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Abstract

In recent years, technological advances in sequencing have accelerated our understanding of
epigenetics in ocular development and ophthalmic diseases. We now know that epigenetic
modifications are necessary for normal ocular development and biological processes such as
corneal wound healing and ocular surface repair, while aberrant epigenetic regulation underlies the
pathogenesis of a wide range of ocular diseases, including cataracts and various diseases of the
ocular surface. As the epigenetics of the eye is a constantly changing field of medicine, this
comprehensive review focuses on innovations and scientific discoveries related to epigenetic
control of anterior segment diseases that were published in the English literature in the past five
years. These recent studies attempt to elucidate therapeutic targets for the anterior segment
pathological processes. Already, recent studies have shown therapeutic potential in targeting
epigenetic mechanisms of ocular disease, and new epigenetic therapies are on the verge of being
introduced to clinical practice. New drug targets can potentially emerge as we make further
discoveries within this field.
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1. Introduction

The field of epigenetics encompasses the reversible, molecular modifications that regulate
gene expression, without changing the original DNA sequence. As sequencing technology
advances, recent studies have elucidated the role of epigenetics in aging and also in a variety
of complex, multifactorial diseases within different fields of medicine including cancer,
diabetes, autoimmune, vascular and neurodegenerative diseases. Epigenetic factors may help
to explain the variable onset and severity of these diseases and also to serve as biomarkers
and inspire targeted pharmaceutical development!. Several epigenetic mechanisms can
interact with genetic factors to change disease phenotypes. For example, dysregulation of the
chromatin state and mutations in chromatin remodeling genes have been found in various
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diseases; DNA methylation patterns, which have an important positive and negative role in
the regulation of transcription, have also been found to regulate cancer progression2->; post-
translational histone modifications, which changes patterns of transcription further modulate
disease processes including cardiovascular and neurodegenerative disease®’. In addition,
various non-coding RNA have been shown to regulate and inhibit genes in a variety of
disease. These mechanisms are often influenced by environmental factors, such as lifestyle,
diet, and exposure to toxins’.

Only recently have epigenetic advances been made in the study of ocular diseases. DNA
methylation, chromatin remodeling and various non-coding RNAs have been established as
essential mediators in normal ocular development8-15, Many believe that these epigenetic
mechanisms could be the missing link to understanding disease pathogenesis!->-8.16,
Numerous ophthalmic diseases are not fully explained by discrete genetic mutations,
suggesting epigenetics may play a role; meanwhile, identical twin studies have shown that
the heritability of ophthalmic diseases varies from 27% for diabetic retinopathy’ to 90% for
myopial8. Epigenetic changes resulting from environmental factors may play a significant
role, and interventions to modify these factors hold increasing promisel-6:1920, Research in
epigenetics can further our understanding of ocular disease pathogenesis and revolutionize
novel epigenomic-targeted treatments of ocular pathologies.

Although reviews on ocular epigenetics have explored various posterior segment diseases
including diabetic retinopathy and age-related macular degeneration, there is a paucity of
comprehensive review focused exclusively on the anterior segment diseases and its
therapeutic potential in anterior segment diseases. In addition, this field of medicine is
constantly changing, and emerging new therapeutic options are becoming more available in
the clinics on a yearly basis. This article aims to review recent developments pertaining to
epigenetics of the anterior segment and its implications in future research and therapeutic
potential.

2. Search strategy

Both primary and secondary literature searches were performed using PubMed. The initial
step was a primary literature search in PubMed for original research articles in English
published within the last 5 years (January 2014-April 2019). This step focused on recently
discovered pathways, associations, and therapeutic targets that highlight the relevance of
epigenetics on the anterior segment of the eye. This literature search was organized
sequentially by mechanism of epigenetic regulation, i.e. DNA methylation, post-translational
histone modification, ATP-dependent chromatin remodeling, and non-coding RNA
regulation. Characteristics of these studies, e.g. animal model, tissue type, results,
significance, were collected.

Our detailed PubMed search for relevant studies on DNA methylation in the anterior eye
segment used the terms (“DNA methylation” OR “DNMT” OR “methyltransferase”) AND
(“ocular development” OR “cornea” OR “lens” OR “uvea” OR “conjunctiva” OR
“trabecular meshwork’”) AND English [Language] AND ((“2014/01/01” [PDAT]:
“2019/04/01” [PDAT])). Subsequent searches used the same terms, except the first search
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term (“DNA methylation” OR “DNMT” OR “methyltransferase”) as follows: for studies on
post-translational histone modification, we used the terms (“post-translational histone™)
AND (“modification” OR “acetylation” OR “deacetylation” OR “methylation” OR
“phosphorylation” OR “ubiquitination” OR “HDACI"). For studies on ATP-dependent
chromatin remodeling, we used the terms (“chromatin remodeling” OR “SWI” OR “SNK”
OR “ISWI” OR “BRM” OR “ATP nucleosome”). For non-coding RNA regulation, we used
the terms (“non-coding RNA” OR “RNA interference” OR “RNAI” OR “microRNA” OR
“miRNA” OR “SiRNA”). In addition, a detailed search of PubMed was conducted using the
terms “epigenetics” AND (“anterior eye” OR “cornea” OR “lens” OR “trabecular
meshwork” OR “uvea” OR “ocular development™) to manually identify relevant articles that
were missed in the above searches.

