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Abstract

The medial amygdala (MeA) is essential for processing innate social and non-social behaviors, such as territo-
rial aggression and mating, which display in a sex-specific manner. While sex differences in cell numbers and
neuronal morphology in the MeA are well established, if and how these differences extend to the biophysical
level remain unknown. Our previous studies revealed that expression of the transcription factors, Dbx1 and
Foxp2, during embryogenesis defines separate progenitor pools destined to generate different subclasses of
MEA inhibitory output neurons. We have also previously shown that Dbx7-lineage and Foxp2-lineage neurons
display different responses to innate olfactory cues and in a sex-specific manner. To examine whether these
neurons also possess sex-specific biophysical signatures, we conducted a multidimensional analysis of the in-
trinsic electrophysiological profiles of these transcription factor defined neurons in the male and female MeA.
We observed striking differences in the action potential (AP) spiking patterns across lineages, and across sex
within each lineage, properties known to be modified by different voltage-gated ion channels. To identify the
potential mechanism underlying the observed lineage-specific and sex-specific differences in spiking adapta-
tion, we conducted a phase plot analysis to narrow down putative ion channel candidates. Of these candi-
dates, we found a subset expressed in a lineage-biased and/or sex-biased manner. Thus, our results uncover
neuronal subpopulation and sex differences in the biophysical signatures of developmentally defined MeA out-
put neurons, providing a potential physiological substrate for how the male and female MeA may process so-
cial and non-social cues that trigger innate behavioral responses.
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The amygdala is a major brain center for processing environmental cues for social, emotional and survival
behaviors. Furthermore, the amygdala is one of a handful of sexually dimorphic regions of the brain.
Focusing on the medial subnucleus of the amygdala (MeA), which regulates innate social and non-social be-
haviors, here we studied neuronal subpopulation and sex differences in the intrinsic biophysical properties
of two developmentally and molecularly identifiable subpopulations of MeA output neurons. We find dra-
matic lineage and sex differences in a variety of intrinsic biophysical properties and provide insight into po-
tential molecular mechanisms underlying these differences. These sex-specific neural substrates may help
\us understand how the amygdala processes innate social and non-social behaviors differently across sex. /
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Introduction

The medial amygdala (MeA) is a major brain nucleus for
distinguishing olfactory cues that drive innate behaviors
such as mating, territorial defense, predator avoidance
and maternal and paternal care (McCarthy and Arnold,
2011; Sokolowski and Corbin, 2012; Bergan et al., 2014;
Yang and Shah, 2014; Li and Dulac, 2018). In both fe-
males and males, the MeA responds to both sex-specific
(e.g., opposite sex odors) and non-sex-specific (e.g.,
predator odor) cues (Choi et al., 2005; Wu et al., 2009;
Root et al., 2014; Carvalho et al., 2015; Unger et al., 2015;
Bayless and Shah, 2016; Lischinsky et al., 2017; Yao et
al., 2017). In addition, MeA neurons in females and males
display differences in a number of anatomic, morphologic,
and molecular characteristics, including cell number, den-
dritic complexity, and gene expression patterns (Cooke et
al., 1999; Cooke and Woolley, 2005; Johnson et al., 2008;
Morris et al., 2008; Wu et al., 2009, 2017; Unger et al.,
2015; Chen et al., 2019; Gegenhuber and Tollkuhn, 2019).
However, how these properties converge to perform com-
plex computations in the MeA in both sexes remain un-
known. One critical missing piece to this understanding is
putative differences in intrinsic biophysical properties of
neurons, such as action potential (AP) firing patterns, which
define how a neuron transmits information to downstream
targets.

The MeA is comprised of a large variety of neurons,
which include diverse subclasses of interneurons and both
inhibitory and excitatory projection neurons (Bian, 2013;
Keshavarzi et al., 2014; Hashikawa et al., 2018; Canteras et
al., 2019; Chen et al., 2019). Although a full cataloging of
MeA neuronal diversity remains incomplete, we have previ-
ously leveraged embryonic transcription factor expression
patterns as a means to classify adult MeA neuronal diver-
sity (Hirata et al., 2009; Carney et al., 2010; Lischinsky et
al., 2017). We previously revealed that the embryonically
expressed transcription factors, Dbx1 and Foxp2, define
different embryonic progenitor pools that are destined to
generate two molecularly and electrophysiologically dis-
tinct subclasses of mature MeA inhibitory output neurons.
We have further shown that MeA Dbx7-lineage and Foxp2-
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lineage neurons respond in a sex and lineage-specific man-
ner to aggressive, defensive, or mating cues (Lischinsky et
al., 2017). Understanding both sex and lineage-specific dif-
ferences in neuronal biophysical properties is a critical step
to ultimately understand how different neuronal populations
in the male and female MeA processes sensory information
for appropriate behavioral outputs.

In this study, we conducted multidimensional analyses
of the biophysical signatures and intrinsic electrophysio-
logical profiles of Dbx7-lineage and Foxp2-lineage neuro-
nal subclasses in the MeA in both adult females and
males. We observed striking differences in spiking pat-
terns across Dbx17-lineage and Foxp2-lineages, and also
across sex within each lineage. We further uncovered sex
and lineage differences in a host of intrinsic biophysical
properties, including capacitance and spike-frequency
adaptation, the latter of which is known to be modified by
specific voltage-gated ion channels. To identify a poten-
tial mechanism underlying our observed sex and lineage
differences in spike adaptation, we conducted a novel ap-
proach to the phase plot analysis of the AP waveform to
narrow down putative ion channel candidates. Of these
candidates, a subset was expressed in either a sex-bi-
ased or lineage-biased manner. Thus, by uncovering sex
and lineage differences in intrinsic biophysical profiles of
molecularly identifiable MeA output neurons, our results
provide a potential physiological substrate for how sub-
classes of neurons in the female and male MeA may pro-
cess social and non-social cues.

