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ABSTRACT

World Health Organization characterized novel coronavirus disease (COVID-19), caused by severe acute
respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) as world pandemic. This infection has been
spreading alarmingly by causing huge social and economic disruption. In order to response quickly, the
inhibitors already designed against different targets of previous human coronavirus infections will be a
great starting point for anti-SARS-CoV-2 inhibitors. In this study, our approach integrates different ligand
based drug design strategies of some in-house chemicals. The study design was composed of some major
aspects: (a) classification QSAR based data mining of diverse SARS-CoV papain-like protease (PLpro) inhib-
itors, (b) QSAR based virtual screening (VS) to identify in-house molecules that could be effective against
putative target SARS-CoV PLpro and (c) finally validation of hits through receptor-ligand interaction ana-
lysis. This approach could be used to aid in the process of COVID-19 drug discovery. It will introduce key
concepts, set the stage for QSAR based screening of active molecules against putative SARS-CoV-2 PLpro
enzyme. Moreover, the QSAR models reported here would be of further use to screen large database.
This study will assume that the reader is approaching the field of QSAR and molecular docking based
drug discovery against SARS-CoV-2 PLpro with little prior knowledge.
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Introduction

Ligand based and target based drug discoveries are the
most applied modern drug discovery outlooks (Hajjo et al.,
2012; Polishchuk, 2017). Traditionally medicinal chemists
wielded “chemical intuition” for lead optimization, which
sometimes rendered biased fingerprint/fragment or scaffold
selection (Bandyopadhyay et al., 2019). Now-a-days the com-
parative learning between the statistical and intelligent
approaches enriched lead optimization aspects by combining
statistical significance and putative visualizations of finger-
print (or scaffold) devoid of traditional selection-biases
(Adhikari et al, 2016; Jain et al, 2020). Significantly, medi-
cinal chemists put their primary focal point on virtual com-
pound libraries rather than industry chemical collections to
trigger time- and money-efficiency (Choudhury, 2020; Van
Hilten et al., 2019).

The use of such drug discovery approaches in terms of
guantitative structure-activity relationship (QSAR), artificial
intelligence (Al), virtual screening (VS), drug repurposing
etc. demands more when the world faced unwanted and
uncontrolled scenario as like current pandemic posted by

novel coronavius (2019-nCoV) (Adeoye et al, 2020;
Bhardwaj et al., 2020; Elasnaoui & Chawki, 2020; Elfiky,
2020a; Mittal et al.,, 2020; Paniri et al., 2020; Pant et al,,
2020; Patil et al., 2020; Sarma et al., 2020; Wahedi et al.,
2020). In this easily accessible world of 21° century corona-
virus disease-2019 (COVID-19) has been spreading alarm-
ingly by causing huge social and economic disruption
(Aanouz et al., 2020; Arya & Dwivedi, 2020; Basit et al.,
2020; Boopathi et al., 2020; Ghosh et al., 2020; Hendaus,
2020; Hendaus & Jomha, 2020; Pillaiyar et al., 2020). COVID-
19 respiratory disease is attributed as world pandemic by
World Health Organization (https://www.who.int/dg/
speeches/detail/who-director-general-s-opening-remarks-
at-the-media-briefing-on-covid-19—11-march-2020). The
2019-nCoV infection has spread over to 216 countries and
territories since its outbreak in the last month of 2019 in
China, so far 6 287 771 confirmed cases and 379 941 deaths
have been documented as on 3 June 2020 (https://www.
who.int/emergencies/diseases/novel-coronavirus-2019).
2019-nCoV is 3™ human coronavirus (HCoV) as identified
in the 21°* century (Ahmad et al.,, 2020; Anwar et al.,, 2020;
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Monte Carlo optimization method
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Figure 1. Schematic representations of current work designwhich are composed of two major aspects- (A) Ligand based and (B) Structure based approaches.

Borkotoky & Banerjee, 2020; Chandra et al, 2020; Pillaiyar
et al, 2020). Previously, two corona virus diseases severe
acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in
2002 and Middle East respiratory syndrome (MERS) corona-
virus (MERS-CoV) in 2012 infected at least 8,422 people (fatal-
ity rate of ~10%) and 1,700 people (fatality rate of ~36%),
respectively  (http://www.who.int/csr/sars/archive/2003_05_
07a/en).