This was followed by a secondary literature search that manually examined the references
used by articles identified in the primary literature search. In particular, this search focused
on earlier original research studies that helped lay the foundation for more recent research
studies. This secondary literature search did not have date constraints and included articles
published since 1991 (the earliest year of publication for the seminal papers cited by
literature in our primary search0), in order to provide adequate context for more recent
studies, which were the focus of this review. A manual literature search was also conducted
on the definitions and mechanisms regarding the epigenetic mechanisms studied.

3. DNA methylation and its role in anterior segment diseases

3.1.

DNA methylation, perhaps the most widely investigated epigenetic mechanism, plays a
critical role in development by facilitating transcriptional silencing, X-chromosome
inactivation, and genomic imprinting. Methylation of DNA is carried out by enzymes called
DNA methyltransferases (DNMTSs), each with distinct functions. DNMT1 maintains and
restores methylation patterns during DNA replication, whereas DNMT3a/3b set up de novo
methylation patterns, primarily during embryonic development. In humans, the 5’ cytosine is
methylated to produce 5-methylcytosine, which fundamentally results in gene silencing, but
also results in genomic imprinting and X-chromosome inactivation during embryonic
development?21,

Our understanding of DNA methylation in the eye is advancing rapidly. Bonnin et al. (2014)
created the first index of DNMT expression profiles in the human eye, demonstrating tissue-
specific expression patterns of DNMT transcripts found in the cornea, conjunctiva, anterior
lens capsule, and trabecular meshwork®.

DNA methylation and corneal wound healing

DNMTSs are highly expressed in the cornea®. Recently, it was found that DNMTSs play a role
during corneal epithelial wound healing. In a mouse model, Luo et al. (2019) found that
global DNA hypermethylation occurs during corneal epithelial wound healing in vitro due to
increased expression of DNMT1 and DNMT3B?22, These subfamilies of DNMTs appear to
contribute to the control of epithelial cell migration, differentiation and proliferation. In
addition, inhibition of DNMT1 expression appears to slow down corneal epithelial healing
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in mice. Therefore, they conclude that upregulating DNMT1 methylation activity is a
potential therapeutic strategy to facilitate corneal epithelial wound healing.22

DNA methylation and Fuchs Dystrophy

In addition to corneal epithelial wound healing, DNA methylation was recently found to
play a role in metabolism, fluid transport functions, and structural organization in corneal
endothelial cells!8. Khuc et al. (2017) investigated DNA methylation changes in Fuchs
endothelial corneal dystrophy (FECD), particularly in the late-onset subtype which is not
classically associated with genetic mutations2324, Thus, the authors sought to find the role
of epigenetics in FECD. In this study, DNA methylation patterns in endothelium of patients
with FECD were compared to normal human endothelial tissue. It was found that
hypermethylated genes were associated with defects in fluid transport and metabolism,
while hypomethylated genes were associated with activation of cytoskeletal organization,
which allows the corneal endothelium to function as a physical barrier that prevents excess
fluid from entering the corneal stromal®. Thus, the authors conclude that altered DNA
methylation patterns may play a role in corneal edema and subsequent loss of corneal
transparency in FECD, and may serve as a novel therapeutic target.

3.3. DNA methylation and development of the lens and formation of cataracts

The integral role of DNA methyltransferases in lens development has been well established,
with an early study (Peek et al., 1991) showing the association of de-methylation of the y-
crystallin promoter gene with the physiologic differentiation of lens epithelial cells in a rat
model. These DNA methylation patterns then establish a -y-crystallin gradient across the lens
to maintain the refractive index0. Later studies (Klok et al., 1998) confirmed that indeed,
de-methylation increased mRNA and protein levels of y-crystallin?>. More recent studies in
zebrafish (Tittle et al., 2011) and mouse models (Hoang et al, 2017) confirmed that DNMT1
is necessary for lens development, as inactivation of DNMT1 and subsequent global DNA
hypomethylation during embryonic development resulted in apoptosis, reduced proliferation
of lens cells, and defects in lens development!1:26, However, more studies are needed to
elucidate the disparate effects (e.g. cellular differentiation, apoptosis, inhibited proliferation)
of DNA de-methylation in lens epithelial cells, which may be explained by factors such as
the extent of methylation, specific genes targeted, and the stage of development.