Materials and Methods

Animals

Mice were housed in the temperature and light-con-
trolled (12/12 h light/dark cycle) animal care facilities at
the University of Michigan and Children’s National
Medical Center and given food and water ad libitum. All
animal procedures were approved by the University of
Michigan and Children’s National Medical Center’s
Institutional Animal Care and Use Committees (IACUC)
and conformed to NIH Guidelines for animal use. Mice
used were Dbx1°°+/— (kindly provided by A. Peirani,
Institut Jacques Monod, Paris; Pierani et al., 2001) and
Foxp2°"®+/— (kindly provided by R. Palmiter, University of
Washington; Rousso et al., 2016). Both lines were
crossed to Rosa26YFP mice (The Jackson Laboratory
strain R26R-EYFP, stock 006148). Mice were genotyped
by Transnetyx Inc. All experimental animals were housed
with littermates of their respective sex before experimen-
tal use.

Electrophysiology

Sexually naive, adult mice (P56-P90) were anaesthe-
tized with isoflurane and killed. Brains were removed and
immediately immersed in an ice-cold oxygenated (95%
0O, and 5% CO,) sectioning solution (75 mm sucrose, 10
mm D-glucose, 25 mm NaHCO3, 87 mm NaCl, 2.5 mm KCl,
1.0 mm NaH,PQOy4, 1.0 mm MgCl, hexahydrate, and 0.5 mwm
CaCl, dihydrate); 300-um coronal slices were sectioned
on a vibratome (Leica VTS1200) at the level of posterior
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MeA (bregma —1.56 to —1.94 mm; Franklin and Paxinos,
1997). Slices were collected and placed in oxygen-equili-
brated artificial CSF (ACSF) composed of the following:
125.0 mm NaCl, 3.5 mm KCI, 1.0 mm MgCl, hexahydrate,
1.25 mm NaH,PQO,4, 2.0 mm CaCl, dihydrate, 26.0 mwm
NaHCO3;, and 10.0 mm D-glucose; ~295-300 mOsm.
Dbx1°"®;RYFP-positive or Foxp2°®;RYFP-positive neu-
rons were visualized using a epifluorescent microscope
(Nikon FN1) with a 450- to 490-nm filter. Whole-cell
patch-clamp recordings from YFP-positive fluorescent
cells were performed at room temperature with continuous
perfusion of ACSF. Signals were acquired on a patch-clamp
amplifier (Multiclamp 200B) and digitized at 250 kHz with an
A/D converter (DigiDATA1550B). Recordings were per-
formed with glass electrodes pulled on a Sutter P-2000 pip-
ette puller (Sutter Instruments), with ~3.5-M(Q resistance
and filled with a potassium gluconate-based intracellular so-
lution containing the following: 119.0 mm K™ -gluconate, 2.0
mwm Na*-gluconate, 6.0 mm NaCl, 2.0 mm MgCl, hexahy-
drate, 10.0 mm HEPES, 0.9 mm EGTA, 4.0 mmMg-ATP, 14.0
mm Tris-creatine PO,4, and 0.3 mm Tris-GTP; pH ~7.3,
~285-295 mOsm. Whole-cell patch clamp recordings had
an access resistance <30 MQ at the beginning and end of
the experiment or else they were discarded. All measure-
ments of intrinsic and biophysical electrical properties were
acquired and analyzed off-line using Clampfit Software 10.6
(Molecular Devices) and GraphPad Prism (GraphPad
Software).

In situ hybridization

Animals were intracardially perfused with 4% parafor-
maldehyde. Brains from perfused animals were collected
and suspended in 30% sucrose-PBS solution for ~24 h.
After suspension in sucrose solution, brains were embed-
ded using O.C.T Compound (Fisher HealthCare catalog
#23-730-571) and stored at —80°C until cryostat section-
ing. Sections at the level of the posterior MeA (bregma
—1.56 to —1.94 mm; Franklin and Paxinos, 1997) from
cryo-preserved brains were cut at 20 um with a cryostat
(ThermoScientific HM525) and mounted on microscope
slides (Fisherbrand catalog #12-550-15).

In situ hybridizations were conducted using the
RNAscope Multiplex Fluorescent v2. kit following the pro-
tocol provided by ACDBiIo (https://acdbio.com/rnascope
%C2%AE-fluorescent-multiplex-assay). This kit permits
simultaneous visualization of up to three probes in
three separate channels per tissue sample. The protocol
was optimized and target retrieval and protease digestion
was not performed to preserve tissue quality. Further opti-
mization was achieved by reducing the hydrogen perox-
ide incubation period from 10 to 5 min. All slides were
probed for Eyfp (EYFP-C2, catalog #312131-C2) in chan-
nel 2 to mark either Dbx1°"®;RYFP-or Foxp2°®;RYFP-pos-
itive cells. The other probes used were: Hcn2 (Mm-Hcn1,
catalog #423651), Kcna2 (Mm-Kcna-C3, catalog #462811-
C3), Cacnali (Mm-Cacnali, catalog #459781), Kcnc4
(Mm-Kcnc4-C3, catalog #528091-C3), and Kcnd2 (Mm-
Kcnd2, catalog #452581). Secondary probes used were:
CY3 (PerkinEImer TSA Cyanine three Plus Evaluation Kit,
NEL744EQ001KT), Alexa Fluor 488 (PerkinElmer TSA
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Fluorescein Plus Evaluation kit, NEL741E001KT), and CY5
(PerkinElmer TSA Cyanine 5 Plus Evaluation Kkit,
NEL745E001KT). Once the assay was complete, slides
were cover-slipped using a DAPI-fluoromount and allowed
to dry overnight, then imaged on an Olympus FV1000 con-
focal microscope at 40x using Olympus Fluoview software
version 4.2.1.20. ldentification of DAPI+ cells and Gfo™
and/or ion channel+ positive cells was performed manually
with the spots feature in Imaris with each criterion having
their own corresponding spot label as follows: (1) cells
marked with DAPI had a diameter of 10 um (*2 um) and
were manually marked centrally with a blue spot. Size was
determined using the slice feature in Imaris; (2) cells that
contained at least one cluster of Gfo™ signal were manually
marked centrally using a green spot; (3) cells that contained
at least one cluster of the tested ion channel signal were
manually marked centrally using a red spot. Co-localization
was performed using the Imaris built-in co-localization fea-
ture with an overlap radius of 5 um. The number of each
co-localization was determined using Imaris built-in
Statistics tab, which shows the number of co-localizations
under its menu.

