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We derive an analytical connection between kinetic
relaxation rate and bulk viscosity of a relativistic
fluid in d spatial dimensions, all the way from the
ultra-relativistic down to the near non-relativistic
regime. Our derivation is based on both Chapman–
Enskog asymptotic expansion and Grad’s method of
moments. We validate our theoretical results against
a benchmark flow, providing further evidence of
the correctness of the Chapman–Enskog approach;
we define the range of validity of this approach
and provide evidence of mounting departures at
increasing Knudsen number. Finally, we present
numerical simulations of transport processes in quark-
gluon plasmas, with special focus on the effects of
bulk viscosity which might prove amenable to future
experimental verification.

This article is part of the theme issue ‘Fluid
dynamics, soft matter and complex systems: recent
results and new methods’.

1. Introduction
In the last decade, relativistic hydrodynamics has
received renewed attention and interest thanks to major
breakthroughs in condensed matter, high-energy and
gravitational physics [1]. In particular, experimental data
from the relativistic heavy-ion collider (RHIC) and the
large Hadron collider (LHC), have triggered further
developments in the study of viscous relativistic fluid
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dynamics, both at the level of theoretical formulations and for the development of robust
numerical methods, to describe the collective behaviour of quark-gluon plasmas (QGP).

Several theoretical aspects related to a consistent formulation of dissipative relativistic
hydrodynamics are still under debate in the literature [2–18], including the correct derivation
of the values of the transport coefficients as a function of the parameters defined at the level of
kinetic theory [19–27].

A proper understanding of transport properties is crucial for the study of the evolution and
equilibration process of the QGP produced in heavy-ion collisions. The effects of shear viscosity
on the elliptic flow parameters have been extensively studied by several authors [28–32]. The
relevance of bulk viscosity, mostly regarded as negligible in the earlier days, has attracted
significant attention in recent years [33–37]. For instance, it has been suggested that, near the
critical point, bulk effects might be dominant over shear viscosity [38,39]. In this context, an
accurate derivation of all transport coefficients and the availability of numerical tools capable of
capturing the effects of bulk viscosity are desirable in a theoretical perspective and important also
for the simulation of QGP. As a side note, we remark that a complete analysis of the role of bulk
viscosity in relativistic hydrodynamics could also be beneficial for the theoretical understanding
of the accelerated expansion of the universe [40–44].

In this work, we perform the Chapman–Enskog expansion to establish the analytic expression
of bulk viscosity of a relativistic gas obeying an ideal equation of state and working in the single
relaxation-time (SRT) approximation. The derivation is developed in a (d + 1) dimensional flat
space–time. While d = 2, 3 are the most relevant physical cases, it is nevertheless interesting from
a theoretical point of view to consider the general d-dimensional case. Indeed, the dependence of
bulk viscosity on the relativistic parameter ζ = mc2/kBT (defined as the ratio between the particles
rest energy and the thermal energy), is found to strongly depend on the dimensionality of the
system.

Our analytical results are then compared and validated against numerical simulations,
performed using a recently developed relativistic lattice kinetic scheme. We consider first a simple
synthetic flow that we would like to suggest as a benchmark for the measurement and calibration
of bulk viscosity and then a more complex flow with several features typical of QGP flows. This
paper builds on previous work presented in [45], enriched with an extended set of new numerical
results.

This paper is organized as follows: in §2, we briefly summarize the procedure followed to
derive the analytic form of bulk viscosity working in the single relaxation time approximation.
In §3, we present a numerical validation of the analytical results, also providing an example of
application for which these results are relevant and of practical interest. Finally, conclusions and
future developments are summarized in §4.