2019-nCoV (also known as SARS-CoV-2; we will use SARS-
CoV-2 in rest of the paper) is an envelope virus having a sin-
gle-stranded positive sense RNA genome (Elfiky & Azzam,
2020; Ghosh et al, 2020; Nejadi Babadaei et al, 2020a,
Babadaei et al., 2020b). The spike protein (S) of SARS-CoV-2
regulates viral entry into the host cells (Amin & Abbas, 2020;
AP and VS 2020; de Oliveira et al, 2020; Elfiky, 2020b;
Enayatkhani et al, 2020; Gupta et al, 2020; Hasan et al,
2020; Sinha et al., 2020; Sk et al., 2020). Two polyproteins i.e.
ppla and pplab are promptly translated upon entry into the
host cells. Then these are disbanded by two viral proteases,
one is 3C-like protease (3CLpro) and another is papain-like
protease (PLpro) (Figure 1) enzymes (Baez-Santos et al., 2015;
Elmezayen et al, 2020; Ghosh et al., 2020; Joshi et al., 2020;
Khan, Ali, et al., 2020; Khan, Zia, et al., 2020; Lin et al., 2018;
Muralidharan et al., 2020). Both proteases are essential for
SARS-CoV-2 viral replication and thus, can be is considered
as druggable targets (Ghosh et al., 2020).

The molecular docking and target based virtual screening
studies have moved at a much faster pace (Al-Khafaji et al.,
2020; Das et al., 2020; Enmozhi et al., 2020; Gyebi et al,
2020; Islam et al., 2020; Khan, Jha, et al.,, 2020; Kumar et al,,
2020; Lobo-Galo et al., 2020; Mahanta et al., 2020) after delib-
eration of the first ligand bound SARS-CoV-2 3CLpro crystal
structure in February, 2020. However, SARS-CoV-2 PLpro lig-
and based as well as structure based screening approaching
were limited due to little proteomic knowledge.

In response against the social and economic disruption-
posted by SARS-CoV-2 outbreak, screening of SARS-CoV
PLpro inhibitors is fastest options which offer more strategic
and economic benefits. The use of virtual compound libraries
already gained in publicity and has achieved some successes.
Here, the virtual screening has fostered the application of
drug design to the SARS-CoV-2 targets. This current commu-
nication, a component of our rational drug design and dis-
covery headway (Adhikari et al., 2017; Amin et al, 2018;
Banerjee et al.,, 2020; Dutta et al., 2019; Halder et al., 2013),
we propounded mathematical modelling workflow based on
Monte Carlo optimization and other approaches which fur-
ther leads to the screening of possible SARS-CoV-2 PLpro
inhibitors (Figure 1).

The study design was composed of two major aspects-(A)
Ligand based approaches: (i) classification QSAR based data
mining of diverse SARS-CoV papin-like protease (PLpro)
inhibitors, (i) QSAR based virtual screening (VS) to identify
in-house molecules that could be effective against putative
target SARS-CoV PLpro; and (B) Structure based approaches:
finally validation of hits through receptor-ligand interaction
analysis (Figure 1).

Therefore, this study may introduce key concepts, set the
stage for molecule identification and QSAR based screening
of in-house molecules active against putative SARS-CoV-2
PLpro enzyme.

Methods and materials
Dataset

A set of diverse SARS-CoV PLpro inhibitors were collected
with inhibitory activities (Bdez-Santos et al, 2014; Cheng
et al, 2015; Chou et al, 2008; Frieman et al., 2011; Ghosh
et al., 2009, 2010; Park et al., 2012; Ratia et al., 2006, 2008).
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Compounds with no inhibitory activity and without definite
activity were not taken for this study. In addition, duplicate
molecules were eliminated. Finally, ninety one molecules
were considered for the further molecular modelling study
(Table S1). The average SARS-CoV PLpro plCsy value was con-
sidered as the ‘activity threshold’ for the current study.
Compounds having the SARS-CoV PLpro plICs, value less than
the ‘activity threshold’ were classified as lower PLpro inhibi-
tors or Inactives and those with PLpro pICs, value higher
than the ‘activity threshold’ were yielded as promising PLpro
inhibitors or Actives. Thus, out of 91 molecules, 40 com-
pounds were distinguished as Actives and 51 molecules were
considered as Inactives.

Classification based QSAR

The classification modelling assists to discriminate the Active
and Inactive molecules in terms of their investigated bio-
logical significance. Here, we performed Monte Carlo based
Coral QSAR study. Performing this study not only offers a
graphical visualization of critical fingerprint or fragments
attributed to enhance/decrease the SARS-CoV PLpro inhibi-
tory activity but also it allows the chance of screening exter-
nal set compounds.