Immunohistochemistry

Animals were intracardially perfused with 4% parafor-
maldehyde. Brains from perfused animals were collected
and suspended in 30% sucrose-PBS solution for ~24 h.
After suspension in sucrose solution, brains were embed-
ded in O.C.T Compound (Fisher HealthCare catalog #23-
730-571) and stored at —80°C until cryostat sectioning.
We used a cryostat to cut sections of posterior MeA (20
uM thick) from cryo-preserved brains (bregma 1.56 to
1.94mm; Franklin and Paxinos, 1997). Sections were
mount on microscope slides.

Sections were washed in TBS to remove excess O.C.T.
compound and permeabilized with TBS containing 0.1%
Triton X-100 (TBS-T) for 1 h. TBS-T was removed and tis-
sue was then exposed to the primary antibodies (diluted
in TBS-T and 4% BSA) for 2 h at room temperature.
Primary antibodies used were: mouse anti-Kcng1/Kv7.1
(1:500, catalog #75-081), mouse anti-Kir6.1 (1:200, cata-
log #75-394), mouse anti-Kir2.1 (1:200, catalog #75-210),
mouse anti-Kv1.1 (1:150, catalog #73-007), mouse anti-
Kent1/Slo2.2/Slack (1:200, catalog #73-051), all from
Antibodies Incorporated, and rat anti-GFP (1:100, Nalacai
Tesque Inc catalog #04404-84). After incubation with pri-
mary antibodies, tissue was rinsed 5x in TBS-T and incu-
bated with secondary antibodies diluted in TBS-T and 4%
donkey serum (Jackson ImmunoResearch) for 1 h at room
temperature. Secondary antibodies used were: Cy3 don-
key anti-mouse (1:500, catalog #715-165-150) and FITC
donkey anti-rat (1:1000, catalog #712-095-153) from
Jackson ImmunoResearch. Tissue was washed with TBS
5x. Slides were mounted with DAPI-fluoromount and im-
aged with Zeiss Apotome 2.0 40x objective and 2-um Z-
interval. Images were 3D stacked and analyzed using
Imaris Imaging Software, cell counts and colocalizations
were done using the “spots” function as described above.
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Figure 1. Spiking patterns of MeA Dbx1-lineage and Foxp2-lineage neurons differ across sex and lineage. Representative spiking
patterns of Dbx1-lineage (A) and Foxp2-lineage (B) neurons in female and male mice. Traces show voltage responses to a 1-s injec-
tion of current at rheobase (red), —100 pA, and +100 pA. Line charts of evoked spike frequency versus current amplitude (C-F);

#p < 0.05, *xp < 0.001.

Data analysis

All statistical analyses were performed using GraphPad
Prism software. Five different animals were used per ex-
perimental group for all electrophysiological experiments
(five Dbx1°"®;RYFP™ females, five Dbx1°"®;RYFP" males,
five Foxp2°"®;RYFP™ females, and five Foxp2°®;RYFP*
males), and three different animals per group for both the
in situ hybridization and immunohistochemistry experi-
ments (three Dbx71°"®;RYFP* females, three Dbx71°'®;
RYFP™ males, three Foxp2°'®;RYFP™ females, and three
Foxp2°®;RYFP™ males). Two-way ANOVA was used for

July/August 2020, 7(4) ENEURO.0035-20.2020

analysis in Figures 1C-F, 2B-E, 5D-K (for both x- and y-
axes values) and Extended Data Figures 6-1A-E, 6-3A-E, 7-
1A-C. Following the two-way ANOVA in Figures 1C-F, 2B-D,
Holm-Sidak correction for multiple comparisons was used
when comparing means of three or more columns within
each row, to correct for type 1 error. One-way ANOVA was
used in Figure 3A-D and Extended Data Figure 3-1B.
Following one-way ANOVA in Figure 3A-D, and two-way
ANOVA in Figures 5D-K (for both x- and y-axes values),
Extended Data Figures 6-1A-E, 6-3A-E, 7-1A-C, a multiple
comparisons correction was done using Tukey’s test.
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Figure 2. Sex and lineage differences in initial spike frequency, steady-state spike frequency, and spike adaptation. Representative spike
trace evoked from a MeA Foxp2-lineage neuron from a female mouse demonstrating how initial spike-frequency firing rate (first two
spikes) and steady-state spike-frequency firing rate (mean spike rate of last 500 ms) were determined (A). Plots of initial spike-frequency
firing rate (fo) versus amplitude of injected current (B). Plots of steady-state spike-frequency firing rate (fss) versus amplitude of injected
current (C). Plot of total spike adaptation factor (F.qsp) Of the spiking frequency versus amplitude of injected current (D). =p < 0.05.