2. Relativistic Boltzmann equation and Chapman–Enskog expansion
We consider a (d + 1) dimensional flat space–time, in which a statistical description of a relativistic
fluid is given in terms of the particle distribution function f ((xα), (pα)), depending on coordinates
(xα) = (ct, x), with c the light speed and momenta (pα) = (p0, p), with x, p ∈ R

d.
The time evolution of the system is governed by the relativistic Boltzmann equation, that we

take in the Anderson–Witting [46,47] SRT approximation

pα ∂f
∂xα

= −pμUμ

τc2

(
f − f eq) , (2.1)

with τ the relaxation (proper-) time, Uμ the relativistic fluid velocity and f eq the equilibrium
distribution function, for which we take the normalized Maxwell–Jüttner distribution

f eq =
(

c
kBT

)d n
2(d+1)/2π (d−1)/2ζ (d+1)/2K(d+1)/2(ζ )

exp
(

−Uαpα

kBT

)
. (2.2)
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In the above, n is the particle number density, T the temperature, ζ (already referred to in the
Introduction) is the ratio between the rest mass of the particles m and the temperature (ζ =
mc2/kBT), Ki(x) the modified Bessel function of the second kind of order i and kB the Boltzmann
constant.

The Anderson–Witting collisional operator ensures the local conservation of particle number,
energy and momentum. Dissipative effects are described by the energy momentum tensor, which
in the Landau–Lifshitz frame admits the following decomposition:

Tαβ = c
∫

fpαpβ ddp
p0

= ε

c2 UαUβ − (P + 	)
αβ + π 〈αβ〉, (2.3)

with ε the energy density, P the hydrostatic pressure and 
αβ the Minkowski–orthogonal
projector with respect to the fluid velocity Uα


αβ = ηαβ − 1
c2 UαUβ ; (2.4)

ηαβ is the metric tensor, that we define as ηαβ = diag(1, −1), 1= (1, . . . , 1) ∈ N
d. Finally, and most

importantly in this treatment, the pressure deviator π 〈αβ〉 (here the 〈. . .〉 parentheses represent the
traceless symmetric contribution to Tαβ ) and dynamic pressure 	 represent the non-equilibrium
contribution to the energy momentum tensor, proportional to shear viscosity η and bulk viscosity
μ, respectively. It can be shown [48] that bulk viscosity connects dynamic pressure and the
divergence of the velocity via the relation

	 = −μ∇αβ∂βUα . (2.5)

Asymptotic expansions are generally employed in order to establish a link between
macroscopic equations and the kinetic description. In the following, we perform the Chapman–
Enskog expansion [49] to determine an analytic expression putting in relation the bulk viscosity
with the kinetic relaxation time parameter. Here, we confine ourselves to a summary of the main
conceptual steps, while full details on the analytic procedure can be found in [45].

The starting point is an expansion of the particle distribution function f around equilibrium

f = f eq(1 + φ), (2.6)

with φ of the order of the Knudsen number Kn, defined as the ratio between the mean free path
and a typical macroscopic length scale. Next, we plug equation (2.6) into equation (2.1), and retain
only terms O(Kn)

pα ∂f eq

∂xα
= −pαUα

c2τ
f eqφ. (2.7)

By combining the above with equation (2.2) lengthy but straightforward calculations allow us to
derive an analytic expression for φ

φ = − c2τ

pμUμ
pα

[
∂αn
n

+ (1 − Gd)
∂αT
T

+ pβ Uβ∂αT
kBT2 − pβ∂αUβ

kBT

]
, (2.8)

where

Gd = ε + P
P

= ζ
K(d+3)/2(ζ )
K(d+1)/2(ζ )

. (2.9)

At this point, it is possible to use equation (2.6) to compute the energy-momentum tensor
Tαβ through its integral definition. Moreover, from equation (2.3) one can single out the dynamic
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pressure by applying the projector 
αβ , giving

	 = −P − 1
d

αβTαβ . (2.10)

By comparing equation (2.5) with equation (2.10), and matching term by term we identify the
following analytic expression for bulk viscosity

μ = Pτ

[
Gd − ζ 2K

d
− ζ 2 − G2

d + (d + 2)Gd

ζ 2 − G2
d + (d + 2)Gd − 1

]
with K =

∫
pipi f eq

pμUμ

ddp
p0

. (2.11)

