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• Coronaviruses have low stability in the
environment.

• SARS-CoV-2 may spread via fecal-oral
and aerosols-borne routes.

• Environmental conditions such as or-
ganicmatter, oxidants, and temperature
regulate the fate in environment.

• Underprivileged societies may see un-
wanted consequences in the post-
pandemic period.
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The advent of novel human coronavirus (SARS-CoV-2) and its potential transmission via fecal-oral and aerosols-
borne routes are upcoming challenges to understand the fate of the virus in the environment. In this short com-
munication, we specifically looked at the possibilities of these transmission routes based on the available litera-
ture directly related to the SARS-CoV-2 as well as on the closer phylogenetic relatives such as SARS-CoV-1. The
available data suggest that, in addition to human-to-human contact, the virus may spread via fecal-oral and
aerosols-borne routes. Existing knowledge states that coronaviruses have low stability in the environment due
to the natural action of oxidants that disrupt the viral envelope. Previous recommended dosage of chlorination
has been found to be not sufficient to inactivate SARS-CoV-2 in places where viral load is high such as hospitals
and airports. Although there is no current evidence showing that coronaviruses can be transmitted through con-
taminated drinkingwater, there is a growing concern on the impact of the current pandemicwave on underpriv-
ileged societies because of their poor wastewater treatment infrastructures, overpopulation, and outbreak
management strategies. More research is encouraged to trace the actual fate of SARS-CoV-2 in the environment
and to develop/revise the disinfection strategies accordingly.
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1. Introduction

The ongoing pandemic situation of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) is rapidly evolving with global dis-
tribution (WHO, 2020a). SARS CoV-2 belongs to the Coronaviridae
family which is a large family of viruses known to cause diseases rang-
ing from the common cold to severe acute respiratory diseases (Chan
et al., 2020; Gorbalenya et al., 2020; Paules et al., 2020). The infection
of SARS-CoV-2 has been largely associated with the coronavirus disease
2019 (COVID-19), which started in Wuhan, China in December 2019
(Huang et al., 2020). However, being highly pandemic, the virus has
been transmitted to approximately all parts of the world in a very
short time. The virus is known to spread by human-to-human contact
via respiratory droplets or direct contact (Cascella et al., 2020). How-
ever, more recently, concerns on its spread via fecal-oral and virus-
laden aerosols-borne routes are growing rapidly (Hindson, 2020;
Wang andDu, 2020). This short communication gives a prospective out-
look on how SARS-CoV-2 can be transmitted in the environment via
these two routes. Furthermore,we discussed the impacts of these trans-
missions on underprivileged societies due to their poor wastewater
management strategies and ineffective control measures.

2. Fecal–oral transmission

Recently, transmission via the fecal-oral route is getting serious at-
tention after the viral RNA has been detected in the stool samples of in-
fected patients (Ahmed et al., 2020; Grassia et al., 2020; Wen et al.,
2020). To this end, Xiao et al. (2020) studied the possibility of gastroin-
testinal infection by SARS-CoV-2 through histological staining, aswell as
viral receptor angiotensin-converting enzyme 2 (ACE2), and viral nucle-
ocapsid staining of gastrointestinal tissues. The authors found that re-
ceptor ACE2 was positively stained for gastrointestinal epithelial cells,
and nucleocapsid protein was visualized in gastric, duodenal, and rec-
tum glandular epithelial cells. Similar results have been reported by
other authors (Wu et al., 2020; Zhang et al., 2020b). Briefly, Wu et al.
(2020) found that viral shedding from the digestive tract might be
greater compared to the respiratory tract, whereas Zhang et al.
(2020a) stated that the digestive system is a potential route of SARS-
CoV-2 transmission because viral RNA was identified from the samples
obtained from pharynx, esophagus, gastric mucosa, rectal mucosa, duo-
denal mucosa, and stool.

