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We show and explain how a long bead–spring chain,
immersed in a homogeneous isotropic turbulent
flow, preferentially samples vortical flow structures.
We begin with an elastic, extensible chain which
is stretched out by the flow, up to inertial-range
scales. This filamentary object, which is known to
preferentially sample the circular coherent vortices of
two-dimensional (2D) turbulence, is shown here to
also preferentially sample the intense, tubular, vortex
filaments of three-dimensional (3D) turbulence. In
the 2D case, the chain collapses into a tracer inside
vortices. In the 3D case on the contrary, the chain is
extended even in vortical regions, which suggests that
the chain follows axially stretched tubular vortices
by aligning with their axes. This physical picture
is confirmed by examining the relative sampling
behaviour of the individual beads, and by additional
studies on an inextensible chain with adjustable
bending-stiffness. A highly flexible, inextensible chain
also shows preferential sampling in three dimensions,
provided it is longer than the dissipation scale, but
not much longer than the vortex tubes. This is true
also for 2D turbulence, where a long inextensible
chain can occupy vortices by coiling into them. When
the chain is made inflexible, however, coiling is
prevented and the extent of preferential sampling
in two dimensions is considerably reduced. In three
dimensions, on the contrary, bending stiffness has
no effect, because the chain does not need to coil in
order to thread a vortex tube and align with its axis.
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This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems:
recent results and new methods’.

1. Introduction
A three-dimensional (3D) incompressible turbulent flow has a peculiar geometrical structure
which distinguishes it from a purely random field. The visualization of the isosurfaces of
enstrophy and energy dissipation indeed indicates that vorticity concentrates into tubular
structures, while regions of intense strain are sheet-like [1] (see figure 1 for a visualization
based on the Q-criterion [2,3]). Several Lagrangian studies have shown that the dynamics of
objects smaller than the viscous-dissipation scale can depend sensitively on the nature of the
local velocity gradient. Heavy particles, for instance, are ejected from vortical regions because
of centrifugal forces and thus concentrate in strain-dominated ones [4,5]. In turbulent channel
flows, highly stretched polymers are mainly found in the regions of strong biaxial extension
that surround the near-wall streamwise vortices [6–8]. Gyrotactic swimmers are trapped into the
high-shear zones of a turbulent flow [9], while ellipsoidal swimmers preferentially sample low-
vorticity zones [10]. Much less studied, however, is the case of an object whose size lies in the
inertial range of turbulence; its translation is coupled to its internal dynamics, which in turn is
directly affected by coherent structures of the flow. This situation has only just begun to receive
attention, especially in the context of flexible fibres [11–16].

A bead–spring chain is a simple physical system that allows us to investigate the interaction
between an extended filamentary object and the geometrical structure of a turbulent flow. Such
a system has been widely employed in polymer physics [17] and is here generalized in order to
describe a chain longer than the dissipation scale. It consists of a sequence of beads connected
by phantom springs. The extensibility of the chain can be tuned by varying the strength and the
maximum length of the springs, and its stiffness is controlled by a bending potential that depends
on the angle between each neighbouring pair of springs. Even though a bead–spring chain can
only be regarded as a very rudimentary model of an elastic filament, it has the basic properties
needed to investigate the physical mechanisms that determine the motion of an extensible and
flexible object in a turbulent flow. Moreover, its dynamics can be studied in detail with moderate
numerical effort.

In [18], an extensible bead–spring chain was studied in a two-dimensional (2D), homogeneous,
and isotropic, turbulent flow. It was shown that the centre of mass of the chain preferentially
samples the vortical regions. This is because the chain is strongly stretched in high-strain regions
and thus becomes unable to follow their evolution. It eventually gets trapped into one of the large-
scale vortices that dominate a 2D turbulent flow. Inside the vortex, where straining is absent, it
contracts and stays therein. Hence, in 2D turbulence, an extensible chain departs from straining
regions but behaves like a tracer inside vortices, whence the preferential sampling of the latter.