spike adaptation
factor, Fadap
o
¢

Instantaneous, or initial, firing frequency (fy), steady- calculated as described previously (Ceballos et al., 2016)
state firing frequency (fss), and adaptation factor (F,qsp)  ON steps of 10 pA from 0 to —100 pA. Voltage as a function
were calculated as described previously (Gabbiani and  of current (V) was calculated from V = IR, using R;, and
Krapp, 2006). Input resistance of the membrane (R;,) was  current steps of 10pA from 0 to —100 pA. To test the
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Figure 3. Intrinsic biophysical profiles of MeA Dbx1-lineage and Foxp2-lineage neurons. Comparison of intrinsic biophysical proper-
ties of membrane potential (A), rheobase (B), membrane resistance (C), and capacitance (D) across male and female Dbx1-lineage
and Foxp2-lineage neurons. Differences in capacitance were statistically significant; #p < 0.05, ##p < 0.001 (see also Extended Data
Fig. 3-2). Membrane input resistance and frequency versus voltage described in Extended Data Figure 3-1.

dynamics of the relationship between interspike interval
(ISl) and the intrinsic properties of capacitance and mem-
brane resistance (Fig. 4B-D), or the stimulation-depend-
ence of the intrinsic values, we used a model of
determination coefficient (R? model).

After testing for sex-specific differences, as described
above for Extended Data Figures 6-1A-E, 6-3A-E, 7-1A-
C, we pooled the lineage-specific data in Figures 6, 7 and
Extended Data Figure 6-2 and analyzed using a t test.

All recordings were acquired with a 250-kHz sampling
rate (Clampex 10.6, and DigiData 1550B, Molecular
Devices). Recordings were analyzed using Clampfit 10.6,
membrane resistance was measured with a voltage step.
As the total number of sample points in a recording is de-
termined by the sampling rate, and the number of points
in a digitized AP varied depending on the speed of the
speed of the AP, we used the following strategy to make
all plots to have the same amount of points facilitate sta-
tistical analysis and side-by-side visualization of AP wave-
forms and subsequent phase plots (Fig. 5D,E). We
generated phase plane plots by independently graphing
dV/dT versus V for each AP (Clampfit 10.6) as Cartesian
coordinates. Each quadrant was independently plotted
starting from the threshold (identified using Clampfit 10.6
threshold detection) as follows:

Cartesian quadrant Il = coordinates of the threshold
[Xthresholds Ythreshold] to [X‘h Ymax]

Cartesian quadrant | = (X4, Ymax) 10 [Xmax, Y =0],

July/August 2020, 7(4) ENEURO.0035-20.2020

Cartesian quadrant IV = (Xmax, Y =0) to [X=0, Ymin], and
lastly

Cartesian quadrant Ill = (X=0, Y») to baseline coordi-
nates ~[Xmnin, Y1], Where X's are values in mV, Y’s are val-
ues in mV/ms, and [] are inclusive values and () are
exclusive values.

X and y-axes values within each quadrant were resampled
to 100 data points by using percentiles. Resampled X and Y
values from each quadrant were re-combined and plotted to
generate normalized phase plane plots comprised of ~400
data points. Because each quadrant of the normalized
phase-plane plots contained the same number of samples
points we were able to generate mean phase-plane plots for
APs from group. Descriptive statistics and two-way ANOVAs
were calculated using GraphPad Prism.

Results

The temporal sequence of APs or spiking pattern, is
one defining feature of neuronal subclass identity (Petilla
Interneuron Nomenclature Group, 2008; Aljadeff et al.,
2016; Ha and Cheong, 2017). Spiking patterns are influ-
enced by a number of intrinsic electrophysiological pa-
rameters such as resting membrane potential, membrane
resistance and cell capacitance (Petilla Interneuron
Nomenclature Group, 2008; Boada, 2013; Li and Tsien,
2017; Tapia et al., 2018; Bomkamp et al., 2019). To char-
acterize the spiking patterns of MeA Dbx7-lineage and
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Figure 4. Analysis of stimulation-dependent intrinsic properties of male and female Dbx7-lineage and Foxp2-lineage neurons.
Representative trace of a Dbx7-lineage MeA neuron from a female mouse demonstrating how average ISI was measured from all
APs evoked during 1-s current injection (A). Plots of the ratio of capacitance (C,,,) over membrane resistance (R.,), C/R,, versus ISI

(B-D).

Foxp2-lineage neurons in females and males, we per-
formed whole-cell patch clamp on YFP-expressing neu-
rons in Dbx1°"®;RYFP and Foxp2°®;RYFP mice. We used
an evoked spiking protocol and recorded membrane po-
tential during stepwise current injection from —100 to
100 pA in 10-pA intervals (Fig. 1A,B).

During high-amplitude current injection, Dbx7-lineage
neurons in females (n=14) discharged more spikes than

July/August 2020, 7(4) ENEURO.0035-20.2020

in males (n =9; two-way ANOVA p < 0.0001, Holm-Sidak
correction for multiple comparisons 60pA p=0.032,
70pA p=0.011, 80 pA p=0.008, 90 pA p =0.012, 100 pA
p=0.002; Fig. 1C), whereas Foxp2-lineage neurons in fe-
males (n=11) discharged more spikes than in males
(n=11) during low-amplitude current injection (two-way
ANOVA p < 0.0001, Holm-Sidak correction for multiple
comparisons 30pA p=0.043, 40pA p=0.018, 50pA
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Figure 5. Phase plot analyses of the AP waveform. Representative spike trace from a Dbx7-lineage neuron from a male mouse
evoked by a 1-s current injection. First spike and steady-state spikes are indicated by arrows (A). Schematic of the different phases
of typical AP (B). Representative phase-plot showing the rate of change of the AP during all three phases of the spike: depolariza-
tion, repolarization, and refractory slope (C). Phase plots from first spikes of Dbx7-lineage and Foxp2-lineage neurons at current in-
jections where adaptation differences were identified (D). Phase plots of the first spikes evoked at the steady-state during current

injection where adaptation differences were identified (E).