More recently, multiple studies further implicated altered DNA methylation in the
pathogenesis of age-related cataracts (ARC). Li et al. (2014) compared the DNA
methylation profiles of DNA repair genes between age-related cataract tissue and normal
lens epithelium and found promoter hypermethylation and reduced mRNA levels of O-6-
methylguanine-DNA methyltransferase (MGMT), a DNA repair gene, in the cataract tissue
compared to normal lens epithelial tissue?’. The authors postulated that MGMT methylation
and decreased expression contributed to development of cataract. This research group later
(in 2015) found that cataract samples also had hypermethylation of 8-oxoguanine DNA
glycosylase 1 (OGGL1), a base excision repair protein. The researchers were able to
demethylate OGG1, which in turn upregulated expression of OGG1 and protected cultured
human lens cells against apoptosis induced by UVB light28. A 2017 study by the same group
identified five other genes (DNMT3B, HDAC, HDAC4, HDAC9, and MBD3) with
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increased expression in ARC cells which were postulated to facilitate epigenetic changes in
cataracts?®,

3.4. DNA methylation, fibrosis of the trabecular meshwork and glaucoma pathogenesis.

One mechanism that can lead to glaucomatous damage is fibrosis of the trabecular
meshwork (TM), which reduces aqueous humor outflow, thereby leading to elevated
intraocular pressure (I0P)30. This process is mediated by pro-fibrotic factors (TGF-B,
platelet-derived growth factor, connective tissue growth factor) that stimulate trabecular cells
to produce extracellular structural proteins (e.g. collagen)3L. Recent studies suggest that
epigenetic changes modulate the balance of profibrotic growth factors as well as anti-fibrotic
factors, such as RAS protein activator like 1(RASAL1)30. In a study using cultured human
TM cells, McDonnell et al. (2016) evaluated the DNA methylation profiles of TGF-p1 and
RASALL1 in cells from healthy donors and donors with glaucoma. They found distinct
methylation profiles between glaucomatous and healthy cells, with glaucomatous TM cells
in a pro-fibrotic state, characterized by decreased RASAL1, and increased TGF-B1 and an
overall increased DNMT1 expression. Similarly, hypoxia (relative to the physiologic state of
low oxygen tension in the anterior chamber) triggered normal TM cells to display similar
expression and methylation profiles as the glaucomatous TM cells32. However, this in vitro
model of hypoxia may not be extrapolatable to the /7 vivo microenvironment, characterized
by high levels of protective antioxidants and low oxygen tension in the anterior chamber and
increased susceptibility to glaucoma when oxygen tension rises33-35,

Other studies have implicated epigenetic modulation as a potential mechanism for glaucoma
pathogenesis. For example, in a study of trabeculectomy sections from glaucoma patients
and controls, Chansangpetch et al. (2018) found that the glaucoma group had different
methylation profiles of two repetitive genetic sequences — Alu and HERV-K36, The
hypomethylation of Alu occurred in all subsets of glaucoma (primary open angle, primary
closed angle, secondary) so was likely related to the diseased TM itself; meanwhile the
hypermethylation of HERV-K was only seen in primary open angle glaucoma, suggesting
that it has a more genetic basis. Matsuda et al. (2015) found that dexamethasone treatment of
cultured human TM cells, a model for steroid-induced glaucoma, led to demethylation of
promoter regions for three genes (FKBP5, ZBTB16, SCNN1A) and methylation of promoter
regions for 4 genes (ARSI, HIC1, GREM2, and MATN2), with methylation inversely
correlated to gene expression3’. This steroid-induced methylation causes changes in genes
expression and can potentially help elucidate the mechanism behind steroid-induced
glaucoma.

4. Post-translational histone modification and anterior segment diseases

Another distinct epigenetic mechanism that regulates gene transcription is through histone
modification. Many enzymes, including histone acetyltransferases (HAT), deacetylase
(HDACS), and methyltransferases, covalently modify histones via methylation, acetylation,
deacetylation, ubiquitination, and phosphorylationl. Acetylation and deacetylation alter the
balance of electrical charges on the histone, thereby affecting its affinity for binding DNA
and chromatin plasticity. In general, acetylation induces relaxation of the chromatin which
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increases transcriptional activity, while deacetylation condenses the chromatin and decreases
transcription?-38.,

Studies over the past decade have found associations between histone modification and
ophthalmic diseases including fibrotic lens complications3, keratitis*?, age related
cataracts*142 granular corneal dystrophy#3, and aberrant corneal wound healing!2. Recent
studies of these histone acetylation pathways have led to new therapeutic targets, and
numerous histone deacetylase inhibitors (HDACIs) are being developed to target these
pathways and potentially revolutionize medical treatment1.39.40.42,44-47

Histone deacetylase inhibitors and ocular surface fibrosis and wound healing.