Monte Carlo optimization based QSAR
Descriptors calculation

SMILES-based descriptors
SMILES-based descriptors were calculated by the following
equation:

SMLESDCW (T, N) = a CW (ATOMPAIR) + b CW (NOSP)
+ ¢ CW (BOND) + d CW (HALO) + o ZCW (Sy)
+ B ZCW (SSk) + v ZCW (SSSy)

In this equation, T and N represent threshold value and
number of epoch, respectively. The correlation weights were
represented by CW. The different coefficients like a, b, ¢, d,
o, B and y were used for descriptor modification. NOSP,
HALO, BOND and ATOMPAIR represent global SMILES attrib-
utes and the local smile attributes were denoted by Sk, SSk
and SSSk (Toropov et al., 2013; Toropova et al., 2015).

Graph-based descriptors

GAO (graph of atomic orbital), HSG (hydrogen-suppressed
graph) and HFG (hydrogen-filled graph) represents different
graph based descriptors and was calculated by following
equation:

GrathDCW (T, N) = o ZCW (A) + B =CW (°ECy)
+g2cW ('EC,) +8 =CW (%EC,) + & =CW (3EC,)
Where, °EC,, 'EC and 3EC, represent different Morgan’s
connectivity indices. A, denotes different chemical atoms

like: C, N, O etc. o, B and vy were the coefficients with 0 and
1 value. The coefficients having value 0 and 1 were denoted
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by as o, B and y (Toropov et al., 2013; Worachartcheewan
et al, 2014).

Hybrid descriptors
The amalgamation of SMILES and graph-based descriptors
forms hybrid descriptors which are represented as:

Hybridpew (T, N) =SMLESDCW (T, N) +SPPDCW (T,N)

Model development and validation

In our study, by using balance of correlation method twenty-
one classification models were developed from three differ-
ent splits. The dataset containing of 91PLpro inhibitors were
distributed into training (41 compounds), calibration (35
compounds) and test (15 compounds) sets which were used
for the study. Further, optimization of T (threshold) and N
(epoch) were also performed separately for each model
(Toropova et al, 2015). The sensitivity, specificity, accuracy
along with the MCC values was recorded as a measure of
internal and external validation. Finally, the important struc-
tural attributes that were solely answerable for promoting or
hindering of PLpro activity were identified.

Target based molecular modelling

Homology modelling was performed which provided 3D
models for SARS-CoV-2 protein structure as the ligand-bound
crystal structures are not available till date. The homology
model for SARS-CoV-2 was built using Swiss Model web ser-
ver (https://swissmodel.expasy.org/) and subsequently, vali-
dated by Verify3D (https://servicesn.mbi.ucla.edu/Verify3D/),
ProSA (https://prosa.services.came.sbg.ac.at/prosa.php) and
PROCHECK (https://spdbv.vital-it.ch/). In addition, the model
was optimized using Swiss PDB viewer software using
GROMOS96 Force-Field followed by determination of RMSD
value by the aid of PyMOL software (https://pymol.org/2/).
Lastly, the energy minimized model was implemented for
the molecular docking analysis. The docking study was con-
ducted by the aid of AutoDock Vina (Trott & Olson, 2009).
Notably, grid box was selected by covering the geometric
pattern occupied by the prototype in-bound ligand in the
crystal structure of PDB: 40WO0. The docked poses of ligands
were visualized by PyMOL software (https://pymol.org/2/)
and the 2D-interaction plots were generated by Discovery
Studio 3.5 Visualizer (Accelrys Software Inc, San Diego,
California, USA).

Result and discussions

It is already reported that some small molecules exhibited
potent SARS-CoV PLpro inhibition (Ghosh et al., 2009, 2010,
2020).SARS-CoV PLpro shares 82.80% sequence similarity
with the homologus SARS-CoV-2 strain (Figure 2).
Significantly, PLpro active site amino acids (P248, P249,
Y269, D165, E168, L163, G164, Q270, Y274, Y265, T302) of
both stains are highly conserved (Figure 2). Thus, it may
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pretend that SARS-CoV PLpro inhibitors would to be poten-
tial inhibitors of SARS-CoV-2 PLpro enzyme. As the develop-
ment of new small molecules against the proteasesof the
COVID-19 is challenging as well as time and money consum-
ing, it is better to screen compounds based on the previ-
ous ones.

Target based molecular modelling

The Swiss model constructed an excellent homology model
of SARS-CoV-2 based on the sequence identity between the
PLpro SARS-CoV (PDB: 40W0) and PLpro SARS-CoV-2. The
quality of the model was validated by the aid of Verify3D
(96.79% of the residues had average 3D -1D score s<0.2),
ProSA server (Z-Score = —8.79), the Ramachandran plot
(91.4% and 8.2% of the residues in the most favorable and
the additional allowed region, respectively; 0.4% residues in
generously allowed regions while no residues were found to
be in disallowed region). The RMSD score, as determined by

Figure 2. Comparison of SARS-CoV PLpro and SARS-CoV2 PLpro: A modeled
structure of SARS-CoV-2 PLpro (orange), the crystal structure of SARS-CoV (grey,
PDB: 40W0) where PLpro inhibitor binds at the catalytic site [docked ligand
(brick red) and in-bound ligand (light yellow)].

using PyMOL, was recorded 0.090 which confirmed the
model acceptability.