It has been suggested that SARS-CoV-2 may persist longer in the di-
gestive tract than in the respiratory tract (Grassia et al., 2020). At least
two studies have reported that infected patientswere capable of excret-
ing viral RNA via feces even after severalweeks from the day of develop-
ing symptoms. For example, Hu et al. (2020) reported two cases of
positive viral nucleic acid in the anal swabs after 6 and 14days of getting
negative results from respiratory specimens. Likewise, Wu et al. (2020)
found that the fecal samples of a patient in China were continuously
positive for the viral RNA even after 33 days of seeing negative results
for the respiratory samples. For another patient, the excretion period
was further extended to 47 days from the first day of developing symp-
toms. This situation opens core questions related to the fate and distri-
bution of the virus in the environment via fecal-oral routes because
many patients discharged from the hospitals after being treated are
most likely to excrete the virus in their feces.

The fecal-oral route conservatively follows five-Fs paths such as fo-
mites, fingers, flies, fluids, and fields (Fig. 1). In case of COVID-19, knowl-
edge on disease spread via fields and fluids is limited; however, the
contribution of fomites (e.g., clothes and surfaces), fingers (direct con-
tact), and flies is being argued (Chen et al., 2020; Guo et al., 2020; Haas,
2020; Eslami and Jalili, 2020; Lai et al., 2020; Ong et al., 2020; WHO,
2020a). Further, the pathways can be linked to fecal-oral transmission
by considering the examples of phylogenetic relatives of SARS-CoV-2
such as SARS coronavirus (SARS-CoV-1). Both viruses are similar in mor-
phological features and chemical structures, as well as they share 82%
genetic similarity (Yeo et al., 2020). In 2003, during the outbreak of
SARS-CoV-1 in Hong Kong, inadequate plumbing system was identified
as the main cause of fecal-oral transmission (Peiris et al., 2003; WHO,
2003a; WHO, 2003b). The virus entered the sewer systems and formed
aerosols after settling on feces particles, i.e. virus-laden aerosols (Qu
et al., 2020). The aerosols/droplets originating from virus-rich excreta
were spread with non-functional water seals, inadequate traps, and
strong upward air flows. The airborne transmission route was further
aided by the bathroom extract ventilation system which ultimately
drew air within the apartment thus mediating long-range human-to-
human transmission via air movement. Resultantly, within a 50-storey
building, 342 confirmed cases and 42 deathswere recorded. These obser-
vations were later supported by investigating the mechanisms of cross-
contamination (Gormley et al., 2012; Gormley et al., 2014). Previously,
other viruses were also found to be transmitted via fecal–oral route
such as gastroenteritis viruses (Grahamet al., 1994; Chan et al., 2006), ad-
enoviruses (Reynolds, 2004), and enteroviruses (Klemola et al., 2008;
Oliveira et al., 2014). Although no concrete evidence exists for the spread
of SARS-CoV-2, these aspects are important to consider to understand the
future of SARS-CoV-2 (Gormley et al., 2020).
3. Aerosols–borne transmission

Although SARS-CoV-2 is not an airborne virus, the adsorption on dust
or particulate matter (PM) could allow its transport to long distances es-
pecially if these particles carry moisture. This phenomenon has also been
coined as virus-laden-aerosols transmission. In a recent study conducted
in Italy, high COVID-19 infection rate was linked to the air pollution for
the cities exceeding the limits set for PM10 (Coccia, 2020). The cities
with N100 days of air pollution had a high average number of infection
rate which was further driven by low wind speed. It was suggested that
air transmission dynamics of COVID-19 are not mere “human-to-human
transmission” but could also be “pollution-to-human transmission”
which is associated with the airborne viral infectivity. Similar observa-
tions were made in another study where the air quality of two regions
in Italy (Lombardy and Emilia Romagna) was correlated with high
SARS-CoV-2 transmission dynamics and infections (Conticini et al.,
2020). The authors further stated that Lombardy and Emilia Romagna
had the highest level of virus lethality in the world as well as they are
among the most polluted areas in Europe. Another study suggested that
airborne transmission route is highly virulent and dominant for the
spread of COVID-19 as face covering reduced the infections to over
78,000 in Italy from April 6 to May 9, and over 66,000 in New York City
from April 17 to May 9 (Zhang et al., 2020c).