Histone deacetylase inhibitors (HDACIs) are a novel group of therapeutics that affect gene
expression by increasing acetylation of corresponding histones. Histone deacetylase
inhibitors have demonstrated antifibrotic activity in mouse and rat models of hepatic and
pulmonary fibrosis, as well as in vitro models of skin fibrosis, by the downregulation of
various extracellular matrix-associated genes and inhibition of pro-inflammatory cytokine
production*8-52, Multiple HDACis are undergoing clinical development, including
vorinostat, givinostat, abexinostat, belinostat, panobinostat and trichostatin A3,
Suberoylanilide hydroxamic acid (SAHA) or vorinostat is a HDACi approved by the U.S.
Food and Drug Administration (FDA) for use in patients with cutaneous T-cell lymphoma®*.
Whereas other antifibrotic drugs can disrupt normal cellular functions, this HDACI is
typically innocuous to corneal fibroblasts and other cells, based on multiple studies4:54-57,
Recently, Sharma et al. used trichostatin A, in rabbit models of excimer photorefractive
keratectomy induced corneal haze and found that this drug was noncytotoxic and decreased
corneal haze by inhibiting TGF-betal induced myofibroblast formatin®4.

In addition, Sharma et al. (2016) used suberoylanilide hydroxamic acid (SAHA) to inhibit
fibrosis in a rabbit model of glaucoma filtering surgery. This study found that following
glaucoma filtering surgery, drastically fibrotic postoperative conjunctival healing in rabbits
was linked to deacetylation of histones H3 and H4. In turn, SAHA reduced post-operative
scarring. In addition, compared to the control group, the eyes treated with SAHA
demonstrated increased acetylation of histone H3 and H4, and absence of corneal opacity,
neovascularization, and edema“®. These animal studies demonstrate the therapeutic potential
of HDAC:s as anti-fibrotic agents in ophthalmic conditions, although human studies are
needed.

Histone modification and granular corneal dystrophy and other corneal diseases.

Type 2 granular corneal dystrophy (also known as Avellino corneal dystrophy) is
characterized by a mutation in the transforming growth factor g-induced gene, which
encodes the extracellular matrix protein TGFBIp. This mutation gradually leads to amyloid
and hyaline accumulation in the corneal stroma. TGFp1 was shown by Maeng et al. (2015)
to utilize epigenetic mechanisms to induce the genes encoding amyloid and hyaline. In a
study of cultured human corneal fibroblasts, TGFB1 led to increased histone methylation at
the gene promoters (increased monomethylation of the 4th lysine of histone 3) which also
enables transcription factor binding and subsequent upregulated expression of ECM-
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producing genes*3. Thus, histone H3K4me (monomethylation of the 4th lysine of histone 3)
could be a therapeutic target for attenuating expression of ECM and TGFBIp genes in
granular corneal dystrophy.

In addition, in a rat model of type I diabetes (utilizing alloxan induction), Herencia-Bueno et
al. (2018) found diabetes reduced histone H3 acetylation in the cornea, leading to aberrant
chromatin organization®®. Further research is needed to elucidate the implication of this
change in corneas of patients with diabetes.

4.3. Histone modification and age-related cataracts.

It has been established that histone-modifying enzymes are crucial in normal lens
development!2. For instance, early animal models demonstrate the crucial role histone
modification plays in ocular disease, including the up-regulation of deacetylases (e.g.
SIRT1) in protecting against cataract®®. Histone modifiers such as the acetyltransferases
CBP and p300 have been shown to play a key role in normal cell differentiation in the
mammalian lens. In a mouse model, Wolf et al. (2013) inactivated both CBP and p300 in
embryonic ectodermal lens cells, causing aphakia and arrested growth into mature lens
cells’2,

Histone modification may be triggered by ultraviolet-B (UVB) light exposure, which
represses expression of nucleotide excision repair proteins. Wang et al. (2016) found that
UVB exposure caused H3K9 deacetylation (and subsequent repression) of ERCC6, which
codes the Cockayne syndrome complementation group B (CSB) protein involved in
nucleotide excision repair. Without this functioning repair mechanism, cataracts begin to
form unchecked. An epigenetic mechanism of age-related nuclear cataract (ARNC)
formation is favored over a genetic mechanism of repressed nucleotide excision repair
protein expression, as ARNC samples did not share polymorphisms in the ERCC6 gene?L.

