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The half-billion-year history of animal evolution is characterized by decreas-
ing rates of background extinction. Earth’s increasing habitability for animals
could result from several processes: (i) a decrease in the intensity of inter-
actions among species that lead to extinctions; (ii) a decrease in the
prevalence or intensity of geological triggers such as flood basalt eruptions
and bolide impacts; (iii) a decrease in the sensitivity of animals to environ-
mental disturbance; or (iv) an increase in the strength of stabilizing
feedbacks within the climate system and biogeochemical cycles. There is no
evidence that the prevalence or intensity of interactions among species or geo-
logical extinction triggers have decreased over time. There is, however,
evidence from palaeontology, geochemistry and comparative physiology
that animals have become more resilient to an environmental change and
that the evolution of complex life has, on the whole, strengthened stabilizing
feedbacks in the climate system. The differential success of certain phyla and
classes appears to result, at least in part, from the anatomical solutions to the
evolution of macroscopic size that were arrived at largely during Ediacaran
and Cambrian time. Larger-bodied animals, enabled by increased anatomical
complexity, were increasingly able to mix the marine sediment and water col-
umns, thus promoting stability in biogeochemical cycles. In addition, body
plans that also facilitated ecological differentiation have tended to be associ-
ated with lower rates of extinction. In this sense, Cambrian solutions to
Cambrian problems have had a lasting impact on the trajectory of complex
life and, in turn, fundamental properties of the Earth system.
1. Introduction
Animals are late arrivals to Earth, having originated nearly 4 billion years after
the formation of the planet and at least 3 billion years after the origin of life
(figure 1). Part of this delay results from the numerous evolutionary inno-
vations that are required for the development of the eukaryotic cell and
complex multicellularity [2,3], but geochemical evidence also indicates that,
for the vast majority of Precambrian time (4.56–0.54 billion years ago),
Earth’s surface environments were not permissive to large, active, aerobic
organisms (e.g. [4–6]). The evolution of animals appears to have occurred (geo-
logically) soon after their survival was environmentally possible.

The Phanerozoic (542 Ma–present) fossil record provides numerous lines of
evidence that the Precambrian/Cambrian boundary is not a simple threshold
transition from aworld uninhabitable to animals to one that is and has remained
habitable. Rather, there is much evidence that Earth’s surface environments have
become increasingly habitable to animals across Phanerozoic time. Extinction
rates have declined in the oceans and on land (figure 2a; [1,11]). Even the mass
extinction events that eliminated large fractions of genus- and species-level diver-
sity have caused comparatively little extinction above the level of family [12].
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Figure 1. Time scale for the history of the Earth, with key events in the history of life. Diversity of animal life (marine animal families) plotted on the vertical axis
( from [1]). Colour differences in the Proterozoic and Phanerozoic bars indicate era boundaries within the eons. Figure inspired by an unpublished figure belonging to
W. Fischer.
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Animals have increased in size (figure 2b; [7]), activity levels
[13], ecological complexity and differentiation (figure 2c;
[8,14,15]), and, most likely, abundance [16,17] across time.
The geological and geochemical records are also consistent
with a trend towards increasing habitability of surface
environments. The surface ocean has become increasingly
oxygenated, as indicated by the greater abundance of iodine
in the form of iodate incorporated into carbonate shells and
sediments (figure 2d; [9]). The prevalence of unfossiliferous
black shales in the marine sedimentary record has similarly
declined, suggesting a reduction in the prevalence of anoxic
bottom waters [18]. The magnitude of excursions in the
carbon isotope record has declined systematically across the
Phanerozoic (figure 2e), as confirmed by spectral decompo-
sition ([19]: figure 2c therein). This indicates the long-term
stabilization of the geological carbon cycle, a primary long-
term control on Earth’s climate.

