberry with the true recombination rates at all scales,

and slightly higher correlation than LDhat with the true

rateswithin the trimmedregionat scales above5kbforgeno-

type error rates of 0.01%and0.1%andan end trimof at least

1Mb(Figure S3). For example,with the5Mbtrimof the ends

of the region, at a 10 kb scalewith 0.01% error, ourmethod’s

estimates have a correlation coefficient of 0.92, LDhat’s esti-

mates have a correlation coefficient of 0.90, and RASPberry’s

estimates have a correlation coefficient of 0.67. RASPberry’s

accuracy may be lower since it can only use recombination

events that occurred after admixture. When not applying

any trim (Figure S3), IBDrecomb is less accurate than LDhat,

indicating that LDhat has superior performance at the ends

of the analyzed region due to errors in estimating IBD end-

points at the ends of the chromosome. However, results for

IBDrecomb with a 1 Mb trim are indistinguishable from

those with a 5 Mb trim, indicating that a 1 Mb trim is suffi-

cient. For RASPberry, in contrast, results with a 1 Mb trim

are inferior to those with a 5 Mb trim.

An IBD-Based Fine-Scale Recombination Map for the

Framingham Heart Study Data

We compared our map estimated from the TOPMed Fra-

minghamHeart Study data (the FHS map) to three existing
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Figure 5. Estimated European Recombination Rates around
chr1:100 Mb
Shown are (A) 20 Mb at 100 kb scale, (B) 2 Mb at 10 kb scale, and
(C) 200 kb at 1 kb scale. The three maps represent three different
methods: pedigree-based (deCODE), LD-based (CEU from the
1000 Genomes Project), and IBD-based (FHS). Positions on the x
axes are in build 37 coordinates.
recombination maps: the deCODEmap based on Icelandic

pedigrees2 and LD-basedmaps for the CEU (Utah Residents

with Northern and Western European Ancestry) popula-

tion from the 1000 Genomes Project obtained using LDhat

and pyrho.40,53

Examinationof a regiononchromosome1 shows that our

FHS map captures the same hotspots that are found with

other methods (Figure 5). For a genome-wide comparison,

we calculated correlation coefficients betweenmaps.We re-

gard thedeCODEmapas the ‘‘gold standard’’ inour compar-

ison of recombination maps estimated from Europeans,

because this European-specific map is based on directly

observed recombination events from a very large number

ofmeioses.Wecalculated thePearsoncorrelationcoefficient

between each map’s recombination rate estimates and the

deCODEmap’s rates. Inorder to calculate the correlation co-

efficient at a given scale (such as 1 kb), we divided the

genome into intervals of this length and obtained the esti-

mated recombination rate for each such interval for every
The Am
compared map. Since each map covers a slightly different

subset of the genome,we ignored intervals that are not fully

covered by all maps included within a given comparison.

We found that the LD-based and IBD-based maps have

similar correlation coefficients to the deCODE map at all

scales ranging from 1 kb to 500 kb (Figure 6).

An IBD-Based Fine-Scale Recombination Map for the

Jackson Heart Study Data

We constructed a recombination map for African Ameri-

cans using the data from the TOPMed Jackson Heart Study

data. We compared our map (the JHS map) with four other

maps constructed with African American data: the AA

map,26 the AfAdm map,27 and two LD-based maps esti-

mated for the 1000 Genomes ASW (Americans of African

ancestry in SW USA) population using LDhat and

pyrho.40,53 The AA and AfAdm maps were constructed us-

ing counts of ancestry switches in 30,000 and 2,864 ad-

mixed African Americans, respectively.

Examination again of the region on chromosome 1

shows that our JHS map includes the same recombination

hotspots found by LD-based and admixture-based

methods (Figure S4). For a genome-wide comparison, we

calculated correlation coefficients between maps. The AA

map, the JHS map, and the LD-based ASWmaps are highly

correlated at large scales (Pearson correlation coefficients>

0.8 at scales R 50 kb) and slightly different at fine scales

(Table 1, Table S1).

At fine scales (1–10 kb), the JHS map and the admixture-

based AA map have similar correlation with LD-based

maps, while at large scales (50–500 kb) the AA map has

higher correlation (Table 1, Table S1). Since the AA map

is based on SNP array data, it is not surprising that it has

lower relative correlations at fine scales, while its large sam-

ple size (around 15 times as many individuals as in our JHS

analysis) gives it high correlations at large scales. Both the

JHS map and the AA map have much higher correlations

than the admixture-based AfAdm map to other maps at

all scales. The AfAdm map is based on data with a sample

size that is similar to that of our JHS data (2,864 individuals

for the AfAdm map and 2,046 individuals for our JHS

map). Hence it is notable that our JHS map has much

higher correlations than the AfAdm map, which is consis-

tent with our simulation results in which accuracy with

our IBD-based method was much higher than accuracy

with admixture-based estimation in admixed data.