Here we study the dynamics of a bead–spring chain in 3D turbulence, where, unlike in
two dimensions, vorticity-stretching leads to the formation of intense vortex tubes [19,20], with
significant straining along the tube axis. We address the question of whether preferential sampling
of vortical regions persists in three dimensions and, if so, how it depends on the extensibility and
flexibility of the chain.

2. Extensible chain
We consider a chain consisting of Nb identical inertialess beads (see [21] for a study of chains
with inertial beads in 2D turbulent flows), each of which has a Stokes drag coefficient ζ . The
beads are connected to their nearest neighbours by nonlinear springs, with equilibrium length
req, maximum length rm and spring coefficient κ . The characteristic relaxation time of each spring
is thus τE = ζ/4κ , which in turn sets the relaxation time of the chain τ chain

E = (Nb + 1)NbτE/6
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Figure 1. Contours of Q showing intense, rotational, vortex tubes (red,Q = +5
√

〈Q2〉) enveloped by strong straining
sheets (blue,Q = −2

√
〈Q2〉), in three-dimensional homogeneous isotropic turbulence. The black scale bar at the top-left

corner corresponds to a length of 35η. (Online version in colour.)

[22]. If xi, 1 ≤ i ≤ Nb, denote the position vectors of the beads, it is convenient to describe the
configuration of the chain in terms of the position of its centre of mass, Xc = (

∑Nb
i=1 xi)/Nb, and the

interbead separations rj = xj+1 − xj, 1 ≤ j ≤ Nb − 1.
We first consider a freely jointed (the links do not oppose resistance to bending), extensible

chain, as in [18]. The equations of motion for such a chain are

Ẋc = 1
Nb

Nb∑
i=1

u(xi, t) + 1
Nb

√
r2

eq

6τE

Nb∑
i=1

ξ i(t) (2.1a)

and

ṙj = u(xj+1, t) − u(xj, t) + 1
ζ

(
f E

j+1 − f E
j

)
+
√

r2
eq

6τE
[ξ j+1(t) − ξ j(t)], (1 ≤ j ≤ Nb − 1). (2.1b)

The elastic force on the jth bead, f E
j , takes the form

f E
j = κ αjr̂j

rj

1 − r2
j /r2

m
− κ αj−1r̂j−1

rj−1

1 − r2
j−1/r2

m
, (2.2)

with rj = |rj|, r̂j = rj/rj and

αj =
{

0 if j ≤ 0 or j = Nb

1 otherwise.
(2.3)

The divergence of the force at r = rm ensures that the length of the chain, R =∑Nb−1
j=1 rj, stays

smaller than the maximum value Lm = (Nb − 1)rm. The vectors ξ j(t), 1 ≤ j ≤ Nb, are independent
multi-dimensional white noises; they serve the purpose of modelling the collisions between the
beads and the molecules of the fluid, thereby setting the equilibrium end-to-end length of the
chain to req

√
Nb − 1. Equations (2.1) generalize the well-known Rouse model of polymer physics

[17] in such a way as to account for the nonlinearity of the velocity field. Indeed, in the original
Rouse model the velocity differences between the beads are replaced by their first-order Taylor
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expansion in the separation vectors, because polymers are assumed to be much shorter than the
smallest scale of the velocity field. Here the full velocity differences are retained, since the chain is
allowed to extend into the inertial range of turbulence. An analogous generalization was applied
in [23–26] to the elastic dumbbell model (Nb = 2).