p=0.026, 60pA p=0.023, 70pA p=0.046; Fig. 1D).
When comparing spiking patterns across lineages, we
found that Dbx7-lineage neurons discharge more spikes
than Foxp2-lineage neurons in females, but only at the
highest amplitude stimulus (two-way ANOVA p < 0.0001,
Holm-Sidak correction for multiple comparisons p =0.029;
Fig. 1E). In contrast to female mice, Dbx7-lineage neu-
rons in male mice spiked more than Foxp2-lineage neu-
rons in males during low rather than high-amplitude
current injection (two-way ANOVA p < 0.0001, Holm-
Sidak correction for multiple comparisons 30 pA p =0.043,
40pA p=0.043, 50pA p=0.048; Fig. 1F). Collectively,
these data reveal that the spike frequency of Dbx7-lineage
and Foxp2-lineage neurons differs by lineage, sex, and
stimulus strength.
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The progressive slowing of spike frequency is referred
to as spike-frequency adaptation (Tripathy et al., 2014).
Spike-frequency adaptation plays an important role in
neural coding (Ha and Cheong, 2017). Thus, we evaluated
spike-frequency adaptation in Dbx7-lineage and Foxp2-
lineage cells by deriving a spike-frequency adaptation
factor (Faqap) Obtained from the initial frequency firing-rate
(fo) and the steady-state frequency firing-rate (fss; Fig. 2;
Gabbiani and Krapp, 2006; see Materials and Methods).
We calculated f, from the first two evoked spikes, and fsg
from the mean spike rate during the steady-state, defined
here as the last 500 ms of current injection (Fig. 2A). We
found that Dbx7-lineage neurons in females displayed a
higher f, than males (Fig. 2B), while there was no sex dif-
ference in the f, of Foxp2-lineage neurons (Fig. 2B). We
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also did not detect differences between the f, of neurons
in females or males across lineages (Fig. 2B). During
steady state firing, however, we found that {5 increased in
direct proportion to the amplitude of the current injected
into Dbx1-lineage neurons in females but not males (Fig.
2C). In contrast, Foxp2-lineage neurons in females exhib-
ited a higher fss than males but only when the amplitude
of the injected current was <70 pA. When we compared
fss across lineages in female mice, we found that Dbx7-lin-
eage neurons had a higher fss than Foxp2-lineage neurons
and that the fss in Dbx7-lineage neurons was more sensi-
tive to increases in current amplitude. Dbx7-lineage neu-
rons in males had a higher fss than Foxp2-lineage neurons
in males, but only during low-amplitude current injection.
We used the f, and fss values to calculate the adaptation
factor (Fagap), Which measures dynamic changes in spike
frequency as a function of current amplitude (Fig. 2D).
Across sex, high-amplitude current injection to Dbx17-
lineage neurons in males exhibited a larger F,y,, than
Dbx1-lineage neurons in females. In contrast, low-
amplitude current injection into Foxp2-lineage neurons in
males exhibited a larger F,q4, than Foxp2-lineage neurons
in females. Across lineages, the F,4.p Of neurons Foxp2-
lineage neurons in females was greater than Dbx7-lineage
in females, but only during the highest amplitude of
current injection. Foxp2-lineage neurons in males also
displayed a higher F,4,, than Dbx1-lineage neurons in
males but only during low-amplitude current injections.
Collectively, these data demonstrate that spike-frequency
adaptation correlated with neuronal lineage and sex with
females having a lower adaptation factor than males and
Foxp2-lineage neurons displaying a higher adaptation
factor than Dbx1-lineage neurons. More broadly, our data
reveal that there are sex and lineage differences in multi-
ple dynamic parameters of the AP. Interestingly, these dif-
ferences manifest at different levels of current stimulation
with Dbx7-lineage neurons displaying sex differences
only at higher levels of current stimulation than Foxp2-lin-
eage neurons.

The intrinsic biophysical properties of a neuron, such as
membrane potential, rheobase, membrane resistance,
and membrane capacitance contribute to firing properties
as well as how neurons function within networks (Brown
et al., 2019). Therefore, we next defined the intrinsic bio-
physical profiles of Dbx7-lineage and Foxp2-lineages in
both females and males (Fig. 3; Extended Data Figs. 3-1,
3-2). In contrast to our above experiments (Figs. 1, 2),
which revealed sex and lineage differences in spiking pat-
tern and adaptation, we found no changes in the static
properties of membrane potential, rheobase or membrane
resistance (Fig. 3A-C; Extended Data Fig. 3-1). However,
we found that Foxp2-lineage neurons (in both males and
females) had higher capacitance than Dbx7-lineage neu-
rons (Fig. 3E). This suggests that that Foxp2-lineage neu-
rons may have greater cell surface than Dbx7-lineage
neurons.

As there were no differences in static intrinsic proper-
ties, aside from capacitance, we next explored whether
stimulation-dependent changes to intrinsic properties
could explain the difference in spiking patterns shown in
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Figures 1, 2. To determine whether dynamic changes to
intrinsic properties differed across sex and/or lineage, we
plotted the ratio of capacitance (C,,)/membrane resist-
ance (R, versus the average ISI from each trace (from
Fig; 1; Extended Data Fig. 3-2). Our rationale was that if
the ratio of C,,/Rn, correlated with the ISI, it would demon-
strate that the intrinsic properties of the neuron are dy-
namic and dependent on stimulation. This would suggest
that the difference in spiking patterns are due to voltage-
dependent changes to intrinsic properties. However, if the
ratio of C,/R, did not correlate with the ISI, this would
suggest that intrinsic properties are static and voltage in-
dependent. The capacitance (C,,) and membrane resist-
ance (R,,) showed a weak but positive correlation to ISl in
Dbx1-lineage neurons from females (~ = 0.203; Fig. 4B).
This is in contrast to Foxp2-lineage neurons in females
which did not show a correlation to ISI (* = 0.000; Fig.
4C). In contrast to Dbx1-lineage neurons in females, there
was no correlation in the ratio of C,,/Rn, to ISl in Dbx17-lin-
eage neurons in males (© = 0.0003; Fig. 4B). Foxp2-line-
age neurons in males showed a stronger correlation
between the ratio of C/Rn, to ISI (F, r* = 0.576; Fig. 4C).
We also observed sex differences within each lineage
(Fig. 4D). Together, this analysis demonstrates that there
are both sex and lineage differences in the stimulation-de-
pendent changes in intrinsic properties. This may provide
a biophysical mechanism to explain the dramatic differen-
ces in spiking shown in Figures 1, 2.