In our simulated data, the correlation coefficient be-

tween our estimated map and the true map drops to

around 0.5 at 1 kb scale (Figures 3 and 4), while the corre-

lation between our FHS map and the deCODE map is 0.74

at this scale (Figure 6) and the correlation between our JHS

map and pyrho’s ASW map is 0.69 (Table 1). In contrast,

LDhat does not show such significant differences between

the simulated data (Figure 4) and the real data (Figure 6).

IBDrecomb has better fine-scale performance in real data

than in our simulation because in real data genetic markers

are not distributed evenly along the genome. Regions with
erican Journal of Human Genetics 107, 137–148, July 2, 2020 143



Figure 6. Pearson Correlation Coefficients between Each Map
and the deCODE Map at Different Scales
FHS is our IBD-based map from the TopMED Framingham Heart
Study data. CEU_LDhat and CEU_pyrho are LD-based maps for
the 1000 Genomes project Utah residents with Northern and
Western European ancestry (CEU). UKBB.5k is our IBD-based
map from 5,000 individuals from the UK Biobank SNP array data.
high recombination rates tend to have more mutations,2

which results in higher density of genetic markers. This

higher marker density around recombination hotspots im-

proves precision in estimating the endpoints of many IBD

segments. In the FHS data, we found that 1 kb regions with

the highest 1% of recombination rates (as determined by

the deCODE map) have one third more markers than

randomly selected regions (Figure S5), and removing those

top recombination rate regions leads to a drop in the corre-

lation coefficient from 0.74 to 0.47 at the 1 kb scale. We

also simulated a dataset with a higher mutation rate, 2 3

10�8 per generation per basepair (compared to 10�8 in

the original simulation, and resulting in a higher marker

density), and found that the correlation with the true

map increases to 0.69 at the 1 kb scale in the largest simu-

lated sample size (Figure S6).
An IBD-Based Recombination Map for the UK Biobank

SNP Array Data

IBD segments can be estimated from SNP array data as well

as from sequence data, although the IBD segment end-

points will tend to be estimated with lower resolution in

SNP array data due to lower marker density. We con-

structed a map using SNP array genotypes from 5,000 indi-

viduals from the UK Biobank study. Our UK Biobank map

has similar correlation with the deCODEmap compared to

our FHS map at scales of 100 kb and higher but lower cor-

relation at finer scales (Figure 6), as expected given the

lower resolution of the SNP array.
Discussion

We have presented an IBD-based recombination rate esti-

mation method, along with estimates of recombination
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rates in European Americans and African Americans. Our

approach is applicable to large population-based samples

with sequence data, enabling the generation of high-reso-

lution population-specific recombination maps. Our maps

constructed from the Framingham Heart Study and the

Jackson Heart Study will be useful for downstream analyses

that require recombination maps, including haplotype

phase estimation, genotype imputation, inference of

demographic history, and inference of local ancestry in ad-

mixed individuals.

As with other indirect methods (admixture-based or LD-

based estimation), ourmethod requires the total cM length

of chromosomes from direct (family-based) estimation in

order to convert relative recombination rates to absolute

recombination rates. While family-based estimation of

high-resolution recombination maps requires very large

numbers of informative meioses, obtaining the approxi-

mate cM length of a chromosome requires many fewer

meioses. In addition, while recombination rates may

change at small scales due to changes in hotspots, large-

scale rates are conserved across populations.54 Thus, chro-

mosome lengths from the Icelandic deCODE map (for

example) or from other smaller family-based data may be

used to normalize IBD-based relative recombination rates

estimated in other human populations.

Generation of new maps with our method is straightfor-

ward, and we provide software to do so (Web Resources).

Our method is applicable to humans and to other diploid

species. With reductions in sequencing costs, it is likely

that there will soon be suitable data for a variety of species,

including model organisms, domesticated species, and

wild species. The generation of high-resolution maps will

facilitate other analyses in these populations. As input,

our method requires high-quality genotype data (variant

calls) on at least several hundred individuals, and a high-

quality genome build for determination of physical

positions. Sequence data are needed for accurate fine-scale

estimation, but array data are adequate for estimation at

large scales (100 kb and greater), as shown by our analysis

of UK Biobank data. SNP array data should be analyzed

directly, without first applying imputation, because

imputed variants have lower accuracy that reduces the ac-

curacy of IBD segment detection.

Results from simulated African American data showed

that our IBD-based method gives greater accuracy than

ancestry-switch based methods for constructing recombi-

nation maps from admixed individuals. This is because

ourmethod can detect recombination events that occurred

before admixture, as well as those that occurred after

admixture, while ancestry-switch based methods only

use recombination between different ancestry segments

that occurred after admixture. In addition, with 2,500

simulated admixed individuals, the IBD-based method

gives similar accuracy to LDhat on 96 admixed individuals,

except at the ends of the analyzed region or when the ge-

notype error rate is high. It is not practically feasible to run

LDhat with a larger number of samples, because this would
020



Table 1. Pearson Correlation Coefficients between Estimated Recombination Rates for Five African American Recombination Maps at
Different Scales