In addition, Glutathione S-Transferase Mu 3 (GSTM3) is an antioxidant enzyme that is
protective against ARNC formation. Li et al. (2016) found that histone modifications are
involved in regulating expression of GSTM3. ARNC patients were found to have
transcriptional repression of GSTM3 mediated by hypermethylation of the GSTM3
promoter, as well as deacetylated histone H3 and methylation at histone H3 Lysine 9 (H3K9)
— all of which are markers of transcriptional repression. This repression was reversed after
treatment with a histone deacetylase inhibitor42,

Lens fibrosis is characterized by epithelial-mesenchymal transition (EMT) of lens epithelial
cells induced by transforming growth factor-g (TGF-g). In a study of fetal human lens
epithelial cells, Ganatra et al. (2015) found that TGF-p treatment resulted in increased
expression of a-smooth muscle actin (a-SMA), a protein that is also upregulated during
EMT. This expression of a-SMA correlated with acetylation of its own histone promoter,
thus suggesting that TGF-p leads to histone acetylation of a-SMA which is correlated with
lens capsule fibrosis. Trichostatin-A, an inhibitor of HDAC, had the opposite effect and
suppressed EMT by decreasing histone H4 acetylation at the a-SMA promoter3?, thereby
reducing fibrosis. These findings point toward the exciting future therapeutic options for
patients.
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5. Chromatin remodeling and anterior segment diseases

In addition to histone modifications, chromatin structure is mediated on a larger scale by
remodeling the nucleosomes that contain these histones. In contrast to covalent histone
modification, chromatin nucleosome remodeling enzymes utilize ATP hydrolysis to non-
covalently move, restructure, and even remove nucleosomes to enable more interaction
between the wrapped DNA and transcription machinery?. The most thoroughly studied
families of chromatin remodelers are SWI/SNF (switchlsucrose-non-fermenting), ISWI
(imitation switch), INO8O (inositol requiring 80), and CHD (chromodomain-helicase-DNA
binding)8°. Genetic mutations of these remodeling complexes are involved in the
pathogenesis of several ocular diseases??, as seen below. In animal models®1-63, ISWI and
SWI/SNF have been found to be crucial for eye development, although human studies are
relatively sparse.

5.1. Chromatin remodeling and ocular surface photocarcinogenesis.

Chromatin-remodeling ATPases have been found to regulate angiogenic and inflammatory
responses in corneal wound healing. Brahma (BRM), one of the two ATPase subunits of the
SWI/SNF chromatin remodeling complex, is a tumor suppressor that is protective against
photocarcinogenesis. In a study using mice subjected to radiation, Hassan et al. (2014) found
that BRM knockout mice had significantly more hyperplasia and disorganized proliferation
of corneal epithelial and stromal cells, while the presence of BRM was protective in control
mice®4,

In addition, recent studies (Tsui et al., 2016) have shown that CCCTC binding factor
(CTCF)-mediated chromatin remodeling may regulate corneal epithelial cell differentiation
by acting as a mediator between transcription factor PAX6 and cell differentiation genes®.

5.2. Chromatin remodeling and cataracts

In one of the earliest studies on the role of chromatin-remodeling complexes in ocular
development, Dirscherl et al. (2005) showed that frog embryos injected with dominant-
negative ISWI mutant mRNA (the resulting mutated ATPase results in catalytic inactivation)
developed defects in lens development and cataracts®2. Later studies have concluded that the
catalytic subunit BRG1, an APTase of the SWI/SNF chromatin-remodeling complex, is also
required for the differentiation of the lens in mice53 and zebrafish26. A mouse model by He
et al. (2010) showed that transgenic mice with dysfunctional BRG1 (created by mutating the
ATP binding site) developed cataracts with abnormal lens cellular structure83, A follow-up
study in 2016 identified another chromatin remodeling enzyme, Snf2h, that is required for
lens development. Knockdown of Snf2h in transgenic mice caused lens cells to differentiate
abnormally, form cataracts, and grow in a stunted and disorganized fashion?3.

5.3. Chromatin remodeling, iris coloration and albinism

In addition to modulating embryonic differentiation, chromatin remodeling complexes are
believed to play a role in determining iris color. The remodeling complex helicase-like
transcription factor (HLTF), a member of the SWI/SNF family, targets an allele on the
oculocutaneous albinism 11 (OCA2) gene, which encodes a key protein in melanocytes®6. In
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turn, the OCA2 protein in melanocytes leads to brown or blue irides depending on degree of
melanin production®’.

6. Non-coding RNA and anterior segment diseases

Non-coding RNAs, otherwise known as RNA interference (RNAIi) molecules, regulate
expression of genes by attaching to effector enzymes to form complexes that bind to and
degrade complementary mRNAL68. Although many types of RNAi molecules exist,
microRNAs (miRNASs) have been the most extensively studied, with at least 2,000 human
miRNAs identified thus far, many of which regulate basic cellular functions such as
inflammation and differentiation-6°. In fact, miRNAs are postulated to regulate over 30% of
the human genome, primarily by suppressing gene expression’?. MiRNAs are 22-nucleotide
RNA molecules that are first transcribed by RNA polymerase 1l into primary miRNA. This
is followed by processing of the miRNA by the ribonuclease 111 Drosha into mature miRNA,
which then combines with RNA-induced silencing complexes (RISCs) to suppress gene
transcription or degrade mRNA14.71.72,