Furthermore, Lu et al. (2020) reported a scenario where the spread
of the virus was associated with air conditioning. In the very beginning
phase of pandemic, three families that ate lunch at the same time in a
restaurant in Guangzhou, China, developed the COVID-19 symptoms
in a sequential manner. On the first day, only one person developed
symptoms but 9more persons got infected in later days. The authors ar-
gued that sitting distance among these families was sufficient, never-
theless, strong airflow from the air conditioner might have propagated
the droplets. This might be the result of human atomization of virus-
bearing particles which could occur from coughing, sneezing, or even
normal breathing by an infected person (Zhang et al., 2020c). Generally,
larger respiratory droplets with size N5 μm can stay in the air for a short
time and settle at distances b1 m (Kutter et al., 2018; Pica and Bouvier,
2012). However, small aerosolized droplets (b5 μm) can remain in the
air for a longer time and could travel long distances N1 m (Fernstrom
andGoldblatt, 2013). Thefine aerosolswith PM2.5may penetrate deeply
into the respiratory tract finally reaching the other vital organs (Rychlik
et al., 2019;Wu et al., 2019; Zhang et al., 2020c).These observationsmay
correlate with the SARS outbreak in Hong Kong and the Middle East re-
spiratory syndrome (MERS) coronavirus outbreak in South Korea (Kim
et al., 2016). In South Korea, MERS-CoV was detected in the air samples



Fig. 1. Schematic representation of SARS-CoV-2 spread via the fecal-oral route.
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of the hospitals which resulted in 186 infections and 36 deaths follow-
ing the temporary shutdown of the hospitals.

To assess the transmission of SARS-CoV-2 via aerosols, van
Doremalen et al. (2020) assessed the stability of both SARS-CoV-2 and
SARS-CoV-1 on laboratory-generated aerosols. The authors reported
that SARS-CoV-2 could stay in the aerosols up to 3 h. Although a reduc-
tion in infectious titer was observed over time, i.e. TCID50 reduced from
103.5 to 102.7/L of air, half-lives of both SARS-CoV-2 and SARS-CoV-1
were comparable. Recently, Zhang et al. (2020c) detected 285–1130
copies/m3 of SARS-CoV-2 in the aerosols of a hospital environment.
This finding suggests a significant viral spill-over that was possibly via
respiratory droplets from patients or airborne aerosols. Such transmis-
sion of SARS-CoV-2 might lead to the nosocomial spread and super-
spreading events as reported previously for SARS-CoV-1 (Chen et al.,
2004). Previously, during the outbreak of SARS-CoV-1 in Hong Kong,
the virus was able to enter the individual homes and buildings.

It is being debated that an increase in ambient temperature might
impact the survival of SARS-CoV-2 in the air. To this end, Zhu and Xie
(2020) conducted a study on COVID-19 infections for 122 cities in
China between January and February 2020. The authors did not find a
decrease in infection rate with warming weather. This observation is
in contrast to the findings reported previously by other authors regard-
ing poor survival of SARS-CoV-1 at high temperature (Tan et al., 2005)
and lower temperatures, facilitating the high transmission and infec-
tions (Prata et al., 2020; Tobías and Molina, 2020; Wang et al., 2020).

4. Presence of SARS-CoV-2 in the wastewater

SARS-CoV-2 could also become part of wastewater treatment plants
(WWTPs) (Heller et al., 2020). This is because the virus could embed
within the feces particles as seen for coronaviruses and ultimately
then settle its fate in the WWTPs. The presence of SARS-CoV-2 in sew-
age samples is already confirmed by studies from different countries
(Ahmed et al., 2020; Mallapaty, 2020; Medema et al., 2020; Wu et al.,
2020). For example, in the Netherlands, sewage samples of seven cities
and the Schiphol airport (Amsterdam) were tested for SARS-CoV-2 be-
tween February to March 2020 (Medema et al., 2020). The samples of
February were negative for the viral RNA but in March, the viral load
started increasing gradually. Similar results have been seen in France
where a peak in the viral concentrations was reported earlier in the
wastewater of Paris before the hospitals noticed a surge in cases
(Leste-Lasserre, 2020). Viral loads as high as 1.9 × 104 copies/L have
been detected in the wastewaters from locations close to departments
receiving COVID-19 patients in Wuhan, China (Zhang et al., 2020a).
On one hand, this detection of SARS-CoV-2 in the wastewater is benefi-
cial in terms of early warning (i.e. wastewater-based epidemiology);
whereas on the other hand, it is also risk-oriented as it may cause recur-
rent outbreaks if the virus could survive longer in the environment
(i.e., post-pandemic outbreaks) following the incomplete removal of
the virus by the WWTPs (Mallapaty, 2020; Orive et al., 2020).