Following a similar procedure, it is possible to extract a value also for the shear viscosity η, that
we show here for completeness (further details on the derivation can be found in [45])

η = Pτ

[
Gd − ζ 2K

d + 2

]
. (2.12)

Grad’s method of moments [50] provides an alternate procedure to connect kinetic parameters
with hydrodynamics coefficients. Although there is a growing consensus on CE providing more
accurate results with respect to Grad’s method [10,11,13,18,23,24,45,51,52] it is nevertheless
interesting to compare the two. Following the procedure described in [48], we obtain the following
expressions for the bulk and shear viscosity of a relativistic fluid in (d + 1) dimensions

μ = Pτ

(
ζ 2(d − 2Gd) + Gd(−d + Gd − 1)(−d + 2Gd − 2)

)2
d
(
Gd(d − Gd + 2) + ζ 2 − 1

)
× 1

G2
d(d2 + 8d − 2ζ 2 + 12) − Gd(d2 + d

(
5 − 3ζ 2

)− 10ζ 2 + 6) + ζ 2(−d + 2ζ 2 − 2) − (d + 6)G3
d

(2.13)

and

η = Pτ
G2

d
(d + 3)Gd + ζ 2 . (2.14)

We compare the behaviour of μ obtained using CE and Grad’s method of moments in 1, 2 and 3
space dimensions in figure 1a. Both methods correctly reproduce the expected limiting behaviour
for which bulk viscosity vanishes in the ultra-relativistic (ζ → 0) and non-relativistic (ζ → ∞)
limit. However, there is an intermediate region for which a non-zero bulk viscosity is predicted
and for which the two derivations yield different values for both the amplitude and the location
of the peak. Despite the bulky analytical expressions, the position of the maximum, ζmax, is found
to have a very simple linear dependence on the dimension of the system: ζmax = α1d + α0, with
α1 consistent with 1 in both cases, and α0 ≈ 0.744 for CE, α0 ≈ 1.235 for Grad. As an amusing
theoretical remark, we also observe that, in the limit of infinite spatial dimensions, bulk viscosity
vanishes for all values of ζ .

Finally, we conclude our analysis pointing out one important limitation of the Anderson–
Witting collisional operator: since this model depends on a single mesoscopic parameter it follows
that the relaxation rate will be the same for all the transport coefficients. As a consequence one
cannot tune independently shear and bulk viscosity; their ratio is shown in figure 1b.

3. Numerical simulations
In this section, we make use of a recently developed lattice kinetic solver [24,53] and present
results of numerical tests which aim at (i) cross-checking and validating the analytical results
presented in the previous section and (ii) providing an example of a realistic application to the
physics of QGP. We first give a short overview of the lattice kinetic algorithm that we have used
(a detailed derivation can be found in [45]) and then proceed to present the numerical tests.
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Figure 1. (a) Bulk viscosity is plottedagainst theparameterζ withadependencegivenby theCEanalysis (thick lines) andGrad’s
method (dashed lines). The discrepancy between the two asymptotic expansions in more prominent in the mildly relativistic
regime. The black dashed line represents the viscosity in the limit of infinite spatial dimensions, common to both CE and Grad’s
method,where the transport coefficient is independent ofζ . (b) The ratio between thebulk and the shear viscosity (η) is plotted
as a function of ζ . (Online version in colour.)

(a) I: Numerical scheme
The relativistic lattice Boltzmann method is a computationally efficient approach to dissipative
relativistic hydrodynamics. It is based on a mesoscale approach, and therefore it has the
advantage, with respect to other relativistic hydrodynamic solvers, that the emergence of viscous
effects does not break relativistic invariance and causality, since space and time are treated on the
same footing, i.e. both via first-order derivatives.