Small interfering RNAs (siRNAs) are another type of RNAI that similarly combines with
RISCs to suppress gene transcription or degrade mRNAs88.71. As with miRNA, siRNA is
formed by the processing and cleavage of double stranded RNA by RNase Il (known as
Dicer)’3. MiRNAs and siRNAs differ mechanistically in that miRNAs are able to bind
mMRNAs using only some of its nucleotides, whereas siRNAs only bind mRNAs that are
complementary to all of its nucleotides. As a result, miRNAs can bind multiple mRNA
sequences, whereas siRNAs are highly specific for one mMRNA sequence58,

Although RNAI was first discovered in 199374, the first ophthalmic RNA profile wasn’t
characterized until 2006 using miRNA arrays in adult mice!®. Since then, although the
functions of most miRNAs are still being investigated, normal miRNA expression has been
demonstrated as crucial for normal processes including corneal epithelial regeneration’®,
wound healing’2, and angiogenesis’8. Aberrant miRNA expression has been associated with
diseases including Sjogren syndrome, ocular surface neoplasias, glaucoma, corneal
dystrophy, keratoconus and cataracts4. The main interest of researchers has been the
therapeutic implications, as siRNAs can theoretically silence overexpressed genes in
diseases ranging from cancer to inflammation’Z.

6.1. miRNAs and anterior segment diseases

6.1.1 miRNAs and Corneal epithelial healing and corneal angiogenesis—
Since 2006, multiple miRNA profiling studies have demonstrated the tissue-specific
expression of mMiRNA expression, with several of these miRNAs found exclusively in the
eye. This ocular miRNA is disproportionately expressed, with 11 of the 378 known miRNAs
comprising about 80% of the miRNA expressed in human cornea, ciliary body, and
trabecular meshwork samples4. The most heavily expressed miRNAs include (mir)-184
expressed in both cornea and lens, mir-204 uniformly expressed in lens epithelial cells, and
mir-205 expressed in the corneal®’7. Over the past decade, dramatic leaps have also been
made in determining miRNAs’ role in corneal cell proliferation’8, differentiation’® and
angiogenesis’®.
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In a study of human corneal epithelial cells, Lee et al. (2011) found that miR-145 likely
regulates immune response and promotes differentiation while suppressing proliferation. In
particular, miR-145 suppresses expression of integrin B8 (ITGB8) while upregulating IFNB1,
which encodes the anti-inflammatory protein interferon-beta. Transfection of corneal
epithelial progenitor cells with miR-145 plasmid resulted in a thinner epithelium of atypical
morphology (more squamous and fewer cuboidal cells in the basal layer) and fewer cells, as
proliferation was suppressed in favor of differentiation’’. Subsequent studies by the same
group (Teng et al., 2015) identified other miRNAs including miR-10b, 126, and 155 that
have a variety of functions. They discovered that miRNAs collectively regulate progenitor
cell homeostasis by targeting genes encoding transcription factors involved in proliferation
and apoptosis, structural proteins such as connexins, and mediators in T cell and B cell
receptor signaling”®.

Other MiRNAs such as miR-31, 103, 107, and miR-450b act on distinct pathways to
mediate proliferation and differentiation. Peng et al. (2012) found that miR-31, preferentially
expressed in the corneal epithelium, promotes differentiation by indirectly upregulating
Notch activity, which preferentially leads to differentiation rather than proliferation. MiR-31
inhibits factor-inhibiting hypoxia-inducible factor 1, which normally hydroxylates (and
downregulates) the Notch intracellular domain’8. A follow-up study in 2015 by the same
group found that miRs-103 and 107 enhances proliferation through different targets,
including kinase p90RSK2, Wnt3a, NEDD9 (HEF1), and tyrosine phosphatase PTPRM75.
On the other hand, miR-450b stimulates differentiation of limbal cells by repressing the
SOX2/P63 pathway?®?.

In addition to regulating cellular differentiation and proliferation, miRNAs also regulate
wound healing and angiogenesis. A recent study by Park et al. (2017) showed that miR-184
downregulates corneal angiogenesis by targeting transcriptional regulators that downregulate
the Akt/VVEGF pathway, thereby suppressing the metalloproteinases needed for
angiogenesis. Expression of miR-184 in human epithelial cells reduced the healing ability
and neovascularization in nearby dermal cells’®. An earlier study by An et al. (2015) showed
that corneal wound healing in mice involved changes in expression of 29 miRNAs,
especially miR-204, which was increased during wound healing by 267-fold. Transfection of
miR-204 into human corneal epithelial cells dramatically reduced cellular proliferation’2.