If creating an Earth habitable to animals took so long,
why has animal life in its entirety, and individual animal
phyla and classes, been so persistent over the past half-billion
years? And why has the habitability of Earth appeared to
increase not only in terms of declining extinction rates [1]
but also in terms of decreasing volatility in biogeochemical
cycles (e.g. [19])? There are four broad mechanisms, not
mutually exclusive, that could account for the decline in
extinction rates and the associated evidence of increasing
habitability: (i) ecological interactions among animals that
lead to extinction have become less common across time;
(ii) the geological triggers of extinction have decreased in fre-
quency and/or intensity; (iii) animals have become more
tolerant of environmental stress; or (iv) stabilizing feedbacks
in the climate system have increased in strength across time,
reducing the environmental stresses on animals associated
with the same geological triggers.
2. Potential mechanisms
2.1. Ecological interactions
Interactions among species, directly or indirectly, can
increase, decrease or leave the probability of extinction
unchanged, depending on which process dominates.
Darwin, in his famous ‘tangled bank’ metaphor [20], hypoth-
esized that much extinction occurs gradually through the
displacement of one species by another as they compete for
resources. Under this scenario, one potential explanation for
the decline in extinction rates across geological time is that
antagonistic interactions among species have decreased in
intensity across geological time. This scenario would run
counter to the Red Queen hypothesis [21], which suggests
that escalating antagonistic interactions among species leads
to a changing selective landscape and time-constant risk of
extinction, at least within a group of competing species.

The argument that competition for shared limiting
resources is a strong driver of both diversification and extinc-
tion is supported by laboratory and field studies across a
wide array of living species (e.g. [22–26]). While it is more dif-
ficult to identify competition in the fossil record, recent
studies suggest that bivalves directly competed with brachio-
pods, contributing to the brachiopods’ long-term decrease in
ecological importance [27]. From a broader perspective, post-
Palaeozoic (less than 252 Ma) taxonomic diversification of
marine animals as a whole has been accomplished largely
through increasingly even filling of both existing and newly
evolved ecological modes of life (the combination of habitat
tiering, motility and feeding mode niche axes; [28]), rather
than a continued taxonomic diversity increase within already
well-filled ecological modes of life [8], which suggests
increased competitive interactions over time among taxa
that fill broadly similar functional ecologies. While the terres-
trial tetrapod fossil record similarly does not provide direct
evidence for competition, and taxonomic expansion is best
explained by unrestricted access to new ecospace [29], there
is evidence for evolutionary priority effects where established
groups within ecological modes can exclude competitors
until the incumbents are removed, often by a major biotic
crisis [29,30].

The fossil record also indicates that predator–prey inter-
actions have increased in prevalence across evolutionary
time. In the oceans, there have been long-term increases in
the proportion of taxonomic diversity represented by preda-
tors [13], the prevalence of predatory shell drilling and shell
crushing [31,32], the diversity of taxa capable of these preda-
tion styles and the frequency of anti-predatory morphologies
in prey taxa, such as narrowed and reinforced apertures on
the shells of gastropods as well as spines, ridges and knobs
on the shells of bivalves and gastropods [33–35]. Similarly,
the activity levels and behavioural sophistication of predators
on land have generally increased, albeit not monotonically,
from the Devonian to the present day, with dinosaurs, birds
and mammals succeeding other vertebrate groups as the
most diverse and ecologically important terrestrial predators.
Thus, the available evidence of competitive interactions and
predator–prey relationships runs counter to their predicted
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Figure 2. Phanerozoic records from the fossil record and geochemistry of marine
sediments. (a) Per capita extinction rate, illustrating a long-term decline in the back-
ground extinction rate punctuated by mass extinction events (data from The
Paleobiology Database). Also plotted are the timing of major ice ages, eruptions
of large igneous provinces and the largest known impact events. (b) Mean (log-trans-
formed) body size of marine animals, illustrating a long-term increase in mean body
volume totals more than two orders of magnitude (replotted from [7]). (c) Total
number of ecological modes occupied by marine animals, illustrating the long-
term increase in the number of modes of life present in the oceans (replotted
from [8]). (d) I/Ca ratio of marine sedimentary carbonates (replotted from [9]), illus-
trating a progressive increase in I/Ca of marine carbonates, implying an increase in
oxygen concentrations in typical ocean surfacewaters. (e) Carbon isotope composition
of marine carbonate sediments (replotted from [10]), illustrating a decrease in the
magnitude of carbon isotope variation between the Cambrian and the present day.
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effect on extinction rates. That is, both competition and
predation appear to have increased through time, yet
extinction rates have declined.