This numerical method solves a minimal version of equation (2.1), in which the discretization
of the microscopic momentum vector on a Cartesian grid is coupled with a Gauss-type quadrature
(see [24,45] for the formal analytic derivation) which ensures the preservation of the lower
(hydrodynamics) moments of the particle distribution

fi(x + vi
t, t + 
t) = fi(x, t) − 
t
pμ

i Uμ

cp0
i τ

(
fi(x, t) − f eq

i (x, t)
)

i = 1, 2, . . . M. (3.1)

In the above, vi = pi/p0
i are the microscopic velocities, chosen in such a way as to (i) preserve exact

streaming (meaning that (pseudo)-particles travel in one time step along constant streamlines
x + vi
t from a point of the grid to another point of the grid) (ii) together with an appropriate set
of weights wi reproduce correctly the moments of the particle distribution up to order N. Given
this two conditions, f eq

i can be defined as the discrete version of a polynomial expansion of the
equilibrium distribution

f eq
i = wi

N∑
k=1

a(k)(U
μ, T)J(k)(pμ

i ); (3.2)

refer to appendix F and G in [45] for the definition of the polynomials and the projection
coefficients used in the expansion. The numerical analysis presented in the coming section is
based on numerical simulations making use of third-order quadratures (N = 3), which are listed
in appendix H in [45].

The time evolution of equation (3.1) follows the collide-streaming paradigm typical of classic
Lattice Boltzmann schemes. At each time step, and for each grid cell, we need to compute
the macroscopic fields associated with the particle distribution. In order to do so we start by
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computing the first and second moment of distribution

Nα =
∑

i

fip
α
i and Tαβ =

∑
i

fip
α
i pβ

i .

From the definition of the energy-momentum tensor in the Landau frame (equation 2.3), we
compute the energy density ε and the four velocity Uα by solving the eigenvalue problem

εUα = TαβUβ ,

where ε corresponds to the largest eigenvalue of Tαβ . The particle density n comes from the
definition of the first-order moment, while temperature and pressure follow from the ideal
equation of state

P = nkBT

and ε = P(Gd − 1).

}
(3.3)

At this stage, it is possible to compute the polynomial expansion of the equilibrium distribution,
defined in equation (3.2), and use it to evolve equation (3.1).

(b) II: validation and calibration
Following the same approach used in previous works on the analysis of shear viscosity and
thermal conductivity [24,25,52], we compare our analytical predictions for bulk viscosity with
data from numerical simulations.

We consider a simple synthetic flow describing a time-decaying sinusoidal wave in a d
dimensional periodic domain; this flow is characterized by sizeable velocity gradients, allowing
the detection of physical effects due to a non-zero bulk viscosity. The initial conditions for the
benchmark are as follows:

ux = v0 sin
(

2π

L
x
)

x ∈ [0, L]

and ui = 0 ∀i 
= x,

⎫⎪⎬
⎪⎭ (3.4)

with v0 a given initial velocity, and with constant initial values for both particle density and
temperature.

In order to numerically evaluate the dynamic pressure, we introduce the definition of the
energy-momentum tensor at the equilibrium Tαβ

E , which follows from equation (2.3):

Tαβ

E = c
∫

f eqpαpβ ddp
p0

= ε

c2 UαUβ − P
αβ . (3.5)

The dynamic pressure can then be expressed as the trace of the difference between the energy
momentum tensor and its equilibrium counterpart

	 = −1
d

(Tμ
μ − TE

μ
μ). (3.6)

When considering flows at sufficiently low speeds (v0 � c), it is reasonable to approximate
the relativistic divergence ∇αβ∂βUα with its non-relativistic counterpart. It follows that we can
numerically measure ∇αβ∂βUα to good accuracy at each time step of the simulations, thus
allowing an estimate of μ directly from equation (2.5)

μ = − 	

∇αβ∂βUα
. (3.7)

We have performed several simulations varying the mesoscopic parameters τ and ζ and
extracted the expression for μ as a function of ζ in various spatial dimensions. Our results, see
figure 2, confirm that the CE analysis is in excellent agreement with numerical results.