6.1.2. miRNAs and other corneal diseases—MIiRNAs are vital for corneal
metabolism, differentiation, and proliferation. As such, embryonic aberrancies in miRNA
expression can lead to corneal dysgenesis, while later disruptions in miRNA expression may
cause corneal opacities and blindness. A variety of microRNAs have been implicated in
corneal diseases. For example, mutations in miR-184 may be linked to keratoconus with
cataracts due to inadequate binding to 3’ untranslated regions (UTRs), which can regulate
translation in regulatory genes®. Numerous miRNAs are involved in the pathogenesis of
HSV keratitis, including miR-132 and miR-155. In a mouse model, ocular HSV infection
significantly upregulated miR-132, with an associated rise in VEGF and IL-17. Knockdown
of miR-132 reduced corneal angiogenesis and inflammation in ocular HSV8L. A later study
found that silencing MiR-155 produced similar results, with these mice exhibiting
attenuations in T helper cell response, angiogenesis, and lesion severity82. In addition,
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miR-10b, miR-146, and dozens of other miRNAs have been identified in the pathogenesis of
ocular manifestations in diabetes. Diabetes upregulates miR-10b and miR-146a, which were
found to increase corneal epithelial proliferation8® and impair wound healing and migration,
respectively84.

6.1.3. miRNAs and glaucoma—MIiRNA expression plays an essential role in the
pathogenesis of ocular diseases such as glaucomal#. Glaucoma has been linked to impaired
TM contractibility and collagen deposition. Multiple miRNAs (MiR-200c¢, MiR-155,
MiR-204) inhibit TM contractibility, while miR-29 downregulates collagen-producing genes
and TGFpB1. Increased oxygenation was shown to induce oxidative stress and downregulate
miR-29b while upregulating collagen-producing genes. This was partially reversed by
transfection with miR-29b mimics. Furthermore, iatrogenic mechanical stress upregulated
miRNAs (e.g. miR-106b, miR-16, miR-26a, miR-27a, miR-27b, and miR-7) thought to play
arole in fibrosis in TM cells8®.

6.1.4. miRNAs and cataract—Research thus far on miRNA involvement in lens
pathologies focuses on the epithelial-to-mesenchymal transition (EMT), lens epithelial cell
proliferation, and fibrosis. In the development of secondary cataracts or posterior capsular
opacifications, lens fibrosis involves TGFB2-stimulated EMT, which is stimulated by
activation of Jagged-1/Notch signaling. LECs transfected with miR-26a and miR-26b
inhibitors showed increased proliferation, while overexpression of miR-26a and 26b
inhibited proliferation and downregulated collagen-synthesizing genes such as alpha-SMA
and Col I. By transfecting miR-26a and 26b into cells that had mutant or normal Jagged-1
binding sites, miR-26a and -26b were found to directly target Jagged-1 and suppress
Jagged-1/Notch signaling as evidenced by a decrease in Jagged-1 mRNA and protein. In
turn, EMT and lens fibrosis could be reversed in lens epithelial cells®6.

siRNAs and anterior segment diseases

6.2.1 siRNAs and dry eye disease—A novel siRNA, Tivanisiran, has shown promise
for symptomatic relief of dry eye disease and is currently undergoing phase | and 11 clinical
trials. This siRNA acts by binding and degrading complementary Transient Receptor
Potential Vanilloid 1 (TRPV1) mRNA, which acts as pain receptor in corneal nerve fibers.
TRPV1 is expressed in primary afferent nociceptive neuros and is abundant in various eye
tissues and it is activated by hyperosmolarity (as seen in dry eye disease), corneal damage
and inflammatory mediators. Studies have shown that Tivanisiran has a high specificity for
TRPV1 and decreases TRPV1 mRNA by up to 60%8’.

6.2.2. siRNAs and post-surgical conjunctival fibrosis—Conjunctival fibrosis is
partly mediated by the myocardin-related transcription factor/Serum response factor (MRTF/
SRF) pathway, which leads to fibroblast activation. Thus, research has focused on siRNAs to
silence the MRTF gene to prevent fibrosis after glaucoma filtration surgery. Although
effective SiRNAs have been developed, siRNA delivery to the gene still presents a challenge.
Recent trials have shown promise — in vitro, receptor-targeted liposome-peptide-siRNA
nanoparticles can effectively deliver siRNA and silence the MRTF-B gene by up to 76%88.
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6.2.3. siRNAs and posterior capsular opacification—Posterior capsular
opacification (PCO) is a frequent complication of extracapsular cataract surgery, resulting
from excessive lens epithelial cell (LEC) proliferation and migration which is mediated by
EMT and upregulated cytokines. Accordingly, the suppression of LEC proliferation and
EMT have been studied as therapeutic interventions. At least two pathways that induce EMT
have been identified as targets of RNAi molecules®90, The first pathway involves
transforming growth factor-2 (TGF-p2), Smad2, and Smad3, which have been found to be
inhibited by miR-486-5p. Human LECs that overexpressed MiR-486-5p had reduced
wound healing, proliferation, EMT, and migration compared to controls?°. The second
pathway involves targeting and inhibiting mammalian target of rapamycin (mTOR), p70
ribosomal protein S6 kinase (p70S6K), and protein kinase B (PKB or Akt), which are all
elevated in LEC proliferation. In a human LEC B3 cell model, transfection of siRNA of
MTOR (simTOR) inhibited mTOR/p70S6K/Akt and suppressed expression of mTOR
complex 1 (NTORC1), mTORC2, and TGF-B-induced EMT®?,

