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Abstract. Persistence is a crucial trait for learners. However, a common
issue in mastery learning is that persistence is not always productive, a
construct termed wheel-spinning. In this paper, we extend on prior work
to develop wheel-spinning detectors in the ASSISTments learning sys-
tem that distinguish between non-persistence, productive persistence and
wheel-spinning. To understand how quickly we can detect each state, we
use data from different numbers of practice opportunities and compare
model performance across student-problem set pairs. We identify that a
model constructed using data from the first nine practice opportunities
outperforms models using less practice data. However, it is possible to
differentiate students who will eventually wheel-spin from learners who
will persist productively using data from only the first three opportuni-
ties. Wheel-spinning can be differentiated from non-persistence from the
first five opportunities, and non-persistence can be differentiated from
productive persistence from the first seven opportunities. These results
show that early differentiation between wheel-spinning and productive
persistence is feasible. These detectors relied upon hint requests, the cor-
rectness of prior opportunities, and the amount of practice and time on
the skill. Identifying predictive features offer insights into the impact of
in-system behaviors on wheel-spinning and guide the system design.

Keywords: Wheel-spinning - Persistence - Decision tree - Early
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Introduction

1.1 Persistence and Non-Persistence in Learning

Research in recent years has focused on the development of non-cognitive skills to
improve student learning, such as resilience and persistence during learning. Per-
sistence is defined as the ability to maintain an action or complete a task regard-
less of the person’s inclination towards the task [5,7]. Recent studies have shown
that persistence in educational settings is associated with academic achievement
[3,19], creativity [20] and long-term academic outcomes such as later school-
ing and future earnings [6,19]. However, not all persistence is positive. [2] have
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argued that some persistence may be unproductive, or wheel-spinning, defined
as spending too much time struggling without achieving mastery. The definition
of wheel-spinning has varied across different studies and different learning con-
texts. [2] defined wheel-spinning as not achieving mastery even after attempting
10 or more problems within a problem set; [14] involved two human raters to code
wheel-spinning behaviors qualitatively based on a coding manual, with a Cohen’s
Kappa of 0.9. On the other hand, [10] defined wheel-spinning as attempting more
than 10 problems but failing to achieve three consecutive correct responses in a
row or demonstrate later retention of the skill.

Non-persistence, or quitting the current learning task without mastering the
requisite knowledge, has also been documented in several computer-supported
learning environments. For example, in the educational game Physics Play-
ground, non-persistence was defined as quitting the level without successfully
solving the problem using the physics knowledge [11,12]. In the learning system
ASSISTments, [4] looked at non-persistent behaviors in which students quit the
problem set without reaching mastery of a skill, differentiating between quitting
immediately and quitting after attempting a few problems. Within the same
learning system, [10] defined non-persistence as attempting fewer than ten prob-
lems for a skill, but did not consider non-persistence detection in their work.

1.2 Detection of Persistence in Learning

Detection of wheel-spinning behaviors is important in identifying students who
may need additional support during a learning task. Because persistence is gen-
erally defined by the number of practice opportunities a student has on a learn-
ing task, some approaches to modeling or detecting wheel-spinning have been
designed to run only after the system has collected student data for a sufficiently
large number of practice opportunities. For example, [2], as the first study of
wheel-spinning, states that wheel-spinning could be detected as early as the
eighth practice opportunity in the ASSISTments system by a logistic regres-
sion model. A follow-up study further refined this model and was able to detect
wheel-spinning on the seventh practice opportunities [8]. Other machine learning
methods such as neural networks [14], gradient boosting [17] and random forest
[22] have also been used to enable wheel-spinning detection at earlier stages in
practice. Most notably, [4] was able to identify wheel-spinning students at their
third opportunity, applying Long Short Term Memory Recurrent Neural Net-
works. While these studies all take place in an ITS environment, there has also
been work on wheel-spinning detection in educational games. [16] constructed
a model to detect wheel-spinning based on the features engineered within the
first 5 min, first 10 min, and first 15 min of game playing, and [15] constructed a
model to differentiate wheel-spinning from productive persistence in a sequence
of mathematics games.