The membrane capacitance (C,,) and the membrane re-
sistance (R, determine how fast the cell membrane po-
tential responds to ion flux (Golowash and Nadim, 2014).
We observed sex and lineage differences in these ratios
upon stimulation (Fig. 4), indicating a mechanistic role for
differences in ion channel expression, regulation, or com-
position in modulating the observed spiking differences.
Different families of ion channels generate distinct as-
pects of the AP waveform. As the waveform of spikes
evoked from Foxp2-lineage and Dbx7-lineage neurons
was influenced by stimulus intensity (Fig. 1), we next ana-
lyzed the waveforms of the initial spike and the first spike
during steady-state firing at the current injection ampli-
tudes that generated the largest difference in spike-fre-
quency adaptation (Fig. 5A; as described in Fig. 2). We
used a phase-plot model (Fig. 5B), which allows quantita-
tive examination of distinct phases of the AP and provides
insights into potential ion channels that modulate those
specific phases (FitzHugh, 1961; Drion et al., 2012; Fig.
5C). In Dbx1-lineage neurons, we observed sex differen-
ces in the repolarization and refractory slopes of the initial
evoked AP (Fig. 5D; see Materials and Methods for all sta-
tistics). We also observed sex differences in the repolari-
zation slope of Dbx17-lineage neurons, which were greater
during steady-state spiking than during the initial AP (Fig.
5E). In Foxp2-lineage neurons, we observed sex differen-
ces during a portion of the repolarization slope and refrac-
tory slope, but only during steady state firing (Fig. 5D,E).
We also observed lineage differences in the waveforms of
the first spikes evoked during steady-state firing, but not
during initial firing (Fig. 5D). In females, lineage differences
were observed during the depolarization and
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repolarization slopes. In males, lineage differences were
observed during all phases of the AP waveform. Thus,
modulation of AP components in Dbx7-lineage and
Foxp2-lineage neurons differ across both sex and lineage.

The most consistent differences in the AP waveforms
across sex and lineage occurred during the repolarization
phase (Fig. 5). Repolarization of the neuronal membrane
and spike adaptation are largely modulated by voltage
gated potassium (K*) and calcium (Ca®*) channels (Hille,
1991; Miller, 1992; Pathak et al., 2016; Ha and Cheong,
2017). We first referenced the Allen Brain Atlas: Adult
Mouse Brain (Allen Mouse Brain Atlas 2019; Lein et al.,
2007) to identify genes expressed in the MeA that encode
K* and Ca®?* channels. We then explored sex and lineage
expression of 13 of these K* and Ca™ channel subtypes
known to regulate the AP repolarization phase: KChip4.1,
Ca,1.2, K,7.1, K,1.1, K;;6.1, K;;5.1, K;2.1, Slo2.2, Kcnad2,
Cacnali, Hen1, Kcna2, and Kcnc4 either by immunofluo-
rescence (Figs. 6, 7; Extended Data Figs. 6-1, 7-1) or in
situ hybridization (Extended Data Figs. 6-2, 6-3) based on
reagent availability. Of the proteins and mRNA transcript
expression assessed, we found sex differences in expres-
sion of Slo2.2 in the Foxp2-lineage (ANOVA, p =0.020;
Fig. 6B), lineage differences in the K" and Ca®* channels;
KChip4.1, K,7.1, Ca,1.2, (t test, p=0.0016, p =0.008, and
p =0.0007, respectively; Fig. 6D,G,/), and in the K inward
rectifying channels K 5.1 and K;2.1 (t test, p=0.00001
and p=0.043, respectively; Fig. 7B,D; Figs. 6, 7;
Extended Data Figs. 6-1, 6-2, 6-3, 7-1; see summary in
Fig. 8).

Discussion

Sex differences in cell morphology, dendritic complex-
ity, and cell size have been well characterized in the MeA
(Cooke et al., 2007; Dall’Oglio et al., 2008; Unger et al.,
2015). In addition, there are sex differences in the expres-
sion of a number of molecular markers especially hor-
mone pathway genes (Jasnow et al., 2007; Xu et al., 2012;
Chen et al, 2019; Gegenhuber and Tollkuhn, 2019).
Moreover, the MeA displays sex-specific responses to ol-
factory cues as revealed by cFos staining or in vivo elec-
trophysiological recordings (Bergan et al., 2014; Yang
and Shah, 2014; Carvalho et al., 2015; Ishii et al., 2017; Li
and Dulac, 2018). However, how these characteristics
translate to sex differences in behavioral responses is un-
known. A critical step to bridging this gap is to understand
whether and how biophysical profiles, especially AP firing,
differ across sex. In this study, we characterized spiking
patterns, membrane properties, spike adaptation, and dy-
namic AP changes of two major classes of output neurons
in the female and male MeA previously defined by us by
their developmental expression of the transcription fac-
tors, Dbx1 or Foxp2 (Hirata et al., 2009; Carney et al.,
2010; Lischinsky et al., 2017). Here, our multidimensional
analyses reveal sex-specific and lineage-specific electro-
physiological and ion channel expression profiles of these
neuronal populations. Thus, our findings provide a physi-
ological characterization of two neuronal populations
that, at the individual neuron level, potentially contribute
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to how the male and female MeA may process social and
non-social cues that trigger innate responses.