JHS AA AfAdm ASW_LDhat ASW_pyrho

Scale: 1 kb

JHS 1.00 0.61 0.23 0.63 0.69

AA 0.61 1.00 0.26 0.65 0.60

AfAdm 0.23 0.26 1.00 0.30 0.23

ASW_LDhat 0.63 0.65 0.30 1.00 0.74

ASW_pyrho 0.69 0.60 0.23 0.74 1.00

Scale: 100 kb

JHS 1.00 0.90 0.79 0.86 0.86

AA 0.90 1.00 0.81 0.91 0.89

AfAdm 0.79 0.81 1.00 0.81 0.80

ASW_LDhat 0.86 0.91 0.81 1.00 0.94

ASW_pyrho 0.86 0.89 0.80 0.94 1.00

The JHS map is our IBD-based map, the AA and AfAdmmaps are admixture-based maps, and the ASW_LDhat and ASW_pyrho maps are LD-based maps. Results at
other scales from 1 kb to 500 kb can be found in Table S1.
require generation of a likelihood lookup table for the

larger sample size, which has very high computational

cost.

In real data, the true map is not known, and it is also

possible that recombination rates differ across time and

populations. Thus, instead of directly assessing accuracy,

we can only look at correlations between results from

differentmethods and across datasets. Amap that has high-

est correlations with all other maps may be more accurate,

although correlationbetweenmethods canbe partly driven

by incorporation of the same recombination events by the

differentmethods, asmany older recombination events are

shared in the histories of multiple populations and utilized

by differentmethods.While keeping these caveats inmind,

we note that the correlation-based rankings of the real-data

maps are largely in line with the results of the simulation

study. In terms of correlation ranking, our IBD-based FHS

map has similar performance to the LD-based maps, and

our IBD-based JHS map outperformed an admixture-based

map developed from a dataset of similar size.

Like our method, LD-based methods are based on past

recombination events, but our method depends more on

recent recombination events, while LD-based methods

are primarily based on recombination events occurring in

the much more distant past. In contrast, family-based

methods use recombination events from the past few

generations. Recombination rates evolve over time,55 so re-

stricting the analysis tomore recent events is advantageous

for some applications.

Current recombination rates in Europeans and other

out-of-Africa populations may differ from rates in African

populations because of drift that occurred in the out-of-Af-

rica bottleneck. For example, non-African populations pre-

dominantly carry the A allele of PRDM9, while African

populations carry that allele at a frequency of only around
The Am
50%.4 Carriers of the A allele have much higher rates of

crossovers for some recombination hotspots compared to

non-carriers.56 Thus, there is a need for population-specific

maps of recent recombination landscapes.

The IBD-based approach has some limitations. The ma-

jor obstacle to achieving higher accuracy at fine scales for

our method is the difficulty in accurately establishing the

exact IBD endpoints. Wrongly placed IBD endpoints may

lead to false recombination rate peaks at fine scales and

may also lead to underestimation in recombination hot-

spots. Currently, IBD estimation methods do not provide

a representation of the uncertainty around the exact IBD

endpoints. A second issue is that IBD is a property of

groups of haplotypes rather than just pairs of haplotypes,

and as a result some IBD endpoints are shared by multiple

pairs of individuals. This double-counting of some IBD

endpoints increases the variability of the estimated recom-

bination rates, particularly at fine scales. Currently, estima-

tion of multi-individual IBD is challenging in large-scale

datasets. Future work could address these issues.
Data and Code Availability

This study made use of whole-genome sequence data ob-

tained from dbGaP (accession numbers phs000974.v2.p2

and phs000964.v2.p1) and existing recombination maps

(Web Resources). Code implementing the IBDrecomb

method, as well as the maps generated in this study, are

available from the IBDrecomb github site (Web Resources).
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.05.016.
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Web Resources

1000 Genomes maps (build 37), ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/technical/working/

20130507_omni_recombination_rates/

AA map (build 36), https://www.well.ox.ac.uk/�anjali/AAmap/

aamap.tar.gz

AfAdm map (build 36), https://www.eeb.ucla.edu/Faculty/

Novembre/software/

AfricanAmerican_AfricanCaribbean_recombination_maps.zip

deCODE map (build 38), https://science.sciencemag.org/

highwire/filestream/721792/field_highwire_adjunct_files/4/

aau1043_DataS3.gz

Hapmap II combined map (build 37), ftp://ftp.ncbi.nlm.nih.gov/

hapmap/recombination/2011-01_phaseII_B37/

genetic_map_HapMapII_GRCh37.tar.gz
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IBDrecomb (including FHS and JHS maps), https://github.com/

YingZhou001/IBDrecomb

msprime, http://msprime.readthedocs.io/en/stable

pyrho map (build 37 and 38), https://drive.google.com/drive/

folders/1Tgt_7GsDO0-o02vcYSfwqHFd3JNF6R06

Refined IBD and Gap-filling tool, http://faculty.washington.edu/

browning/refined-ibd.html

UCSC online liftOver tool, https://genome.ucsc.edu/cgi-bin/

hgLiftOver
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