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A novel supplemental maneuver to predict fluid responsiveness in 
critically ill patients: blood pump-out test performed before renal 
replacement therapy
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Background: Passive leg raising (PLR) test, known as reversible increasing venous return, could predict 
hemodynamic intolerance induced by renal replacement therapy (RRT). Oppositely, blood drainage 
procedure at the start of RRT cuts down intravascular capacity which is likely to have changes in fluid 
responsiveness has been little studied. Our study aimed to determine whether blood drainage procedure, 
defined as blood pump-out test, which is essential and inevitable at the beginning of RRT could predict fluid 
responsiveness in critically ill patients. 
Methods: Critically ill patients underwent RRT with pulse contour analysis were included. During PLR, 
an increase of cardiac output (CO, derived from pulse contour analysis) ≥10% compared to baseline was 
considered responders as the gold standard. BPT was performed at a constant speed after the increase of 
CO induced by PLR returned to baseline and the maximal of CO within 2 minutes was recorded. Then area 
under ROC curve of CO changes to identify responders from non-responders in BPT was calculated based 
on the results from PLR test.
Results: Sixty-five patients were enrolled. Thirty-one/sixty-five patients (47.7%) were considered 
responders during PLR. And after analysis by ROC curve, a decrease in CO greater than 11.0% during BPT 
predicted fluid responsiveness with 70.9% sensitivity and 76.5% specificity. The highest area under the curve 
(AUC) was found for an increase in CO (0.74±0.06; 95% CI: 0.62 to 0.84). 
Conclusions: BPT could be a supplement to PLR, providing a novel maneuver to predict fluid 
responsiveness in critically ill patients underwent RRT. (Trial registration: ChiCTR-DDD-17010534). 
Registered 30 January 2017 (retrospective registration).
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Introduction

The concept of fluid resuscitation is highlighted in the 
guidelines of the Surviving Sepsis Campaign (1). In the 
early stage, the fluid resuscitation is an indispensable and 
important treatment for patients with septic shock (2,3). 
Reasonable volume therapy can increase the preload of 
the heart by overfilling the fluid, thereby increase the 
cardiac output, improve the hemodynamic state of the 
patients, optimize the heart function and improve the 
tissue perfusion. However, the expansion in volume results 
in an increase of preload, not elevation of cardiac output, 
even sometimes increasing the burden of cardiopulmonary 
capacity. After volume therapy, only 50% of patients with 
unstable hemodynamics had increased cardiac output. 
Therefore, it is particularly important to predict the 
patient’s response to fluid responsiveness before volume 
therapy, that is, to accurately evaluate the patient's fluid 
responsiveness before volume therapy (4,5). 

There are several strategies that can be used to predict 
fluid responsiveness and the most used two methods 
are fluid challenge and the passive leg raising (PLR) 
maneuver (6,7). The first strategy is based on titration 
and monitoring of the effects of volume expansion. This 
protocol is recommended by the National Institute for 
Clinical Excellence (8). This strategy is associated with 
good outcomes. However, it may also result in repeated 
ineffective fluid boluses. Indeed, fluid overload and positive 
fluid balance are associated with poor prognosis (9,10). PLR 
is an easy-to-perform and reliable method to assess fluid 
responsiveness. Even when many other dynamic predictors 
are inconsistent, it maintains excellent performance 
and avoids unnecessary fluid management. Importantly, 
its prediction remains valuable in patients with cardiac 
arrhythmias or spontaneous breathing activity (11,12). PLR 
has been demonstrated to produce changes in preload, 
increasing stroke volume (SV) significantly in patients 
who meet at the responder part of the ventricular function 
curve of Frank-Starling. Likewise, this is considered a 
reversible filling volume test as its effect on SV disappears 
after the patient returns to the supine position (13-15). 
The PLR test has been included in the last update of the 
recommendations of the Surviving Sepsis Campaign (1) 
and in a consensus conference of the European Society of 
Intensive Care Medicine (16). However, clinically, not all 
severe cases can be successfully implemented PLR (17,18). 