Increased ecological interactions are also hypothesized to
decrease extinction risk when positive interactions among
species dominate or when diversity increases the stability or
resilience of ecosystems. In the evolution of plant and
animal ecosystems, there is also evidence that evolutionary
innovations lead to the expansion of resources that open
new ecological opportunities and increase the total carrying
capacity of the system, such as the production of oxygen by
cyanobacteria [36] and the enhanced recycling of nutrients
by migrating animals [37]. Similarly, clear fossil evidence
for mycorrhizal fungal associations with land plants date to
the Devonian [38,39] and appear to be tightly linked to the
taxonomic success of plants with the majority of described
species believed to have active mutualistic fungal partners
[40–42]. Further, coral reefs are now recognized to be com-
posed of coral holobionts [43], with each polyp generally
consisting of the cnidarian animal, a mutualistic photosyn-
thetic symbiodinium dinoflagellate and an often diverse
microbial community (e.g. [44]). The diversification and pro-
liferation of corals since their origins in the Cambrian has led
to some of the most biodiverse marine ecosystems in modern
oceans [45]. Moreover, ecosystems with greater functional
differentiation and interaction among functional groups
tend to be more resilient to perturbation [46], generally dis-
play higher productivity [47,48] and can be more stable
[49]. The fossil record indicates that marine communities
have increased in the ecological complexity across time
[14,15,28], particularly across the Permian–Triassic transition,
252 Ma [50]. Higher taxa that contribute most to the ecologi-
cal complexity and taxonomic diversity are those that are
most resistant to extinction [51]. The observation of declining
extinction rates and increases in the taxonomic and func-
tional diversity of ecosystems through the Phanerozoic is
consistent with the hypothesis that increased ecological inter-
actions have, in aggregate, decreased extinction probabilities
through time.
2.2. Geological triggers
The processes most commonly hypothesized as triggers of
extinction across geological time are bolide impact (e.g.
[52,53]), flood basalt volcanism (e.g. [54,55]) and climate
change (e.g. [56–59]). Many other potential triggers have
also been put forward, some constituting potential down-
stream consequences of the aforementioned triggers; these
include (but are not limited to) hydrogen sulfide build-up
in the ocean and release to the atmosphere [60], ultraviolet
radiation, potentially caused by the collapse of the ozone
layer (e.g. [61]) and poisoning from heavy metals (e.g. [62]).
Each of these triggers is thought to act by altering surface
environments in ways that exceed the physiological toler-
ances of at least some species, often through changes in
temperature or the availability of light or oxygen. Additional
extinctions may occur through ecological processes, such as
starvation following collapse of primary productivity
[63,64]. The time distribution of each of these processes has
become increasingly known over the past several decades.

There is no evidence that the terrestrial cratering rate has
decreased across Phanerozoic time. If anything, there is evi-
dence from both lunar and terrestrial data that cratering
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rates have increased by as much as 40% between the Proter-
ozoic and Phanerozoic [65,66], and cratering data for the past
120 Myr do not indicate any decline in the cratering rate rela-
tive to the Phanerozoic as a whole [66]. Consequently, the
hypothesis that all Phanerozoic mass extinctions, or perhaps
even all extinctions, could have been triggered by impact
events [52,53,67] is inconsistent with current data, at least
under the assumption that the global biota has maintained a
similar sensitivity to impact and therefore would be expected
to follow a constant ‘kill curve’ mapping impactor size to
extinction intensity. Furthermore, there is little evidence that
major impact events correspond in age with major mass
extinction events other than the end-Cretaceous. The largest
known impact craters of Phanerozoic age, other than Chicxu-
lub, do not correspond in age to major extinction events
(Popigai Crater, 35 Ma; Manicouagan Crater, 214 Ma; [68]).

In contrast to impact, there is substantial evidence for
flood basalt eruption coincident with many major and mod-
erate extinction events across Phanerozoic time [54,55].
Similar to the impact record, however, the flood basalt
record does not provide evidence for a decrease in frequency
or magnitude across Phanerozoic time. There may be period-
icity in the emplacement of flood basalts with a period of 62–
65 Myr [69], similar in duration to cyclicity in biodiversity
[70]. Even if flood basalt eruptions are triggers for many Pha-
nerozoic extinctions, however, there is not a close
correspondence between the volume of the basalt province
and the magnitude of resulting extinction, at least in part
because interactions between the basaltic magma and the
intruded country rocks of the crust can substantially influ-
ence the magnitude, composition and rates of volatile
release [55,71]. Furthermore, there is no decline in either the
magnitude or frequency of flood basalt eruption that could
account for the systematic decline in extinction rates across
the Phanerozoic.