The amino acid sequences of SARS-CoV PLpro (PDB:
40W0) and COVID-19 PLpro (homology modelled) are
depicted. Notably, the active site amino acids including P248,
P249, Y269, D165, E168, L163, G164, Q270, Y274, Y265, T302
etc. are highly conserved.

Classification QSAR study

The whole set of molecules able to bind to the SARS-CoV
PLpro enzyme were taken after extensive literature studies,
retrieving only those ligands having an absolute ICso values.
This set consisted of 91 PLpro inhibitors. Depending on the
‘activity threshold’, out of 91 compounds, 40 compounds
were identified as Active and 51 molecules were considered
as Inactives.

Monte Carlo optimization based coral QSAR

In Monte Carlo optimization (Toropov et al., 2018; Toropova
et al, 2015), a total of twenty-one different models from
three different splits were generated using SMILES and
graph-based descriptors with a combination of different con-
nectivity indices which were calculated for generation of dif-
ferent models (Table S2). Each models were developed after
the search for desirable T (threshold) and N (epoch) values
as per the test set statistics as suggested by Toropova et al.
(2015). The statistical parameters of three best models from
three different splits are shown in Table 1.

As can be seen from Table 1, the model M13 showed a
satisfactory predictive ability. The values of the sensitivity,
specificity, accuracy along with the MCC obtained for both
the sub-training and calibration sets were highly encourag-
ing. Indeed, the values attained for the test set (i.e. sensitiv-
ity, specificity and accuracy of 0.8333, 0.7778 and 0.8000,
respectively) suggested the acceptable external predictive
power of the classification based model. However, the MCC
value of the test set was comparatively poor than the MCC
values of the sub-training and calibration sets. Different
structural attributes of the best model M13 (SMILES and HSG
with °EC,) from split-2 is depicted in Table S3.

Table 1. The statistical performance of three best models from three different splits.

Parameter Set T N P N FP FN Total Sensitivity Specificity Accuracy McCC
M2 SMILES, GAO (°ECy) Sub-Training 3 7 15 24 2 0 41 1.0000 0.9231 0.9512 0.9025
Calibration 15 18 0 2 35 0.8824 0.1000 0.9429 0.8911

Test 4 4 3 4 15 0.5000 0.5741 0.5333 0.5014
M13 SMILES, HSG (OECk) Sub-Training 1 7 15 24 0 2 Ly 0.8824 1.0000 0.9512 0.9025
Calibration 17 17 1 0 35 1.0000 0.9444 0.9714 0.9444

Test 5 7 2 1 15 0.8333 0.7778 0.8000 0.6001

M15 SMILES Sub-Training 2 6 10 30 0 1 41 0.9091 1.0000 0.9756 0.9380
Calibration 20 15 0 0 35 1.0000 1.0000 1.0000 1.0000

Test 8 4 2 1 15 0.8889 0.6667 0.8000 0.5774

Where, T=Threshold, N = Epoch;The selected model is shown in bold face,.

Among all the 21 models developed in 3 different splits, model M13 (SMILES and HSG with 9EC,) from split-2 was found to be the best one.

The end point values calculate for M13 is shown below:.
Endpoint = 0.1282 (+ 0.0048) + 0.04293 (+ 0.00023) * DCW (1,7).
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Figure 4. Radar plot of the in-house compounds after calculating ADME data by SwissADME server (http://www.swissadme.ch/) suggesting the drug-likeness [the
pink area represents the optimal range of each properties.LIPO = Lipophilicity (between —0.7 and +5.0), SIZE = Molecular weight (between 150 and 500 g/mol),
POLAR = Polarity (between 20 and 130A%), INSOLU = Solubility (not higher than 6), INSATU = Saturation (fraction of carbons in the sp3 hybridization not less than

0.25), FLEX = Flexibility (no more than 9 rotatable bonds)].

QSAR based virtual screening

Since the QSAR models proved reasonably accurate, we used the
best model to screen our in-house molecules (IH-001 - IH-067)
from our previous publications (Adhikari et al., 2016; Halder et al.,
2015; Mukherjee et al., 2017). General structures of our in-house
compounds (IH-001 - IH-067) are depicted in Figure 3.