AKI occurs in 5–45% of critically ill patients, and 
renal replacement therapy (RRT) is the main treatment 

of critically ill patients with severe AKI (19,20). Fluid 
management plays a critical role in AKI patients. But is 
there a suitable, and easy but long-term neglected way to 
evaluate volumetric reactivity in this particular population? 
According to our pilot study, there is about 210 mL blood 
drained from the body at the start of RRT. The procedure 
of blood drainage, named by blood pump-out test (BPT), 
is inverse to the autologous bloodletting from the PLR 
test, which may make patients with insufficient effective 
circulating blood volume have decreased CO, while patients 
with blood volume overload or normal changes in CO may 
have a variety of possibilities. Little studies focus on BPT 
and we hypothesized that BPT could serve as a supplement 
maneuver in predicting fluid responsiveness in patients with 
AKI underwent RRT.

Methods

This single-center, real-world, prospective clinical study 
(ChiCTR-DDD-17010534) was conducted from June 
2016 to August 2018 at Guangdong Provincial People’s 
Hospital and approved by the hospital’s Ethical Committee 
(No. GDREC2016313H) and all patients enrolled 
were informed about the clinical trial and accepted to 
participate.

Patients 

Inclusion criteria were as follows: (I) age ≥18 years old; (II) 
renal replacement therapy was needed. Exclusion criteria 
were as follows: (I) age <18 years old; (II) pregnant women 
or patients with end-stage malignant tumors; (III) patients 
who do not need blood purification therapy or PiCCO 
monitoring can not be performed; (IV) no informed 
consent.

All enrolled patients must have undergone RRT who 
had a transpulmonary thermodilution device already in 
place (PiCCO device, Pulsion Medical Systems, Munich, 
Germany).

Study design 

PLR process (Figure 1) and determination of parameters
(I) Patients took a 45° semi-recumbent position, and had 
PLR when the blood purification was about to the blood 
drainage. After each position change and after PLR test, 
we recorded hemodynamic parameters accordingly. The 
pulse contour-derived cardiac output was calibrated by 
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transpulmonary thermodilution at baseline, and then when 
the CO value is stable, we will take the corresponding value 
as the baseline CO value measured by pulse contour-derived 
cardiac output.

(II) In the timeframe of PLR effects, the maximum value 
of CO will appear during 30-90 s after the onset of the 
PLR test, which was measured by real-time pulse contour-
derived cardiac output monitoring. Fluid responders was 
defined with an increase in the pulse contour analysis-
derived ∆CO ≥10% during PLR, if ∆CO <10%, then it was 
non-responders. ∆COPLR = (COmaximum − CObaseline)/CObaseline, 
CObaseline refers to the baseline value of CO in a stable state 
before PLR, and COmaximum will appear during 30–90 s after 
the onset of the PLR test.

Determination of the parameters during BPT in the 
blood purification pipelines (Figure 2)
After PLR, patients returned to the 45° semi-recumbent 
position for 5–10 minutes. Re-assess CO in the semi-
recumbent position (should return to baseline), it 
usually took five to ten minutes, then BPT in the RRT 
pipelines would begin. The speed of blood drainage was 
approximately 100 mL/minute, and the whole process of 
blood drainage would last for about 2 minutes. During 
the process of arterial end blood drainage, the venous end 
blood return pipeline is temporarily closed to ensure that 
no additional fluid enters the body during the process of 
blood drainage. Within the 0.5–2 minutes during blood 
drainage, CO minimum was taken by pulse contour-derived 
CO. During the whole process, intravenous rehydration 
stopped, except the vasoactive drugs that pumped into the 
veins at a constant speed. ∆COBPT = (CObaseline − COminimum)/
CObaseline, CObaseline refers to the baseline value of CO in a 
stable state before BPT, and COminimum will appear during 
120 s after the onset of the BPT test. The CRRT machine 
is made in Germany by Fesenius, and the blood filter model 
is Ultraflux AV1000S. 