Earth has cycled between generally cold and generally
warm climates across the past billion years. Glacial intervals
associated with large continental ice sheets have occurred
during Neoproterozoic, Ordovician, Carboniferous–Permian
and Cenozoic time. Climate cooling has, furthermore, been
hypothesized as a unifying cause of mass extinction [57].
Indeed, Late Ordovician glaciation is associated with mass
extinction [17,72–74]. By contrast, the later Palaeozoic ice
age is generally associated with lower rates of extinction
[75], and the Cenozoic icehouse is not associated with any
major extinctions prior to the origin and geographical
spread of Homo sapiens [76,77]. There is no evidence that
the secular decline in extinction rates can be accounted for
simply by an increase or decrease in the prevalence of cold
climate and continental ice sheets.
2.3. Animal physiology
A final potential factor in the decline of animal extinction
rates across geological time is an increase in the tolerance of
animals themselves to an environmental change. If animals
have evolved more effective methods for tolerating the
environmental change through behavioural or physiological
adaptations, then one may expect lower rates of extinction
across time even in the face of environmental stresses of simi-
lar magnitudes. One argument in favour of this scenario is
that the geological record suggests that extinctions are
caused by a limited range of environmental factors, primarily
changes in climate, sunlight availability, oxygen availability
and ocean pH. Therefore, one might expect that early extinc-
tions would selectively remove lineages that lacked the
capacity to survive such changes or evolve the necessary
adaptations to endure them.

Many modern pelagic animals indeed have adaptations
that allow them to survive in hypoxic or anoxic conditions,
including the increased efficiency of O2 removal from sea-
water, the reduction of metabolic rates and the use of both
aerobic and anaerobic metabolism, particularly for animals
that can retreat to more oxygen-rich waters [78]. Of course,
it is not possible to directly quantify metabolic rates in extinct
animals. It is possible, however, to infer basic physiological
traits for most fossil animals based on preserved skeletal mor-
phology and analogy with living relatives. One useful proxy
for overall metabolic efficiency, particularly in relation to
environmental stress, is physiological buffering [79]. Physio-
logically buffered animals are those that can regulate their
internal body chemistry and are thus more resistant to fluctu-
ating environmental conditions, particularly O2 levels and
pH. By contrast, unbuffered species are largely in equilibrium
with seawater and are unlikely to persist for long periods of
time in unfavourable conditions. A study of the end-Permian
mass extinction demonstrated that surviving taxa tended to
be highly buffered while most of the victims were poorly buf-
fered [79]. Not only was physiological buffering an important
factor during the end-Permian mass extinction, but it was
also an important factor in selective extinctions throughout
the Palaeozoic and Mesozoic [80]. However, extinction
during the Cretaceous and Cenozoic does not appear to be
selective with respect to physiological buffering [80],
suggesting that the primary causes of extinction may have
shifted across time. Additionally, animals that are both
motile and physiologically buffered are at lower risk of
extinction across the Phanerozoic as a whole [51], indicating
that being able to move and having more control over
internal body chemistry probably make species more resist-
ant to common environmental stressors during extinction
events, such as ocean warming and acidification.
2.4. Stabilizing feedbacks
The long-term habitability of Earth depends on the operation of
stabilizing feedbacks that prevent the Earth’s surface environ-
ments from shifting into states that are either uninhabitable or
poorly habitable to animals. The two most important par-
ameters for overall habitability are likely to be climate,
especially surface temperatures, and oxygen availability in the
atmosphere and oceans.

There is evidence in the Precambrian rock record for
potentially extreme and persistent cooling associated with
glaciation (e.g. [81]), but such ‘Snowball Earth’ glaciations
have not occurred since the start of Cambrian time. The pri-
mary stabilizing feedback on Earth’s climate across geological
time is the silicate weathering feedback, by which chemical
reactions between carbon dioxide and silicate minerals lead
to the removal of CO2 from the atmosphere and its ultimate
deposition as a carbonate sediment (e.g. [82,83]). The rate
of the reaction is a function of the CO2 concentration in the
atmosphere, the ambient temperature and the reactivity of
the exposed bedrock. Increasing global temperature results
in the acceleration of weathering reactions and an increased
drawdown of CO2, thus stabilizing the climate of the
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planet. Similar reactions take place in off-axis hydrothermal
vents near mid-ocean spreading ridges where warm water
cycles through fresh basalt, resulting in the precipitation of
carbonate in veins and pore spaces [84]. As global climate
influences the temperature of ocean bottom water, hydro-
thermal alteration is an additional temperature-dependent
negative feedback on Earth’s climate.