Survival/persistence of the coronaviruses in WWTPs is driven by
several parameters such as the presence of organicmatter and oxidants;
fluctuations in temperature and pH; and abundance of antagonistic bac-
teria (Gundy et al., 2008; WHO, 2020a). Firstly, organic matter and
suspended solids in the wastewater can provide protection for viruses
that adsorb to these particles, reducing the inactivation efficiency
(Gundy et al., 2008). This is the reason that coronaviruses in pasteurized
settled sewage and purewater were found to survive up to several days
(Casanova et al., 2009). Secondly, the presence of oxidants could affect
the integrity of the viral envelope, which is a very fragile structure (La
Rosa et al., 2020). For example, SARS-CoV-1was found to be inactivated
in thewastewaterwhen strong oxidants (e.g., free chlorine)were abun-
dant (Gundy et al., 2008). Zhang et al. (2020a) reported that the concen-
tration of free chlorine towards chlorination (≥0.5 mg/L after at least
30 min of contact time at pH b 8.0) recommended by WHO might not
be sufficient to treat SARS-CoV-2 when the viral load is high. These au-
thors were able to detect the viral RNA in a septic tank containing hos-
pital wastewater, which was disinfected with sodium hypochlorite at
800 g/m3 dose (free chlorine N6.5 mg/L and contact time was 1.5 h).
Thirdly, the temperature is found to have an effect on the survival/per-
sistence of coronaviruses, in general. For example, at 20 °C, SARS-CoV-1
was found to survive up to 2 days in the domestic sewage, hospital
wastewater, and dechlorinated tap water. However, this period was
prolonged to 17 days when present in the urine and 3 days when it em-
beds in the feces (organic matter). At lower temperatures (4 °C), SARS-
CoV-1 was further able to persist up to 14 days in the wastewater and
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N17 days in feces or urine (Wang et al., 2005). Lastly, the presence of an-
tagonistic microorganisms could increase the extent of inactivation.
This has been well-studied at WWTPs where membrane bioreactors
have been used. In membrane bioreactors, viruses are inactivated via
predation and enzymatic breakdown (Bosch et al., 2006; Hao et al.,
2010) and the extent of inactivation further increases in the solid
phase (e.g. sludge) as compared to the liquid phase. This is because of
a high density of enzymes and predators in the solid phase (Chaudhry
et al., 2015). Most of these results are tested for enveloped viruses in-
cluding members of the Coronaviridae family (Bodzek et al., 2019;
Chaudhry et al., 2015). As such, further investigations on SARS-CoV-2
are required to generate more relevant conclusions.

5. Potential risks for underprivileged societies

In underprivileged societies, SARS-CoV-2 may bring major chal-
lenges if environmental conditions could favor its persistence in the en-
vironment. At first, their health care system is not very strong which
results in an outbreak in a short time, ultimately increasing the viral
load in their wastewater (WHO, 2020b). This puts all pressures on the
WWTPs to treat the virus-contaminated wastewater. Many underprivi-
leged societies have basic wastewater treatment systems that are not
equipped with the necessary technology to remove viruses effectively.
For example, in Pakistan, not even a single WWTP is operational in the
whole country, rather only stabilization ponds are present in one city
(Faisalabad) to treat city's wastewater. Similarly, in Nigeria, many states
have non-functional wastewater treatment facilities (Benue, Kogi,
Kwara, Niger, and Plateau); whereas other states do not have any treat-
ment facility at all (Abia, Akwalbom, Anambra, Bayelsa, Imo, and Ondo)
(Adesogan, 2013; Adewumi and Oguntuase, 2016; Omole et al., 2019).
As such, the wastewater is discharged directly into local rivers and
streams with limited or no treatment at all (Afzal et al., 2019;
Azizullah et al., 2011).