Statistical analysis 

The normality of data was tested by the Kolmogorov-
Smirnov normality test. Continuous variables were 
expressed as median as mean ± standard deviation (SD). 
The sample size was based on the assumption of finding 
92.5% sensitivity in pre-experiment and the intention to 
obtain a significant of α=0.05, allowing an error of δ=0.08. 
We calculated that 65 patients needed to be included in the 
study. Comparisons of variables between cases with vs. cases 

1                                                  2 (90s)                                                    3 (5−10 minutes)                                              4 (2 minutes)

45° 45° 45° 45°

BPT

(210 mL)

Figure 1 Graphic description of the study protocol and positions in which measurements were performed: (1) Baseline measurement in the 
45° semi-recumbent position. (2) The bed was then raised to elevate the patient’s legs to 45°. During 30–90 s, the second measurement was 
taken. (3) Re-assess CO in the semi-recumbent position (should return to baseline), it was usually taken five to ten minutes, when parameters 
were recorded. (4) Finally, blood drainage before RRT was performed in about two minutes, and the final measurements were collected.
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Figure 2 Receiver-operating characteristic curves showing the 
predicting value of BPT-induced decreases in cardiac output to 
discriminate between responders and non-responders.
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without fluid responsiveness were assessed by a two-tailed 
Student’s t test or a Mann-Whitney U test, as appropriate. 
A receiver-operating characteristic (ROC) curve was 
constructed to test the ability of the LPLR-induced changes 
in the CO to predict a fluid responsiveness. Sensitivities, 
specificities and areas under (AUROCs) the ROC curve are 
expressed as mean (95% CI). The diagnostic cut off was 
determined by the best Youden index value. Since some 
patients underwent several BPTs, each BPT was considered 
as a “case”, and all cases were included in the primary 

analysis. SPSS19.0 software was used to analyse the data. A 
P≤0.05 was considered statically significant.

Results

Patient characteristics

Sixty-five patients met inclusion criteria and enrolled in this 
study. Their characteristics were reported in Table 1. 

Responders vs. non-responders identified by ∆CO PLR ≥10% 
during PLR

There were 31 responders vs. 34 non-responders during 
PLR with ∆COPLR ≥10%. Compared with non-responders, 
responders had lower MAP (73±11 vs. 84±14 mmHg, 
P=0.005), CVP (7±3 vs. 10±5 cmH2O, P=0.043) as well as 
SI (29.37±11.94 vs. 41.25±16.44 mL/m2, P=0.008) while 
the former had lower CO (4.64±1.34 vs. 6.40±3.89 mL/m2, 
P=0.072) but with no significant statistical difference (Table 2). 

Changes of hemodynamic variables during BPT

Based on the increase of ∆CO BPT during PLR (golden 
standard), responders and non-responders had the contrary 
hemodynamic changes during BPT compared with those 
during PLR test (Table 3). Responders showed higher HR 
(94.5 vs. 79.9/min) and lower CO (4.0 vs. 5.4) compared 
with non-responders (Table 4).

Prediction of CO changes to fluid responsiveness during BPT

The aera under the ROC curve was 0.74 (95% CI:  
0.62–0.84) (Figure 2). The positive and negative predictive 

Table 1 Patient’s characteristics

Total (n=65)

Gender, male/female 40/25

Age, mean ± SD (y) 82±11

BSA, mean ± SD (m2) 1.8±0.10

BMI, mean ± SD (kg/m2) 23±3

APACHEII (ICU admission), mean ± SD 27±6

SOFA (ICU admission), mean ± SD 14±4

28d event in the ICU dead/alive 43/22

LAC, median (range) (mmol/L) 1.4 (1.2–2.1)

NT-proBNP, mean ± SD (pg/mL) 76,120±6,644

ScvO2 %, median [range] 65 [53–77] 

SCr, mean ± SD (mmol/L) 217±215

BSA, body surface area; SD, standard deviation; BMI, Body 
Mass Index; APACHEII, Acute Physiology and Chronic Health 
Evaluation; SOFA, Sequential Organ Failure Assessment; 
LAC, lactic acid; NT-proBNP, N-terminal pro-B-type natriuretic 
peptide; ScvO2 %, continuous central venous oxygen 
saturation; BUN, blood urea nitrogen; SCr, serum creatinine.