The efficiency of this silicate weathering feedback has been
widely hypothesized to have increased across Phanerozoic
time. The evolution of land plants, in particular, is argued to
have increased the efficiency of silicate weathering by causing
more weathering to occur at lower levels of atmospheric CO2.
In other words, plants are argued to have created a steeper
relationship between pCO2 and weathering rate, leading to a
stronger negative feedbackon changes inpCO2 [85]. Specifically,
plants affect chemical weathering in twoways: (i) by increasing
the ambient pCO2 within soils and (ii) by increasing the trans-
port of moisture into continental interiors [86]. Combining
vapour transport and reactive transport models, Ibarra et al.
[86] show that these two factors are subequal in magnitude.
Their model suggests that the strengthening of the silicate
weathering feedback through the evolution of land plants
occurred in two major stages, the first (and most important)
during Devonian time, when vascular plants first evolved,
and the second during the Late Cretaceous and Cenozoic,
when angiosperms diversified and increased in abundance.
The evolution of plants was important not only for increasing
the strength of the silicateweathering feedback but also for caus-
ing the strengthof the feedback tobecomemore stable over time.
As plants causedweathering reactions to occur more efficiently,
the relative influences of other factors, such as topographic
relief, exposed lithologies across the land surface, climate, sur-
face temperature and rainwater pH, are likely to have become
less important.

Further feedback mechanisms may act to stabilize climate
on shorter time scales. For example, the ocean can serve as a
sink for carbon dioxide emitted directly into the atmosphere
over time scales shorter than the ocean mixing time (ca. 1000
years; [87]), and the dissolution of fine-grained carbonate
sediment on the deep-sea floor can buffer against ocean acid-
ification and atmospheric CO2 build-up more rapidly than
the silicate weathering feedback, but its capacity is limited
by the eventual development of a layer of insoluble residue
on the seafloor that will prevent further dissolution as well
as the fact that carbonate dissolution increases the total
amount of carbon in the ocean–atmosphere system, whose
removal back into sediments will ultimately depend upon
silicate weathering. An extremely large and rapid release of
carbon into the ocean–atmosphere system does have the
possibility of also overwhelming the silicate weathering feed-
back and may help to account for the severity of the end-
Permian mass extinction [88]. Within the Phanerozoic, this
carbonate buffering mechanism is likely to have been most
important during the post-Palaeozoic. Since the Late Triassic
evolution and the later Mesozoic diversification of planktonic
foraminifera and coccolithophorid algae greatly increased
carbonate sediment export to the seafloor and, thus, were
not as available to protect against ocean acidification and
climate change during earlier crises such as the end-Permian
mass extinction [89,90]. Moreover, modelling has shown that
the diversification and proliferation of species that secrete
aragonitic exoskeletons were much less impacted by fluctu-
ations in seawater temperature and Mg/Ca ratios starting
in the Middle Jurassic, again associated with the diversifica-
tion of planktonic calcifiers [91].

In parallel to weathering reactions that convert CO2 into
carbonate minerals, the biological fixation of carbon into
organic matter results in the net conversion of gaseous CO2

into a solid form that has no climatic effect. Currently, the
vast majority of organic carbon produced by primary produ-
cers in the surface ocean is decomposed and oxidized as it
sinks through the water column. Yet, in places where biologi-
cal productivity exceeds the diffusion of oxidants to the site of
degradation, or in places where organic matter is adsorbed
onto sediments and buried rapidly, a much higher fraction
of it escapes oxidation [92]. The solubility of oxygen in
water is dependent on temperature, and hence climate.
Black shales in otherwise well-oxygenated Cretaceous pelagic
sediments [93] indicate that temporary warming episodes
resulted in burial of large amounts of organic carbon. Many
of these ocean anoxic events [94] were associated with mas-
sive volcanism [95]. These events may have been sustained
or even enhanced by nutrient cycling feedbacks that allowed
for the liberation of phosphate under anoxic bottom waters,
further promoting the high primary productivity that tends
to enhance local water column anoxia [96].