Previous data from our laboratory revealed that major
populations of MeA inhibitory output neurons are derived
from progenitor cells in the preoptic area (POA) of the em-
bryonic ventral telencephalon. The transcription factors
Dbx1 and Foxp2 delineate two of these progenitor popu-
lations (Hirata et al., 2009; Carney et al., 2010; Lischinsky
et al., 2017). This embryonic parcellation by transcription
factor expression persists into adulthood where Dbx17-lin-
eage and Foxp2-lineage neurons possess broad electro-
physiological and molecular differences (Lischinsky et al.,
2017). Previous electrophysiological characterization and
molecular profiling studies by us and others have revealed
that the MeA is comprised of as many as 19 different neu-
ronal subtypes (Bian, 2013; Keshavarzi et al., 2014;
Lischinsky et al., 2017; Chen et al., 2019; Canteras et al.,
2019). Recent molecular profiling and electrophysiological
studies have explored whether this diversity extends to
sex (Chen et al., 2019; Dalpian et al., 2019). These studies
revealed sex differences in both gene expression (Chen et
al., 2019) and broad aspects of intrinsic electrophysiologi-
cal profiles (Dalpian et al., 2019). However, the neuronal
subtypes in which these differences were observed were
not explored nor was exploration into potential mecha-
nism underlying biophysical differences. Here, our devel-
opmental-based molecular markers provided us a means
to study sex differences in identifiable subtypes and ex-
plore putative biophysical mechanisms underlying sex
and lineage differences.

One powerful means to explore biophysical mecha-
nisms underlying spiking dynamics is AP phase plot anal-
yses. Our detailed phase plot analyses revealed sex and
lineage differences in spike dynamics (Fig. 5), implying
contributions of different ion channel subclasses. Our
molecular analyses validated the expression of several
candidate ion channels within Dbx7-lineage and Foxp2-
lineages. We revealed that a substantial portion of Dbx7-
lineage neurons express KChip4.1, Ca,1.2, K,7.1, and
Ki5.1 at a greater proportion than in the Foxp2-lineage.
KChip4 is a native of the K4 complex, which controls re-
polarization of the membrane after AP (Holmquist et al.,
2002; Kim et al., 2005). Ablation of K,4 from hippocampal
neurons results in higher spiking frequency (Carrasquillo
et al.,, 2012). K,7.1 is a voltage-gated, non-inactivating
potassium channel that that regulates “phasic firing”
(Greene and Hoshi, 2017), spike adaptation, and spiking
patterns by attenuating hyperexcitability (Jentsch, 2000;
Robbins, 2001; Hu et al., 2007). K;;5.1 is a pH-sensitive
inward rectifying channel that regulates potassium flux
and neuronal spiking (D’Adamo et al., 2011; Puissant et
al., 2017). Ca,2.2 encodes for the Ca,1.2 voltage-gated
ion channel which regulates excitability and spiking
(Michailidis et al., 2014). Cav1.2 increases the activation
of small conductance calcium activated potassium cur-
rents (lsx) which flattens the frequency-current curve
(Mé&ki-Marttunen et al., 2016). By contrast, a higher pro-
portion of Foxp2-lineage neurons express K;2.1, an in-
ward rectifying potassium channel that rapidly repolarizes
excitable membranes (Lu, 2004) by allowing a large
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Figure 6. Sex and lineage differences in expression of a subset of voltage-gated ion channels. Immunofluorescent images showing
expression of Slo2.2 (red) in GFP+ Dbx1-lineage or Foxp2-lineage MeA neurons (green; A). Insets show high-power magnification
of GFP+ cells colocalized (white arrow) or not colocalized (open arrow) with Slo2.2. Graph of percentages of GFP+ Dbx7-lineage
and Foxp2-lineage neurons in females and males expressing Slo2.2, with significant differences across sex observed in the Foxp2-
lineage but not the Dbx1-lineage (B). Immunofluorescent images showing expression of KChip4.1 (C), Cav1.2 (E), Kv7.1 (G), and
Kv1.1 (I; red) in GFP+ Dbx1-lineage or Foxp2-lineage MeA neurons (green). Insets show high-power magnification of GFP+ cells
colocalized (white arrow) or not colocalized (open arrow) with each channel. Bar graph of percentages of GFP+ Dbx7-lineage and
Foxp2-lineage neurons (male and female grouped) expressing KChip4.1 (D), Cav1.2 (F), Kv7.1 (H), or Kv1.1 (J), with significant dif-
ferences observed across lineage but not sex (see also Extended Data Fig. 6-1) for Kv7.1 and Kir2.1; #p <0.05, **p <0.001,
=+xp < 0.0001. Lineage mRNA expression of additional voltage-gated ion channels is included in Extended Data Figure 6-2, with fe-
male and male comparisons in Extended Data Figure 6-3.
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Figure 7. Lineage differences in expression of a subset of inward rectifying K voltage-gated ion channels. Immunofluorescent im-
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Kir2.1 (D), or Kir 6.1 (F), with significant differences observed across lineage but not sex (see also Extended Data Fig. 7-1) for Kv7.1
and Kir2.1; #xp < 0.001.

inward K* flux (Hibino et al., 2010). Dbx7-lineage and  frequencies of Dbx7-lineage and Foxp2-lineage neurons.
Foxp2-lineage neurons clearly express distinct, and non-  However, how these channels specifically regulate the lin-
overlapping patterns of ion channels. All of these chan-  eage differences in AP firing remains to be explored.