Table 2 Baseline hemodynamic variables in responders and non-responders during PLR test

Total (n=65) Non-responders (n=34) Responders (n=31) P value

IAP, mean ± SD (cmH2O) 12±4 12±4 13± 4 0.542

HR, mean ± SD (/min) 90±21 88±21 98±18 0.058

MAP, mean ± SD (mmHg) 81±14 84±14 73±11 0.005

CVP, mean ± SD (cmH2O) 9±5 10±5 7±3 0.043

SV, mean ±SD (mL) 67±26 72±27 52±16 0.007

CO, mean ± SD (L/min) 5.9±3.5 6.4±3.9 4.6±1.3 0.072

SD, standard deviation; IAP, intra-abdominal pressure; HR, heart rate; MAP, mean arterial pressure; CVP, central venous pressure; Sv, 
stroke volume; CO, cardiac output.
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values were 0.709 and 0.765, respectively. Its Youden index 
was 0.474, and the positive and negative likelihood ratios 
were 2.19 and 0.42, respectively (Table 5).

Discussion

To our knowledge, this was the first study to access the value 
of BPT in predicting fluid responsiveness based on a standard 
PLR test in critically ill patients. Interestingly, we found that 
BPT is a supplemental maneuver to PLR based on blood 

drainage in CRRT, which might supply a novel way to guide 
fluid management in the next steps in AKI patients, like 
limitation of unnecessary fluid infusion or expansion if CO 
decreases more than 11% compared with baseline during BPT.

Fluid therapy is the key treatment of critical patients. 
Insufficient volume affects the perfusion of important 
organs, exacerbates the ischemia and hypoxia of tissues and 
organs, and even makes organ damage irreversible. At the 
same time, the critically ill patients are often accompanied 
by increasing age, complicated with many basic diseases, 

Table 3 ∆CO between non-responders and responders in PLR and BPT

∆CO (%) Non-responders Responders P value

PLR 4 17 <0.001

BPT −8 −13 0.02

PLR, passive leg raising; BPT, blood pump-out test.

Table 4 Changes of hemodynamic variables during BPT

Baseline measurement BPT

Non-responders (n=34) Responders (n=31) P value Non-responders (n=34) Responders (n=31) P value

HR (bpm) 80±18 100±18 <0.001 79±19 101±19 <0.001

MAP (mmHg) 85±15 76±12 0.008 78±16 68±13 0.005

CVP (mmHg) 10±5 8±4 0.172 9±8 7±4 0.24

SV (mL) 79±28 53±16 <0.001 72±27 44±16 <0.001

CO (mL/min) 6.8±4.5 4.9±1.4 0.032 5.2±1.9 4.2±1.3 0.001

PLR, passive leg raising; HR, heart rate; MAP, mean arterial pressure; CVP, central venous pressure; SV, stroke volume; CO, cardiac 
output.

Table 5 Accuracy of cardiac output changes after BPT to predict fluid responsiveness

Cut-off values (%) Sensitivity Specificity PPV NPV PLR NLR Youden index

≤−5 90.32 32.35 54.9 78.6 1.34 0.3 0.23 

≤−8 77.42 64.71 66.7 75.9 2.19 0.35 0.42 

≤−10 70.97 73.53 71 73.5 2.68 0.39 0.45 

≤−11 70.97 76.47 73.3 74.3 3.02 0.38 0.47 

≤−12 67.74 76.47 72.4 72.2 2.88 0.42 0.44 

≤−13 54.84 82.35 73.9 66.7 3.11 0.55 0.37 

≤−14 35.48 85.29 68.7 59.2 2.41 0.76 0.21 

≤−16 29.03 85.29 64.3 56.9 1.97 0.83 0.14 

BPT, blood pump-out test; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative 
likelihood ratio; AUC, area under the curve; CO, cardiac output.
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and the damage of important organs etc. (21). The excessive 
volume load will also aggravate the injury of tissues and 
organs. More importantly, capacity states are not equal 
to fluid responsiveness (22). According to the Frank-
Staring curve, at its ascending branch, the SV will increase 
obviously before the increase of negative load, but it will 
be harmful to increase the rehydration during its plateau 
period. Therefore, it is very important to determine the 
position of the patient on the curve, that is to say, the 
accurate judgment of the patient's volumetric reactivity is 
the key factor of the critical patient's fluid therapy (23).