Finally, the velocity field u(x, t) describes the motion of the fluid and is the solution of the
incompressible Navier–Stokes equations

∂tu + u · ∇u = −∇p + ν	u + F, ∇ · u = 0, (2.4)

where p is pressure, ν the kinematic viscosity of the fluid and F(x, t) is a large-scale body
forcing which maintains a homogeneous, isotropic and statistically stationary turbulent flow.
We perform direct numerical simulations on a 2π -periodic domain, using a standard de-aliased
pseudo-spectral method. For 3D simulations, we use a N3 = 5123 spatial grid and a second order
Adams–Bashforth time-integration scheme. The body-forcing F(x, t) injects a constant amount
of energy—equalling the mean dissipation rate ε—into the first two wavenumber shells. The
Kolmogorov dissipation time and length scales are given by τη = (ν/ε)1/2 and η = (ν3/ε)1/4 ≈
1.7 kmax (where kmax = √

2N/3 is the maximum resolved wavenumber). The results presented
below correspond to a flow with Taylor–Reynolds number Reλ = 2E

√
5/(3νε) = 196 (where E is

the mean kinetic energy), which is sufficiently large for a clear inertial range (albeit less than
a decade) to emerge in the energy spectrum and for the formation of distinct vortex tubes (cf.
figure 1). We have checked that the sampling behaviour we describe persists even for smaller Reλ

of 123 and 64 as well, though it does intensify with Reλ over this limited range.
While our primary focus is on chains in a 3D turbulent flow, it is helpful to compare their 3D

dynamics with that in a 2D turbulent flow, especially when addressing the effects of extensibility
and flexibility. For 2D flow simulations, a N2 = 10242 spatial grid and a second order Runge–
Kutta time-integration scheme is used, as in ref. [18]. A constant-in-time forcing F = F0 sin(kf x) ey

is applied, where F0 is the forcing amplitude and kf = 5 is the forcing wavenumber, which sets
the scale of the large coherent vortices, 2πk−1

f . An Ekman friction term [27,28] with coefficient

μ = 10−2 is included in (2.4) to damp out the energy at the large scales (due to an inverse cascade).
After the flow (3D or 2D) attains a stationary state, we introduce a large number of chains, of

order 104, each with Nb = 20 beads. We evolve many chains simultaneously only to obtain good
statistics; the dynamics we study are of a single chain in the flow. The chains are given a small
initial length, close to the no-flow equilibrium value. They are then allowed to be stretched out by
the flow and attain a steady-state distribution before we begin recording statistics. The equations
governing the dynamics of the centre of mass and separation vectors of the chain are integrated
using a second-order Runge–Kutta scheme, augmented by a rejection algorithm [29] that prevents
the nonlinear spring force from diverging as |r| approaches rm. The chains are evolved with a time
step 	tchain = 	tf /Nsub, where 	tf is the time-step of the fluid flow solver and Nsub is the number
of sub-steps taken by the chain solver for every step of the fluid solver. The flow is assumed to
be unchanging over the duration of the sub-steps. While Nsub is set to unity for the freely-jointed
chain, used in this section, we use up to Nsub = 103 for accurately resolving the numerically-stiff
dynamics of inextensible and inflexible chains, to be introduced later in §§3 and 4.

The influence of elasticity on the dynamics of the chain is described in terms of the elastic
Weissenberg number WiE = τ chain

E /τf , which is the ratio of the chain relaxation time to the viscous-
dissipation time scale of the flow. For 3D turbulence, τf = τη, whereas for 2D flows we choose the
small time scale associated with the dissipation of enstrophy, τf = 〈2ω2〉−1/2, where 〈ω2〉 is the
mean enstrophy. For small WiE, the chain is in a contracted configuration and acts like a tracer;
for large WiE, it is stretched out by the flow.

As mentioned in §1, the dynamics of an extensible chain was studied in [18] for a 2D turbulent
flow forced at large spatial scales. The equilibrium size of the chain was assumed to be of the order
of the dissipation scale, while Lm was much longer and comparable to the scale of the coherent
vortices, 2πk−1

f , or even greater than it. When WiE was sufficiently large for the typical length
of the chain to approach the size of the vortices, then the chain was shown to exhibit a marked
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preferential sampling of vortical regions. The mechanism that was proposed in [18] to explain this
phenomenon, already sketched briefly in §1, can be summarized as follows:

(i) Inside a vortex, where stretching is absent, the chain shrinks down to its equilibrium size.
Since the equilibrium size of the chain is much smaller than the size of the vortex, the
chain essentially behaves as a tracer and follows the vortex during its lifetime.