The prevalence of anoxia, and its negative impacts on
benthic marine ecosystems, appears to have declined across
Phanerozoic time. Because atmospheric oxygen levels appear
to have reached or exceededmodern values by the Late Palaeo-
zoic, the secular decline in ocean anoxia is not easily explained
by a long-term increase in atmospheric pO2. Rather, it appears
tomostly reflect a change in the distribution of oxygendemand
within the water column. Specifically, more effective export of
organic matter from the surface ocean into deep water can
spread the same amount of oxygen demand across a larger
volume of water, thereby reducing the volume of totally
anoxic water [97]. Increasing sizes of phytoplankton cells
across Phanerozoic time [98], the diversification of phyto-
plankton lineages with mineral ballast in the form of
carbonate or silica shells and the evolution of zooplankton
that repackage phytoplankton cells into larger faecal pellets
could all have played a role in strengthening this ‘biological
pump’ that spreads oxygen demand across a larger volume
of ocean water. The reduction in the area of ocean anoxia
would, in turn, reduce the influence of changes in climate or
the sea level on the rate of organic matter burial, thereby stabi-
lizing the carbon cycle, global climate and atmospheric oxygen
levels (because oxygen accumulation in the atmosphere is ulti-
mately a by-product of the burial of organic matter produced
via oxygenic photosynthesis) [19,99].
3. Cambrian solutions
Geological evidence indicates that strengthening of stabilizing
feedbacks in the Earth system, coupled with and enabled by
the evolution of larger, more ecologically flexible and physio-
logically resilient lineages, is largely responsible for the long-
term decline in overall extinction rates. Much of this process
reflects the long-term consequences of evolutionary innovations
that occurred during Ediacaran and Cambrian time.

3.1. Large body size
The evolution of large, complex animals requires systems for
distributing the ingredients and products of metabolism



royalsocietypublishing.org/journal/rsfs
Interface

Focus
10:20190106

6
across the entire body. While the earliest animals accom-
plished this task through diploblastic body plans where all
cells are in close contact with the external environment, tri-
ploblastic animals required internal transport mechanisms
to supply the cells of internal organs. Budd & Jensen [100]
argue that the earliest bilaterian animals must have been
large and possessed both a coelom and blood vascular
system. The blood vascular system, a network of entirely or
partially enclosed tubes distributed throughout the body,
can only serve as a material transport system, and such a
system would not be necessary in tiny (i.e. protist-sized)
organisms that can rely on diffusion and convection. Some
taxa evolved open circulatory systems, while others evolved
closed circulatory systems. Both systems appear to function
well at the typical sizes of Cambrian animals [101], but circu-
latory systems appear to have constrained the later body size
evolution of different higher taxa. The greater velocity and
efficiency associated with closed circulatory systems per-
mitted closed circulatory system taxa (especially chordates
and cephalopods) to evolve to much larger body sizes later
in the Phanerozoic, much more often than their relatives
with open circulatory systems [101].
3.2. Nutrient cycling
The large body sizes enabled by Cambrian innovations in
animal body plans also enabled animals to play a new role
in nutrient cycling. Although some Ediacaran animals were
quite large, reaching maximum dimensions of a metre or
more [102], they were, to a first approximation, ‘metabolically
inert’ animals that fed through diffusion [103]. Few possessed
internal circulatory systems or had the ability to move across
the seafloor or to burrow within sediments. Many more Cam-
brian animals, by contrast, possessed complex anatomical
systems for internal mass transport (circulatory system) and
locomotion (coelom). Animal bioturbation of sediments
may have provided a negative (i.e. stabilizing) feedback on
atmospheric and oceanic oxygen concentrations [104] and
thereby reduced the magnitude of carbon isotope excursions
and associated effects on global climate [105]. Because larger
animals move more sediment and may therefore be differen-
tially important to the overall biomixing of the sediment
column [106], they would have been differentially important
to this stabilization of the Earth system.

In addition, the movement of animals through the water
column would have had two potential impacts on nutrient
cycling. First, animal motion through the water column
causes physical mixing of the water, reducing the steepness
of physical and chemical gradients in temperature, nutrient
content and oxygen content. This mixing has been hypo-
thesized to play a significant role in the modern oceans
[107–110] and to have first become important during
Cambrian time [111], although its importance has been ques-
tioned relative to that of the breaking of internal waves [112].
Even if the physical mixing of ocean water by animals is not a
quantitatively important process, the direct movement of
nutrients is. The movement of animals in the oceans and
on land tends to counteract the directional movement of
nutrients from land to rivers then the ocean, and finally
into sediments through both directional migration such as
the movement of anadromous fish up-river and through
functionally random movement [37]. In certain cases, such
as the recycling of nutrients to the sea surface via buoyant
faecal plumes of whales, animal activity may directly acceler-
ate the recycling of nutrients within ecosystems [113]. In
either case, the use of metabolic energy to move nutrients
tends to reduce the efficiency of nutrient removal from eco-
systems through physical processes.