The fluid challenge and the PLR maneuver are two 
techniques which are widely used, practical, easy to 
perform, and physiologically based, which can be used 
to predict critically ill patients’ fluid responsiveness with 
a high degree of accuracy (24,25). Both PLR and fluid 
challenge are based on the cardiac function curve of Frank-
Starling. However, fluid administration does not always lead 
to increase CO (13). Is it possible to know if our patient 
will respond to fluids without administration, avoiding 
the negative consequences of excessive volume? (26).  
PLR induces a translocation of venous blood from the 
legs and the splanchnic compartment toward the cardiac 
chambers (6,27,28). Fluid management influences ICU 
patients’ outcomes. Both overhydration and conservative 
fluid therapy can lead to complications. Inappropriate fluid 
management in the treatment of critically ill patients can 
increase morbidity and mortality (29,30). Invasive static 
measurements have been used to evaluate volaemia, such 
as central venous pressure or pulmonary capillary wedge 
pressure. It has been demonstrated that these parameters are 
bad indicators of volaemia and are not useful as predictors of 
an adequate response to fluid therapy, including when, how 
much fluid to administer, as only half of critically ill patients 
respond to fluid loading with an increase in CO called “fluid 
responsiveness”. Traditionally, clinical symptoms, volaemic 
status has been evaluated using MAP, HR, it is known that 
MAP and HR cannot be used reliably to measure changes 
in central blood volume. Based on the above indicators, 
no appropriate treatment can be given clinically (31,32). 
Based on the hemodynamic consequences of the heart-
lung interactions, the use of dynamic indices of preload that 
result from respiratory variations is well-accepted point-of-
care predicting parameters of fluid responsiveness (33). The 
use of stroke volume variation (SVV) and pulse pressure 
variation (PPV) to accurately predict a positive response 
to fluid administration, however, may be restricted to 
mechanical ventilation condition and normal rhythm (34). 

Our research differs from previous research in many 
ways. RRT is the main treatment of critically ill patients 
with severe AKI (19,20). When it comes to the beginning 
of RRT, based on our previous experimental findings, 
about 210 mL blood drained off body circulation within 
a short time (appropriately 2 min). The process of blood 
drainage before RRT simulates the effects of autologous 
bloodletting, without changing patients’ positions. Hence, 
we can infer that its value in evaluating fluid responsiveness 
is inversed to the effects of PLR test. The main interest of 
BPT is to limit unnecessary fluid infusion. Since the effects 
of BPT are inversed to the autologous bloodletting from 
the PLR test, patients with insufficient effective circulating 
blood volume may have a decrease in CO, while patients 
with blood volume overload or normal changes in CO 
may have a variety of possibilities. We hypothesized that 
blood drainage before RRT can help in predicting fluid 
responsiveness. In our study, we have showed that BPT 
was a good predictor of fluid responsiveness for critically ill 
patients. A decrease of CO greater than 11.0% after blood 
drainage maneuver predicts a fluid responsiveness with 
70.9% sensitivity and 76.5% specificity, and with highest 
AUROC (0.74±0.06; 95% CI: 0.62 to 0.84).

The results of our clinical trial provide a method for 
predicting fluid responsiveness with moderate specificity and 
sensitivity. However, our clinical trial has several limitations. 
Firstly, using PLR in the context of weaning is that it requires 
a technique to measure cardiac output. Which restricted 
the patients we included, required a high level of medical 
equipment and doctors’ clinical experience and the results of 
the study cannot be applied to primary hospitals. Secondly, we 
also did not specifically investigate some other conditions that 
could be associated with weaning-induced cardiac dysfunction, 
such as hypertrophic obstructive cardiomyopathy. Thirdly, 
the use of saline is unavoidable in PICCO monitoring, and 
the effect of this fluid on CO cannot be eliminated. Finally, 
PLR cannot be used to specific situations like intra-abdominal 
hypertension, amputation of both legs and so on (17,18), 
as we mentioned in the background part, which limited the 
correlation study between PLR and BPT to predict fluid 
responsiveness in the above groups of patients. And in our 
study, the most patients were with septic shock, acute heart 
failure and pulmonary infection.

Conclusions 

Our study found that BPT could serve as a supplemental 
maneuver to assess fluid responsiveness in critically ill 
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patients with AKI, which was likely to direct the future fluid 
management without extra fluid expansion.
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