Wastewater treatment ponds are used worldwide for wastewater
management in small cities and towns as well as in developing countries.
These ponds have been reported to achieve, on average, one log reduction
of viruses for every 14.5 to 20.9 days (Verbyla andMihelcic, 2015). How-
ever, their performance in terms of SARS-CoV-2 reduction has not being
reported so far. Therefore, if wastewaters of these small communities or
underdeveloped societies are not appropriately handled, the situation
may result into frequent, recurrent, or periodic post-pandemic outbreaks
as seen previously for other viral diseases (Rose, 1999).

WWTPs produce a large amounts of solids sludge. It is a well-
established fact that sludge can carry variety of viruses including
SARS-CoV-2 (Xagoraraki et al., 2014; Xiao et al., 2019). These viruses
are concentrated onto solid particles during viral shedding. The concen-
trations of the viral RNA in the primary municipal sewage sludge could
be up to several orders of magnitude higher than their respective con-
centrations in the raw wastewater (Ahmed et al., 2020; Xiao et al.,
2020). These results are consistent to the previous findings of other co-
ronavirus strains such as HKU1whichwere found to concentrate on the
sewage sludge (Bibby and Peccia, 2013).

Under appropriate conditions, the viruses could persist for several
months in the sludge particles (Schlindwein et al., 2010). For example,
human enteric viruses were detected in the sediments obtained from
sewage sludge disposal sites in the Atlantic Ocean after 17 months of
dumping (Goyal et al., 1984). Although, some communities treat their
sewage sludge to reduce thepresence ofmicroorganisms via thickening,
dewatering, digesting or composting processes, it is still unknown if
these practices can sufficiently remove/inactivate the SARS-CoV-2. The
current knowledge on adsorption capabilities of the virus onto sludge
particles recommends appropriate treatment before disposing/
discharging into the environment. Taking these issues into consider-
ation, the French Agency for Food, Environmental and Occupational
Health & Safety has already recommended that sewage sludge produced
during COVID-19 outbreak should not be spread without being
disinfected (Anses, 2020). On the other hand, inmany developing coun-
tries sludge is directly applied on land as a fertilizer (Jiménez et al.,
2009). For example, in Benin, Ghana, and Mali, farmers used to bribe
septic truck drivers to dispose the sludge on their agricultural lands
(Asare et al., 2003; Cofie et al., 2005). The recurrent disease outbreaks
in the past have been linked to the direct application of sludge in
many societies (Hellmér et al., 2014; Okoh et al., 2010).

Recently, Zaneti et al. (2020) used quantitativemicrobial risk assess-
ment (QMRA) approach to quantify the health risk to the workers at
WWTPs for three COVID-19 scenarios (three-tiered approach: moder-
ate, aggressive and extreme). The viral load was determined in the
range of 1.03 × 102 to 1.31 × 104 copies/mL with estimated risks for in-
fection to be 6.5 × 10−3 and 3.1 × 10−2, respectively, for the aggressive
and extreme scenarios. The calculated risk was above the WHO bench-
mark of tolerable risk used for virus infection of 10−3 and also for the
risk of infection of E. coli, which is used as common pathogen indicator.
From here, it can be suggested that the virus particles associated with
sludge can potentially complete all of the transmission routes, finally
reaching back to humans (Hurst and Gerba, 1989). Such transmission
in underprivileged societies is likely where workers or people living in
the close vicinity are not provided with personal and collective protec-
tive equipment (PPEs and CPEs).

Another aspect of SARS-CoV-2 transmission is the improper solid
waste management practices. In developing countries, the use of
facemasks and other PPEs has become compulsory at public places.
Nzediegwu and Chang (2020) estimated that the total daily use of
facemasks in fifteen different African countries is approximately
586,833,053. On one hand, governments of these countries are taking
strict measures to contain and reduce the spread of COVID-19; whereas
on the other hand, the appropriate disposal of PPEs is being overlooked.
As observed recently, SARS-CoV-2 could stay on different surfaces such
as plastic and stainless steel up to 72 h (van Doremalen et al., 2020); an
improper disposal or recurrent use of the contaminated facemasks
could lead to the spread of the virus both locally and globally.