These compounds were already reported as metalloprotei-
nase inhibitors (Adhikari et al, 2016; Halder et al., 2015;
Mukherjee et al.,, 2017). First, we predicted the compounds
and then screening as per their potentiality in the Monte

Carlo based classification QSAR model. Second, we defined
an applicability criterion to choose the best hits.

In this regards, we first screened the sixty seven in-house
compounds. From the in-house database, a collection of 56
compounds were predicted as Active from the Monte Carlo
based QSAR model (Table S4). After screening 56 similar
compounds in SwissADME (Daina et al, 2017) — 13 com-
pounds including IH-009, IH-015, IH-017, IH-020, IH-023,
IH-027, IH-037, IH-038, IH-040, IH-043, IH-046, IH-047 were
passed the ADME criteria (Figure 4).
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Figure 5. The docking modes of two prototype in-house VS hits (A) IH-009 and (B) IH-027 in the catalytic site amino acid residues of SARS-CoV-2 PLpro (proetin,
grey cartoon; active site amino acids, orange stick; in-bound lignad, red stick; in-house molecules, yellow stick; water molecule, red ball; hydrogen bond interac-

tions, light green dashed lines).

Lastly, these potential chemotypes were considered for
molecular docking study against the putative target SARS-
CoV-2 PLpro.

Binding interactions of the in-house VS hits to SARS-
CoV-2 PLpro

Molecular docking study offers a vital tool to predict the pos-
sible structural conformations between ligand and active
sites of a receptor/enzyme. Here, molecular docking
approach was employed on the in-house VS hits by using the
AutoDock Vina to understand the docking/binding mode
between in-house VS hits and SARS-CoV-2 PLpro. Meanwhile,
the docking modes of two prototype in-house VS hits in the
catalytic site amino acid residues of COVID-19 PLpro are illus-
trated in Figure 5.

Furthermore, the re-dock binding pose of the in-bound
PLpro inhibitor (red stick) on the SARS-CoV-2 active site are
shown in Figure 5. Notably, the positions of the in-house VS
hits in the COVID-19 PLpro catalytic site are basically the
same from Figure 5, suggesting that in-house VS hits capture
the right position in the PLpro cavity. This phenomenon vali-
dated the accuracy of docking study.

The docking poses of the all thirteen in-house VS hits are
depicted in Figure S1. The entire in-house VS hits snugly
occupied the binding site of SARS-CoV-2 Plpro. In addition,
the Figure S1 pinnacle the superimposition of docking poses

of thirteen in-house VS hits in the homology modelled SARS-
CoV-2 PLpro. This observation justified that these investi-
gated derivatives exhibit potential to be PLpro inhibitor and
may be a valid weapon against SARS-CoV-2.

The binding interaction of IH-009 with SARS-CoV-2 PLpro
revealed three hydrogen bonds with three amino acids
(Leu162, Tyr264 and Tyr268), one m-n T-shaped interaction
between phenyl ring and Tyr268, along with additional
n-alkyl interaction between phenyl ring and Pro248. Apart
from that the bromine molecule of IH-009 interacted with
two proline amino acid residues (Pro 247 and 248). The car-
boxylic acid feature formed water mediated hydrogen bond
interactions. These interactions were more or less consistence
with other molecules also (Table S5). Notably, the napthyl
ring formed two m-nt T-shaped and two mw-alkyl interactions.
An additional m-sigma interaction was noticed where Tyr264
was involved as given in Table S5. However, the exact mech-
anism of the binding is still sketchy as it required further
molecular dynamic simulation study. Moreover, the in vivo
effects of these in-house VS hits would be needed to confirm
the mechanism.

Conclusion

Here, we have constructed a classification based QSAR model
that could be used as a tool for predicting new molecules
and/or virtual screening. The model developed by Monte



Carlo optimization based QSAR were followed by virtual
screening of some in-house chemicals. Then ADME data
driven screening was performed by SwissADME and identi-
fied compounds with good drug-likeness. Finally, molecular
docking study of QSAR derived virtual hits was performed to
increase the confidence in the final hypotheses. The molecu-
lar docking study performed against putative target SARS-
CoV-2 PLpro suggesting potentiality of these investigated in-
house molecules. Thus, it can be concluded that the in-house
molecules have potential to use as a seed for drug design
and optimization against SARS-CoV-2 PLpro. After extensive
in vitro and in vivo studies, these in-house VS hits may be
emerged as therapeutic options for COVID-19. This study
may also motivate medicinal chemists to design similar type
of compounds in hopes to trigger biological potency as well
as efficacy without accruing toxicities.
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