3.3. Ecological differentiation
Ecological differentiation during the Cambrian explosion
further changed marine ecosystems. The advent of preda-
tor–prey interactions may have caused both the widespread
evolution of exoskeletons as adaptations against predation
and the diversification of predators and prey [114]. In particu-
lar, predator–prey interactions would have increased the
number of different demands on individual organisms,
which moved from an Ediacaran world in which body
plans could be optimized for the uptake of dissolved nutri-
ents into a Cambrian world in which survival depended
upon success not only in feeding but also in avoiding preda-
tion and minimizing interaction with competitors, among
other tasks [115]. This roughening of the fitness landscape
would be expected to lead to an increase in biodiversity.

Broad functional differentiation of marine animals began
during Cambrian time [14,28], and for phyla and classes with
good fossil records, the higher taxa that achieved the greatest
amount of functional differentiation by the end of Ordovician
are also largely the clades that are the most taxonomically
diverse in the modern oceans (figure 3; [8]). In fact, functional
and taxonomic diversity within Linnaean classes were not
significantly correlated during the Palaeozoic, but the
number of ecological modes occupied by a class by the end
of the Ordovician is a significant predictor of the number
of genera in the class in the Pleistocene (444 Myr later) and
the total Phanerozoic genus diversity of the class [8]. There-
fore, the most taxonomically diverse classes in the modern
marine fauna (e.g. bivalves, gastropods and teleost fishes)
already had a higher propensity to explore ecospace in the
Early Palaeozoic, but their taxonomic success was largely
not realized until after the end-Permian and end-Cretaceous
extinction events. In fact, ecologically diverse clades have
come to dominate the modern oceans not by higher orig-
ination rates across the Phanerozoic, but rather by lower
extinction rates, particularly during mass extinctions that
primarily impacted ecologically homogeneous groups [51].
4. Later innovations
As noted above, the biologically driven stabilization of the
Earth system did not end with Cambrian innovations. The
evolution of land plants, in particular, caused additional, fun-
damental changes to the stabilizing feedbacks in the climate
system through their impact on water transport and chemical
weathering [85,86]. Similarly, later evolution of phytoplank-
ton biomineralization and cell size distributions likely
enhanced the stability of the climate system and ocean chem-
istry by creating a deep-sea carbonate sediment cover and by
increasing the depth range over which organic respiration
occurs in the ocean water column [90,97]. The processes
initiated during Cambrian time, such as bioturbation and
animal-driven transport of nutrients, continued to increase
in degree, further stabilizing biogeochemical cycles [116].
Ecosystems continued to increase in complexity [14,29],
potentially adding stability that outweighed any tendency
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Data from Knope et al. [8].
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of stronger antagonistic interactions to drive a greater risk of
extinction, consistent with the ‘innate Gaia’ hypothesis that
stabilizing feedbacks between life and its host planet should
tend to evolve and strengthen over time [117]. And the selec-
tive processes of extinction, particularly during the major
biotic crises, may have further filtered the global biota in
ways that preferentially increased the proportion of biodiver-
sity composed of taxa with greater ability to maintain
homeostasis in the face of both short- and long-term environ-
mental changes [79,80].

5. Conclusion
It has long been appreciated that the evolution of complex
animal life required the earlier evolution of oxygenic photo-
synthesis and the subsequent accumulation of molecular
oxygen in Earth’s atmosphere [118,119]. The potential for
biological innovation not only to create environmental opportu-
nity but also to stabilize environmental conditions within the
habitable range is also well known [120]. More recent work
has continued to unveil the many ways in which innovations
in animal and plant anatomy opened pathways to the ongoing
stabilization of Earth’s surface environments as well as to the
evolution of organisms more tolerant of environmental
change. It nowappears that the increase inEarth’s ability to sup-
port life across time and, especially, its increasing ability to
support complex, multicellular life are largely a consequence
of biological processes. These processes include natural selec-
tion for organisms with greater ability to survive in the face of
environmental change but, more importantly, for ecosystems
with greater complexity and stability as well as organisms that
conduct activities that strengthen stabilizing feedbacks within
the Earth system. Although animals first evolved during
Neoproterozoic time, it was the anatomical and ecological
innovations during Cambrian time that contributed most to
this ongoing process of biologically driven improvement in
Earth’s habitability.
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