(ii) In a region of intense strain, the chain is stretched to the extent that it cannot continue to
follow the straining region. The chain eventually encounters a vortex that coils it up and
‘entraps’ it according to the dynamics described above.

The combination of these effects causes an extensible chain to stay inside large vortices and leave
high-strain regions, which results in a strong preferential sampling of vortices. This phenomenon
was quantified in [18] by studying the Okubo–Weiss parameter [30,31] evaluated at the position
of the centre of mass of the chain,

Λc = ω2
c − σ 2

c

4〈ω2〉 , (2.5)

where ωc and σc are the vorticity and the strain rate at the position of the centre of mass,
respectively. We recall that positive values of Λc correspond to vorticity-dominated regions,
whereas negative values indicate strain-dominated regions. For large enough values of WiE, the
probability of positive values of Λc was found to be much higher than for a tracer transported by
the same flow [18]. In addition, the joint probability density function (PDF) of the chain length R
and Λc confirmed that the chain is contracted in vortical regions and extended in straining ones.

The first question we address here is whether or not an extensible chain exhibits preferential
sampling of vortical regions also in a 3D turbulent flow. A substantial difference indeed exists
between 2D and 3D flows. A 2D turbulent flow is characterized by large, long-lived vortices,
inside which stretching is weak. In a 3D turbulent flow, vorticity concentrates into intense tubular
structures with significant stretching along their axes. The dynamics of the chain in vorticity-
dominated regions is therefore expected to be substantially different in the two cases.

In three dimensions, the local nature of the flow can be classified by using the Q-R
representation of the velocity gradient [32]. If Ac = τη∇u(Xc(t), t) denotes the rescaled velocity
gradient at the position of the centre of mass, let Qc = − tr A2

c/2 and Rc = − det Ac be its second
and third invariants. Since Qc can be rewritten as

Qc = τ 2
η

ω2
c /2 − Sc : Sc

2
; Sc = (Ac + AT

c )
2

, (2.6)

the sign of Qc discriminates between the regions dominated by vorticity (Qc > 0) and those
dominated by strain (Qc < 0). Thus, Qc has a role analogous to that played by Λc in a 2D flow.
Figure 1 presents a snapshot of the iso-surfaces of Q from our 3D simulation, which clearly reveal
sheet-like straining zones (large negative Q in blue) in close proximity to intense tubular vortices
(large positive Q in red).

Figure 2 compares the steady-state joint PDFs of Rc and Qc for a tracer particle (panel a) and
for the extensible chain with a large WiE = 10 (figure 2b). The chain has an equilibrium size of
about 0.4η and a maximum extension Lm = 40η, so that when the chain is stretched its length R
lies in the inertial range and is comparable to the typical size of vortex tubes in our simulations
(cf. the vortex tubes and scale bar in figure 1). The shape of the joint PDF of the chain is similar to
that of the tracer. However, the probability of sampling positive Qc is significantly larger for the
chain, than for the tracer. Therefore, we deduce that preferential sampling of vorticity-dominated
regions persists in three dimensions.

As mentioned above, however, a major difference exists between the chain dynamics in 2D
and 3D turbulence. This is reflected in the conditional PDF of the chain length R given the value
of Qc, presented in figure 3b, which shows that contrary to the 2D case the chain is considerably
stretched not only in strain-dominated but also in vorticity-dominated regions. This difference is
clear from the comparison of the joint PDF of R and Qc, shown in figure 3a, with its 2D analogue



6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190405

................................................................