We point out that the choice of the relaxation time τ is key to obtain accurate results. The linear
relationship between μ and τ holds as long as the assumptions made in the Chapman–Enskog
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Figure 2. Numerical estimate of the (non-dimensional) bulk viscosity for a relativistic gas in (1 + 1), (2 + 1) and (3 + 1)
dimensions, shown, respectively, in (a–c). The results are in agreement with CE analysis. In (d), we consider the specific case
ζ = 4 in three dimensions and show how the estimate forμ varies as a function of the Knudsen number. We estimate the
Knudsen number using Kn= 〈v〉τ/L, where 〈v〉 is an estimate of the mean velocity of the particles of the relativistic fluid
[48], and L the typical length scale of the system, for which we consider the wavelength of the sine wave. One can see that as
Kn increases the first-order approximation given by both CE and Grad is no longer valid. (Online version in colour.)

analysis remain valid, in particular the assumption of small Knudsen numbers. Conversely,
for large values of τ , that is for regimes where a purely hydrodynamic treatment becomes
questionable, the relation between the transport coefficients and the relaxation time is expected
to depart from linearity [23]. This behaviour is measured in figure 2d, for a specific case in three
dimensions at ζ = 4: we plot the fitted value for μ/τP against the Knudsen number Kn, clearly
showing that for Kn � 0.01 numerical data start to diverge from the CE prediction. One can expect
better agreement when including higher order terms in the ansatz in equation (2.6), although this
topic is still under debate in the literature since gradient-expansions are notoriously divergent
[54,55].

(c) III: Application
In this section, we present a second simulation example where we consider a qualitative
description of a relativistic elliptic flow, thus mimicking the evolution of the initial stages of
heavy-ion collisions.

We adopt the same numerical setup used in a series of studies on spin-polarized relativistic
flows [56–58], neglecting however quantum effects. The equation of state used in these
simulations is the ideal one shown in equation (3.3). Simulations of elliptic flows with different
equation of state implementations can be found, for example, in [59].

The initial conditions are given by a Gaussian distribution for both the temperature and
density profiles

T = T0 g(x, y, z), n = n0 g(x, y, z) and g(x, y, z) = exp

(
− x2

2σ 2
x

− y2

2σ 2
y

− z2

2σ 2
z

)
, (3.8)
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Figure 3. Dynamic evolution of a fireball of QGP at three different time steps: t = 1 fm/c on the left panels, t = 4 fm/c on the
central panels, t = 8 fm/c on the right panels. (a) The evolution of both the temperature (colour map) and the velocity (grey
arrows) fields, on a slice of the system. (b,c) The time evolution of, respectively, the hydrostatic pressure (normalized respect to
the initial pressure value at centre) and ratio of dynamic to hydrostatic pressure, for three different values of the particle mass
m. While form= 0 the dynamic pressure is always zero, it is not the case whenm 
= 0. This shows that in this kind of dynamic
the bulk viscosity plays a subtle, but still relevant role. (Online version in colour.)

with σx = 1 fm, σy = 2.6 fm and σz = 2 fm. The resulting ellipsoid represents the overlapping zone
in the collision between two heavy nuclei, with the fluid representing the product of such
a collision, a hot, dense and strongly anisotropic ‘fireball’ of QGP. The initial temperature at
the origin of the axis is T0 = 200 MeV, with n0 = 4 × 10−3 fm−3. In order to avoid numerical
instabilities, we include a background temperature of T = 80 MeV and density of n = 1 ×
10−3 fm−3.