Additionally, underprivileged societies cannot afford to purchase or
produce their own disinfection chemicals that could help them inacti-
vate the virus. For instance, in many countries such as Egypt, India,
and Tunisia, wastewater is not treated beyond secondary stage
(Adewumi and Oguntuase, 2016). Hence, their treatment systems
mostly rely on natural systems such as stabilization ponds and/or la-
goons. This raises the questionwhether natural conditions are sufficient
to inactivate the virus in the environment, which is presumed effective
for other coronaviruses. The risk associated with the presence of SARS-
CoV-2 in the surface water appears to be negligible, nevertheless, the
situation for developing countries might be different due to improper
sanitation and poor waste management practices.

Another concern in developing countries is the cross-contamination
of the drinking water systems by the improper management of the
wastewater. Although no current evidence shows that human
coronaviruses are present in surface or groundwater or are transmitted
through contaminated drinking-water (La Rosa et al., 2020), previous
waterborne outbreaks due to fecal-oral pathogens from developing
countries have been linked to cross-contamination due to poorly main-
tained distribution systems, failure to disinfect water or maintain a
proper disinfection residual, intermittent service, excessive network
leakages, and inadequate sewage disposal, among others (Lee and
Schwab, 2005; Anakhasyan et al., 2012).

As temperature effect is found notable in inactivating coronaviruses,
colder regionsmay allow the longer survival/persistence of SARS-CoV-2
in the environment. This situation could cause post-pandemic out-
breaks (Kissler et al., 2020) as seen previously for other viral diseases
such as influenza (Sakoda et al., 2012). Moreover, the intensity and
timing of control measures should be handled carefully in underprivi-
leged societies because the fatality rate might rise for these regions
due to poor health care, wastewater management, and overpopulation.
A similar situation has already seen in Iran recently where a surge in
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number of COVID-19 infections was seen after people did not follow the
health guidelines during Persian new year holidays, i.e. Nowruz festival
(Hafezi, 2020). Likewise, Wuhan (China) is fearing a second wave of
COVID-19 outbreak because a cluster of cases are seen after businesses
and schools are reopened on 8th of April 2020 (Jiang and Goh, 2020).
In the 20th century, during the Spanish flu outbreak, up to 30% of the fa-
tality was recorded from India alone due to the recurrent outbreaks
(Barro et al., 2020). For SARS-CoV-2, Kissler et al. (2020) projected the
post-pandemic transmission dynamics and forecasted its future accord-
ingly. The factors such as seasonal variations, duration of immunity, and
degree of cross-immunity between SARS-CoV-2 and other
coronaviruses, and timing of the control measures were highlighted as
key components that may contribute to post-pandemic transmission.
Furthermore, modeled outcomes suggested that SARS-CoV-2 is capable
of producing a substantial outbreak regardless of establishment time.

Last but not least, rigorous monitoring of the wastewaters in under-
privileged societies should be given top priority unlessmost of the pop-
ulation is immunized. This could help in early detection of the outbreak
following appropriate remedial solutions to keep the virus out of the
water cycle. A major challenge in these societies is to develop cost-
effective screening systems because advancedmethods are less feasible.
To this end, paper-based detection methods are being developed for
COVID-19 which would help assess wastewater-based epidemiology
for these societies (Mao et al., 2020).

6. Conclusions

Based on current literature, it can be concluded that:

• SARS-CoV-2 may transmit via fecal-oral and virus-laden aerosols-
borne routes. Nevertheless, the intensity of unwanted consequences
may vary in different societies depending on the level of control mea-
sures, environmental conditions, and treatment facilities.

• Currently established disinfection strategies such as chlorination at
WHO recommended doses might not be sufficient to inactivate the
SARS-CoV-2 in places where viral load is high; therefore, more re-
search is encouraged to decipher the fate of the virus in different com-
partments of the environment.

• Because underprivileged societies lack basic infrastructure to remove
SARS-CoV-2 from thewater cycle, the situation could lead to frequent
outbreaks as observed in the past for other viruses.

• More research is encouraged to trace the actual fate of SARS-CoV-2 in
the environment and to develop/revise the disinfection strategies ac-
cordingly.

• The information presented in this short reviewmight be useful for the
risk analysis of SARS-CoV-2 in the water cycle.
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