6

–4
–3 3210

Rc

Q c Q c

Rc

–1–2 –3 321

0

–3.5
–3.0
–2.5
–2.0
–1.5
–1.0
–0.5

0–1–2

–2

0

2

4

6

log10P

–4

–2

0

2

4

(a) (b)

Figure 2. Joint PDF ofRc andQc (a) for a tracer and (b) for an inertialess, freely jointed, extensible chain with WiE = 10,
Lm = 40η, req = 0.045η. (Online version in colour.)
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Figure 3. (a) Joint PDF of the chain length R (rescaled by the dissipation scaleη) andQc for a freely jointed inextensible chain.
(b) Conditional PDF of R rescaled by η givenQc < −1 (blue curve) andQc > 1 (red curve). The parameters areWiE = 10,
Lm = 40η, req = 0.045η in both panels. (Online version in colour.)

(see fig. 3 in [18]) and has important consequences for preferential sampling. In two dimensions,
indeed, the contraction of the chain inside vortices was identified as an essential element of the
sampling dynamics [18] (though we shall revisit this idea in §4). In three dimensions, the chain
does not collapse into a tracer even when the flow has a strong vortical nature (figure 3b). Hence,
the mechanism leading to preferential sampling ought to be different from that operating in 2D
turbulence.

Now, the only way an elongated chain can remain inside a vortex tube of comparable length,
is if it aligns itself along the vortex axis. Given that the majority of vortices are axially stretched
(figure 2), this scenario is consistent with our observation that the chain is typically stretched out
inside a vortex (figure 3b). In contrast, it is unlikely that the entire chain can be encapsulated
into straining regions, given their less coherent, sheet-like topology. Moreover, the evolution of
straining regions is much more non-local in nature than that of the vortex tubes [33], which tend
to move with the fluid, except for the effects of viscous diffusion (in the inviscid limit the tubes



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190405

................................................................

1 5 10
WiE WiE

50 100

tracer

0.5

1.0

1.5

2.0

1 5 10 50 100
0

10

20

30

40

·Q
c3 Ò

· R
/h

Ò

(a) (b)

Figure 4. (a) Thirdmoment of the distribution ofQc and (b) the average chain length as a function ofWiE , for fixed Lm = 40η
and req = 0.045η. The value of 〈Q3

c〉 for a tracer is shown as a horizontal black line in a; it is positive due to the presence of
intense vortex tubes. (Online version in colour.)

would be ‘frozen’ into the fluid as a consequence of Kelvin’s circulation theorem [20]). Thus, we
expect a chain to be able to enter and follow a vortex tube more easily than a straining region.

This explanation implies that there is an ideal chain elasticity for preferential sampling: if WiE
is too small then the chain acts like a tracer, whereas, if WiE is too large then the chain may stretch
out beyond the length of the vortex tubes and be unable to reside inside them. This intuition is
corroborated by figure 4, which shows the effect of WiE on preferential sampling (figure 4a), as
well as on the mean length of the chain (figure 4b). We find that the third moment of the PDF of
Qc, whose positivity implies a higher probability of positive Qc, varies non-monotonically with
WiE, peaking at a value which corresponds to a mean chain length 〈R〉 ≈ 20η. For larger WiE, all
the chains approach the maximum chain length Lm = 40η and cannot reside within the vortex
tubes as effectively (cf. figure 1).

We shall present more direct evidence for our explanation of 3D preferential sampling in §4.
But first, let us address the question that naturally arises from figure 3a: Is elasticity essential for
preferential sampling, given that the chains are stretched out even inside vortices? The physical
picture of chains aligning along vortex tubes would hold even for long chains of a fixed length,
and so we would expect such inextensible chains to show preferential sampling as well. We test
this idea in the next section.