The initial velocity profile is given by

Uα = γ
(
1, −Ω(r)y, Ω(r)x, 0

)
and Ω(r) = 1

r
tanh

(
r
r0

)
. (3.9)

with r =
√

x2 + y2 the distance from the centre of the vortex in the transverse plane, and r0 a
parameter controlling the strength of the flow. This initial condition, due to the limit posed by
the speed of light, is physically meaningful only inside a maximum radius R < 1/Ω ; in what
follows we use R = 3 fm and r0 = 6 fm. We consider a viscous regime where the ratio between
the shear viscosity η and the entropy density s is kept fixed at 2/(4π ), comparing simulations for
different values of the rest mass of the particles in the fluid, with respectively mc2 = 0, 1, 2 GeV.
All simulations pertain to a cubic domain of size 20 fm, using 1283 grid points.



9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190409

................................................................

Figure 3a shows the temperature profile of the system in the x–y plane at z = 0 fm at three
different time steps, from left to right t = 1, 4, 8 fm/c. In the QGP framework, one is interested
in measuring the translation of the initial spatial anisotropy into a momentum space anisotropy
(which can be measured in experiments). The discretization of the momentum space, upon which
our numerical scheme relies, does not allow us to perform direct measurements of the elliptic flow
coefficients; therefore, here we will only show that bulk viscosity effects can indeed be detected
and measured, leaving a more detailed analysis to future works. With this aim, we perform
measurements of macroscopic observables spatially averaged at fixed radial distance from the
centre of the ellipsoid. Figure 3b,c shows, respectively, the hydrostatic pressure and the ratio
between dynamic and hydrostatic pressure. Vertical bars, representing the variance, are larger at
radial distances where the flow still exhibits a significant spatial anisotropy. The effect of the rest
mass of the particles in the fluid is evident: the dynamic slows down when heavier particles are
taken in consideration. For massless particles, the ratio between the dynamic pressure is zero up
to numerical accuracy, independently of the radial distance, as expected from the analytical and
numerical analysis presented in the previous sections. On the other hand, for massive particles,
non-equilibrium contributions due to bulk viscosity become noticeable. In these cases, 	 strongly
varies across the domain, taking values larger than 1% of the hydrostatic pressure.

We stress here that although the dissipative dynamic in the system is inherently connected to
both shear and bulk effects (and due to the single relaxation time nature of the numerical scheme
a separate tuning of the two effects is not possible) the specific effects of bulk viscosity are singled
out by the behaviour of the dynamic pressure 	 via equation (2.5), since this quantity is affected
only by the value of μ.

4. Conclusion
Summarizing, in this work, we have highlighted the role of bulk viscosity μ on the dynamics
of a relativistic monoatomic gas. Using the Chapman–Enskog expansion and Grad’s method
of moments, we have presented an analytical formulation in (d + 1) dimensions, showing the
dependence of bulk viscosity on the kinetic relaxation time τ and the relativistic parameter
ζ = mc2/kBT.

Our analysis shows that, at variance with both the ultra-relativistic and non-relativistic
regimes, there is a region in ζ space where bulk viscosity is non-zero, whose location and
extension depend on the dimensionality of the system. Next, in order to discern between the
two expansion methods, a numerical validation has been presented. Once more, the correctness
of the Chapman–Enskog analysis over Grad’s method has been proved, in analogy with what
happens for shear viscosity and thermal conductivity; this result paves the way to the correct
reproduction of viscous effects in relativistic simulations. In the same context, the measure of μ at
different values of τ has allowed for testing the first-order approximations in both CE and Grad’s
theory, clearly identifying the kinematic range where a hydrodynamic description is appropriate.
Finally, a more realistic benchmark has been presented in the framework of QGP physics. In
detail, a strongly anisotropic hot dense plasma, resulting from the Lorentz contraction of heavy-
ion collisions, has been simulated, highlighting the presence of bulk-related viscous effects on the
transport properties of the QGP.

One limit of SRT models is that they link multiple hydrodynamic coefficients to a single
relaxation time, thus preventing the independent tuning of two viscosities. For this reason, the
development of a multi-relaxation time numerical scheme, and the corresponding derivation of
transport coefficients, is highly desirable for future studies of relativistic transport phenomena.
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