nels have well-characterized roles in modulating AP firing Our phase plot analysis also reveals sex differences in
properties, and could thus contribute to the different firing  spike waveform during the steady-state, most notably at
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voltage-gated ion channels with highest expression in each respective population (lineage or sex), and their corresponding sex-spe-
cific and lineage-specific biophysical signatures (B).
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the repolarization phase, which is also mediated by volt-
age-gated ion channels. Our molecular analysis reveals
FoxP2-lineage neurons in male express a higher propor-
tion of the Slo2.2 channel than females. Slo2.2, also
known as Slack, is an outward K™ rectifying channel that
plays a major role in control of neuronal excitability (Joiner
et al., 1998). Ablation of this channel in sensory dorsal
ganglion neurons results in increased spiking frequency
and changes in both depolarization and repolarization
phases (Martinez-Espinosa et al., 2015). As male Foxp2-
lineage neurons exhibit lower spiking frequency and dif-
ferent AP phases than female Foxp2-lineage neurons, the
sex differences in expression of Slo2.2 provides a suitable
molecular candidate for these observed differences. A re-
cent RNA-seq profiling study explored sex differences in
the MeA (Chen et al., 2019) and found that males express
higher mRNA levels of the K™ channel Kcnip4 and the
Ca?* channel Cacna’c. Kcnip4 encodes for KChip4, and
Cacnalc encodes for Ca, 1.2, candidates which we tested
here. However, we did not detect sex differences in the
expression of either channel in Dbx7-lineage or Foxp2-lin-
eage, suggesting that the previous reported sex differen-
ces may correspond to other populations of MeA
neurons. It is important to note that Dbx7-lineage and
Foxp2-lineage neurons likely express many additional ion
channels that may synergistically regulate membrane
properties. The specific mechanism by which combina-
tions of ion channels modulate sex or lineage differences
in AP firing remains to be elucidated. Nevertheless, our
data establishe a putative relationship between the ex-
pression and function of voltage-gated ion channels that
can generate distinct spiking patterns in adult MeA
neurons.

The male and female MeA respond differently to male
and female olfactory cues (Jasnow et al., 2007; Xu et al.,
2012; Chen et al., 2019; Gegenhuber and Tollkuhn, 2019).
However, how olfactory information in the MeA is en-
coded at the neuron and circuit level remains poorly
understood. AP spiking patterns and spike-frequency ad-
aptation are critical parameters in determination of neuro-
nal coding (Kreiman, 2004; Peron and Gabbiani, 2009a; Li
and Tsien, 2017). For example, neurons can convey infor-
mation by transmitting spikes at a particular frequency,
and, thus, differences in spiking may drive differences in
neuronal coding in the computational functions of the
brain (Aljadeff et al., 2016; Li and Tsien, 2017; Ha and
Cheong, 2017). This is an important characteristic be-
cause information transfer, through spiking patterns, re-
lates both to the nature of the inputs the neuron receives
as well as their readout (Peron and Gabbiani, 2009a).
Thus, spiking-frequency adaptation can be determined by
two non-mutually exclusive mechanisms: (1) inputs
coming to the neuron and/or (2) the neuronal intrinsic
properties (Peron and Gabbiani, 2009b). Our results dem-
onstrate that in both lineages, males and females differ
not only in their spiking pattern and adaptation properties,
but also in how their intrinsic properties can change
throughout stimulation. How these novel sex differences
in AP properties relate to sex-specific behaviors is un-
known. This observation identifies one mechanism for
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regulating spike frequency in a sex-specific manner but
does not exclude sex differences in inputs. Most inputs to
the MeA come from the accessory olfactory bulb (Cadiz-
Moretti et al., 2016); however, it is unclear whether they
are sexually dimorphic in anatomy and/or synaptic
organization.

Differences in gene expression in the MeA and behav-
ioral repertoires between males and females appear to be
largely driven by hormonal control (Cooke et al., 1999;
Yang and Shah, 2014; Li and Dulac, 2018; Krolick et al.,
2018; Gegenhuber and Tollkhun, 2020). For example, es-
trogen signaling in the MeA controls sex stereotypical
behaviors in both sexes in rodents and many other verte-
brates (for review, see McCarthy, 2008). In addition, there
are sex differences in hormonally regulated numbers of
MeA aromatase’ neurons that mediate male aggression
(Wu et al., 2009; Unger et al., 2015). Hormonal regulation
has also been shown to modulate voltage-gated chan-
nel function, which may relate to the sex differences un-
covered by our phase plot and expression analyses.
Estrogen regulates voltage-gated ion channel expres-
sion in smooth muscle, dorsal ganglion and hypothala-
mic gonadotropin-releasing hormone (GnRH) neurons
(Farkas et al., 2007; Du et al., 2014; Shi et al., 2015;
Kow and Pfaff, 2016). In the bird auditory system, estro-
gens increase neuronal responsiveness by suppressing in-
hibitory transmission (Tremere et al., 2009), while local
estrogen levels rapidly change burst firing of single auditory
neurons (Remage-Healey et al., 2010). In addition to estro-
gens, androgens also affect the biophysical properties of
neurons by modulating the expression of both voltage-
gated and ligand-gated ion channels (Penatti and
Henderson, 2009). For example, chronic exposure to an-
drogenic anabolic steroids increases GABAergic transmis-
sion in the mouse hypothalamic pre-optic area (Penatti et
al., 2009). Additionally, the estrous cycle may play a role in
synaptic related molecular changes as well as intrinsic syn-
aptic properties in females (Hirsch et al., 2018; Dalpian et
al., 2019). Thus, hormones are well positioned to play a
role in determination or modulation of male and female bio-
physical differences in the MeA. How and when sex hor-
mones shape MeA neuronal firing properties and how this
relates to network function will be an important and inter-
esting area of future investigation.
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