3. Inextensible chain
In order to describe a ‘macroscopic’ inextensible chain, we disregard Brownian fluctuations in
(2.1) and replace f E

j with

f̃
E
j = κ αjr̂j(rj − req) − κ αj−1r̂j−1(rj−1 − req), (3.1)

where req still has the meaning of equilibrium length of the springs. WiE is set to a very small
value to ensure that the chain is in effect inextensible. Its length is then L = (Nb − 1)req (in the
simulations, we set WiE = 0.1, which ensures that R =∑Nb−1

j=1 rj differs from L by 2% at most).
We now consider an inextensible chain having the same length as the maximum length of

the extensible chain (with WiE = 10) considered in §2, i.e. we take L = Lm = 40η. The PDFs of Qc

for the two cases are compared in figure 5a. The absence of extensibility is seen to have only a
small effect.
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The influence of the length L of the inextensible chain on the level of preferential sampling is
depicted in figure 5b, in terms of the third moment of Qc. Here, we see the same non-monotonic
variation of 〈Q3

c 〉 with L, that we saw with WiE for the extensible chain (figure 4a). Moreover,
the value of 〈Q3

c 〉 for L = 20η is very close to that of the extensible chain (horizontal line in
panel b), which has a mean length 〈R〉 ≈ 20η (case of WiE = 10 in figure 4b). These results clearly
demonstrate that preferential sampling persists even when the chain is not collapsible. Indeed the
only role of extensibility is to allow a chain with a short equilibrium length to be stretched by the
flow and reach the appropriate length for staying in a vortex; it does not influence the preferential-
sampling dynamics otherwise. This finding supports our intuition regarding the mechanism of
preferential sampling whereby the chain resides in intense vortical regions by aligning with the
axis of vortex tubes. Such a mechanism, indeed, does not rely on the extensibility of the chain,
and is equally applicable to inextensible, but long, chains.

The results in figure 5b also confirm our understanding of figure 4b, that there is an optimal
length for preferential sampling—either attained dynamically by stretching or permanently fixed
from the outset—that is comparable to the characteristic linear size of vortex tubes.

4. Inflexible chain
So far we have considered a chain that does not oppose bending. However, taking the bending
stiffness of the chain into account allows us to further understand preferential sampling in 3D
turbulence. Specifically, by increasing the stiffness of the chain, we can check whether it is
necessary for chains to be able to coil in order to enter vortex tubes. Coiling certainly plays
an important role in preferential sampling in 2D turbulence, as demonstrated indirectly in [18],
where the deformability of the chain was controlled by changing the number of beads Nb while
keeping the maximum length Lm fixed. Here, we directly incorporate the forces arising from
bending stiffness into the equations of motion, by assuming that the chain has a bending energy
given by [34]

EB = Ar−1
eq

Nb−1∑
j=2

(1 − r̂j · r̂j−1), (4.1)
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where A > 0 determines the bending stiffness.1 The bending energy generates a force that depends
on the angle between two neighbouring links and whose effect is to restore the chain into a
rod-like configuration. The form of the force on the jth bead is [34]

f B
j = A

req

[
αj−2

rj−1
r̂j−2 −

(
αj−2

rj−1
r̂j−2 · r̂j−1 + αj−1

rj
+ αj−1

rj−1
r̂j−1 · r̂j

)
r̂j−1

+
(

αj−1

rj
r̂j−1 · r̂j + αj−1

rj−1
+ αj

rj
r̂j · r̂j+1

)
r̂j − αj

rj
r̂j+1

]
, (4.2)

where αj was defined in (2.3). The characteristic time associated with this force is τB = ζ r3
eq/A,

and a dimensionless measure of it is the ‘bending’ Weissenberg number WiB = τB/τη. The chain is
inflexible and rod-like for small WiB, while the freely-jointed limit is recovered for large WiB.