Epigenetic therapies

Epigenetic therapy targets specific regulatory mechanisms, which minimizes the risk of
complications that can be seen with systemic agents. Therapeutic targets have already been
identified, including altered DNA methylation in Behcet’s disease®! and retinoblastoma?2,
histone modification in uveitis®® and lens and conjunctival fibrosis39:88, and siRNA
expression in dry eye disease®’. Though this next generation of therapeutics holds
significant promise for the future of medicine, challenges such as bioavailability and
targeted drug delivery are still being addressed.

Several epigenetic drugs are already on the market, including histone deacetylase inhibitors
(HDACI) such as vorinostat and RNAI therapeutics such as patisiran. Although these
epigenetic treatments have been shown to be effective in systemic diseases such as cancer
and polyneuropathy, epigenetic pharmaceuticals for ophthalmic diseases are still undergoing
clinical trials. Histone deacetylase inhibitors have already shown promise in preventing
corneal scarring*®. Although the only FDA-approved HDACIs on the market are for treating
cancer, HDACIs for ophthalmic indications are undergoing clinical trials38:45,

A main challenge to applying epigenetic, and particularly RNAi-based, therapies is adequate
delivery to target cells, as RNAi molecules can decay intravenously, exit out the kidneys, or
fail to enter the plasma membrane’3:93, Over the past decade, researchers developed more
effective formulations for delivery, such as encapsulation in lipid nanoparticles®3. Advances
like these have eased more than a dozen RNAI therapeutic programs into clinical trials
targeting diseases ranging from fibrosis to cancer. For ophthalmic disease, the challenge of
delivery can be conveniently circumvented by localized injection of siRNA’3, At least eight
of the RNAI therapeutic programs target ophthalmic disease®8. The first FDA-approved
RNAI therapeutic, patisiran, became available in 2018 for treatment of hereditary
transthyretin-mediated amyloidosis, and RNA. therapies are currently undergoing testing to
treat a host of ophthalmic diseases including age-related macular degeneration, proliferative
vitreoretinopathy, ocular hypertension, and dry eye diseases®® 7187 Admittedly, fewer
studies have explored RNAI therapies for diseases of the anterior eye segment68.
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RNAI therapies treating anterior ophthalmic disease avoids the challenges of targeted
delivery and bioavailability present for other indications because of the easy accessibility
and sequestered structure of the anterior ocular segment®4. Notably, a recently developed
reducible branched polyethylenimine (rBPEI)-based nanoparticle (NP) system was able to
deliver siRNA throughout the cornea to treat corneal neovascularization in rats’3:95.
Although challenges such as cytotoxicity must be addressed before anterior segment siRNAs
can become readily available, their potential has not been lost on pharmaceutical companies
and researchers, who are investigating RNAI therapies for herpetic keratitis and corneal and
conjunctival scarring’1-8, It is evident that a number of previously difficult challenges are
on the verge of being overcome, making epigenetic therapeutics, particularly in the anterior
segment, an exciting and rapidly changing field of research.

8. Conclusion and future directions

Recent technological advances and discoveries have sparked a surge of interest in the
integral role of epigenetics in ocular disease. Advances in sequencing and bioinformatics
have facilitated discoveries on the role of epigenetics in ocular disease pathogenesis and
facilitated a realization of their potential in next generation treatment therapies.

Epigenetic therapy has distinct advantages over traditional medications, such as increased
specificity and a reduced side effect profile. Although some epigenetic medications have
been shown to be effective in systemic diseases such as cancer, epigenetic therapy for
ophthalmic disease are still undergoing clinical trials. There are still broad gaps in our
knowledge regarding the mechanistic link between epigenetic changes and ocular disease,
which present challenges to therapeutically targeting meaningful epigenetic changes that are
causes rather than side effects of the disease itself. However, epigenetic therapies including
RNAI molecules and Bromodomain and Extra-Terminal motif (BET) inhibitors (e.g. JQ1)
have shown potential in treating autoimmune keratitis, corneal wound healing, and ocular
inflammation respectively4S.

Innovation over the past decade has identified many new epigenetic modifiers as potential
therapeutic targets, such as altered DNA methylation in Fuchs’ dystrophy1®. Future research
in epigenetics can further our knowledge of ocular disease pathogenesis and revolutionize
the way we treat ocular disease. More studies are needed to identify therapeutic targets and
biomarkers, elucidate the precise mechanisms responsible for epigenetics on disease
pathogenesis, assess the safety and efficacy of novel epigenetic therapies, and introduce
these treatments to the market.
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