With the addition of the bending stiffness, the evolution equations for an inertialess,
inextensible chain become

Ẋc = 1
Nb

Nb∑
i=1

u(xi, t) (4.3a)

and

ṙj = u(xj+1, t) − u(xj, t) + 1
ζ

(
f̃

E
j+1 − f̃

E
j

)
+ 1

ζ

(
f B

j+1 − f B
j

)
(1 ≤ j ≤ Nb − 1). (4.3b)

We begin by assessing the effect of bending stiffness on preferential sampling in two
dimensions. As we already appreciate the importance of coiling in two dimensions [18], studying
the impact of bending stiffness in this case will help us better understand the results in three
dimensions. Moreover, this also provides us with the opportunity to check whether extensibility is
crucial for preferential sampling in two dimensions as suggested in [18], i.e., whether it is essential
for a chain inside a vortex to collapse to a tracer, or if it is sufficient for a long chain to simply coil
into the vortex.

Figure 6 presents snapshots of the inextensible chains overlaid on the vorticity field, for a
highly flexible (figure 6a), a moderately flexible (figure 6b), and an inflexible (figure 6c) case
(online movie of highly flexible chains in 2D turbulence: https://youtu.be/22X0Gt5y2cM; online
movie of moderately flexible chains: https://youtu.be/j-c8eLjeECM; Online movie of inflexible
chains: https://youtu.be/HanNeqaqya8. They are also available as electronic supplementary
material). We see that the highly flexible chain is coiled up by the vortices and stays almost
entirely within them. The inflexible rod-like chain, however, is unable to coil, and thus while
some portions of the chain linger within vortices, the entire chain can never be entrapped by a
vortex and preferential sampling weakens considerably. This effect of bending stiffness, which
is exactly as anticipated in [18], is shown quantitatively by the PDFs of Λc in figure 6d (see (2.5)
for the definition of Λc). An analogous behaviour is observed for inextensible, inertialess fibres,
described by the local slender-body theory, in a two-dimensional turbulent flow (Jérémie Bec,
2018 personal communication).

Figure 6d also allows us to address the role of extensibility in two dimensions, by comparing
the PDF of Λc for an extensible, freely jointed, chain (WiE = 20, studied in [18]) with the PDF for
the inextensible, highly flexible chain (WiB = 0.4). The extensible chain has a small equilibrium
length of 0.04 and a maximum length Lm = 1.25, which equals the fixed length L of the inextensible
chain. We see that while there is a small reduction of the degree of preferential sampling when
the chain is unable to collapse to a tracer-like object, the long inextensible chains are still able
to occupy vortices effectively (figure 6a), provided of course that they are flexible. Therefore,
extensibility is not a crucial ingredient for preferential sampling, either in two dimensions or in
three dimensions (shown in §3). However, it does have a more significant effect in two dimensions
because extensible chains can collapse to tracers inside 2D vortices, whereas this is not possible
inside axially stretched 3D vortex tubes.

1Note that our definition of the separation vectors rj differs from that used in [34].

https://youtu.be/22X0Gt5y2cM
https://youtu.be/j-c8eLjeECM
https://youtu.be/HanNeqaqya8
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Figure 6. Snapshots of an ensemble of inextensible chains (black lines) in a 2D turbulent flow, overlaid on the vorticity
field, corresponding to (a)WiB = 0.4 (highly flexible), (b)WiB = 0.4 × 10−1 (moderately flexible) and (c)WiB = 0.4 × 10−3

(inflexible). It should be noted that several chains are plotted at the same time in order for the reader to visualize the preferential
sampling of vortices more easily. There is, however, no interaction between the chains. The length of the chain L is equal to the
large vortex scale 2π/kf = 1.25. (d) PDF of the Okubo–Weiss parameter for the inextensible chain of panels a and c, alongwith
the PDF for a tracer, as well as that for an extensible chain (WiE = 20) with equilibrium size of 0.04 and maximum length Lm
equal to the length L of the inextensible chain. (Online version in colour.)

Returning to the effect of the bending stiffness, we have shown above that in two dimensions
it strongly affects the preferential sampling of vortical regions because chains must coil in
order to enter vortices. We now examine the effect of the bending stiffness in three dimensions.
Figure 7a shows the PDF of Qc for a long inextensible chain (L = 20η) with different values of WiB,
corresponding to a highly flexible (WiB = 101), a moderately flexible (WiB = 10−1) and a rod-like
inflexible (WiB = 10−3) chain. The PDF clearly does not vary with WiB, which is an unequivocal
indication that, in three dimensions, the bending stiffness has no effect on preferential sampling.
This fact provides further confirmation of our explanation of preferential sampling of vortical
regions in 3D turbulence. If the main mechanism is the alignment of the chain with the axis of
the tubular structures on which vorticity concentrates, the chain does not need to coil in order
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ofQj sampled by the beads of a chain, conditioned on the centre of mass being in a vortical (Qc ≥ +1) or straining region
(Qc ≤ −1). Results are shown for the cases of a highly flexible (WiB = 101) and inflexible (WiB = 10−3) chain of panel a.
(Online version in colour.)

to reach and keep that configuration. It is then natural that the bending stiffness does not affect
preferential sampling in three dimensions.

All our results, thus far, point to the ability of chains to thread vortex tubes and follow them
by aligning with the vortex axis. In contrast, no such mechanism exists for chains to reside
inside straining zones which have a complex geometry and evolve non-locally, as pointed out
earlier in §2. Indeed this difference between vortical and straining regions forms the basis for our
explanation of preferential sampling. Therefore, it is important to support this claim with some
direct evidence. To this end, we denote by Qj the value of Q at the position of the jth bead, xj. We
then consider the mean μ and standard deviation Σ of Qj over the Nb beads of the chain

μ = 〈Qj
〉
b and Σ = 〈 (Qj − μ

)2 〉1/2
b (4.4)

with 〈·〉b denoting the average over j = 1, . . . , Nb. Figure 7b compares the conditional PDFs of Σ

for chains in rotational (Qc ≥ +1) and straining (Qc ≤ −1) regions, for both flexible and inflexible
(inextensible) chains. In both cases, we see that Σ is typically greater when the centre of mass of
the chain is in a high-strain region. This finding confirms that it is generally easier for a chain,
even if it is rod-like, to reside within vortex tubes than within straining regions.

5. Concluding remarks
We have shown that a long bead–spring chain—a simple model for filamentary objects—
preferentially samples vortical regions of both two dimensions and three dimensions turbulent
flows. This behaviour is exhibited by a long inextensible chain, as well as an extensible one that
has a small equilibrium length but which is stretched out to inertial-range scales by the flow. The
key difference between the underlying mechanisms in two dimensions and three dimensions is
revealed by the contrasting behaviour of inflexible chains. In two dimensions, where the chain
must coil in order to be trapped within vortices, bending stiffness inhibits preferential sampling.
In three dimensions, however, an inflexible chain exhibits the same sampling behaviour as a fully
flexible one, because the chain follows tubular vortices by aligning with their axes, and neither
bending nor extensibility is essential for this to occur.

The extent of preferential sampling is much stronger in 2D than in 3D turbulence (compare the
difference between the PDFs for a tracer and the chain in figure 6d and figure 7a). This is because
2D coherent vortices have much longer lifetimes than 3D vortex tubes, allowing the chain to spend
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a much larger fraction of time inside the former. On the other hand, the preferential sampling
phenomenon is more robust in 3D, as it persists regardless of the extensibility or flexibility of
the chain.

Filamentary objects in turbulent flows are encountered in several physical situations,
from fibres in the paper industry to micro-plastics and algae in oceanic environments. The
understanding of the sampling behaviour of individual chains developed here sets the stage for
future studies of the transport, dispersion and settling of filaments in turbulent suspensions, for
which, however, additional physical effects such as intra-chain and inter-chain hydrodynamic
interactions must be considered.
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