In reviewing these prior works, we note that for a wheel-spinning detector
to be practical for real-time usage, there are two important criteria to consider.
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First, a detector should be able to differentiate wheel-spinning from both non-
persistence (either successful or non-successful non-persistence) as well as from
productive persistence, and should be able to do this at the earliest possible
point. With early detection of these states, teachers and system designers may
have more opportunities to create interventions to improve the learning experi-
ence for students who are at risk of unproductively persisting, or quitting early
without completing a learning task. Secondly, predictions based on interpretable
models, like decision trees, will offer instructors and system designers more use-
ful insights into the factors influencing persistence and wheel-spinning. Prior
work has not yet fully met both of these criteria. Currently, most detectors only
account for binary prediction, by either eliminating the non-persistence cases
from consideration [17] or treating all cases that are not wheel-spinning as being
acceptable [8]. At the same time, recent efforts to improve prediction of wheel-
spinning using gradient boosting or neural networks have improved speed and
quality of prediction at the cost of interpretability, posing a challenge for educa-
tional researchers to uncover and understand the impact of learning behaviors
on wheel-spinning.

In this paper, we attempt to address each of these limitations. We 1) con-
struct multi-class detectors distinguishing the three categories discussed above
states—non-persistence, productive persistence, and unproductive persistence
(wheel-spinning)—so as to capture and compare specific behaviors that differ-
entiate both between persistent vs. non-persistent students, and productively
persistent vs. wheel-spinning students; 2) explore the minimum number of prac-
tice opportunities that could be used with reasonable accuracy to detect the
various persistence states under these conditions, and derive specific features
that may be translated into practical interventions. In doing so, in order to com-
pare our results with the previous works on binary wheel-spinning detectors,
predicting wheel-spinning vs. non-wheel-spinning [2,4,17], we also build mod-
els to make pairwise comparisons for two classes out of the three. In addition,
we will summarize the predictive features used across models based on different
practice opportunities, to promote better understanding of wheel-spinning. We
conclude by discussing the possible impact of the features on persistence and
unproductive persistence in learning.

2 Methods

2.1 ASSISTments

ASSISTments is a free online learning platform that provides immediate feed-
back to students and formative assessment of student performance to teachers [9].
Within the ASSISTments system, Skill Builders are a type of math problem set
where students practice randomly generated problems that are based on existing
templates and correspond to the same skill [9]. In a Skill Builder, students cannot
proceed to the next problem until they submit the correct response. Hints are
available to assist them with problem-solving. For each problem, students could
make multiple attempts and request multiple hints. In general, there are two to
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three levels of hint per problem, followed by a bottom-out hint that provides the
final answer. Students have to correctly answer three consecutive questions to
complete a problem set. They are then given a single-item test after a certain
period—usually a week later, though teachers can configure this—with gradu-
ally increasing space between reassessments. This test comprises one randomly
selected item from a template in the completed problem set, and is delivered
through the Automatic Reassessment and Relearning System (ARRS) [21]. The
main objective of ARRS is to assess a student’s retention of a skill over time.
If the student does not answer this item correctly, and therefore fails in skill
retention, they will be assigned the corresponding Skill Builder problem set to
re-learn the materials.

2.2 Data Collection and Label Generation

Our research dataset is the publicly available ASSISTments Skill Builders data
set from the 2014-2015 school year, which consists of 26,522 students who
attempted 1,088 Skill Builder problem sets over a year. Each record in the dataset
represents a student-problem set pair, which includes the log data when a learner
practices a Skill Builder problem set. This data set was chosen due to its use in
past research on wheel-spinning and persistence (i.e. [10]). We then constructed
eight new datasets: first-3, first-4,..., first-9, and first-10 (first-1 and first-2 were
not generated, due to not being enough data to infer wheel-spinning in any previ-
ous work). Each row in one of these first-z datasets shows aggregate data about
a student’s learning in a certain problem set (i.e., a student-problem set pair),
where z is the threshold number of problems over which data is aggregated. For
example, first-3 contains only data about the first 3 problems that the student
attempted in each problem set, whereas first-4, first-5 and first-6 contain data
about the first 4, 5 and 6 problems respectively. It should be noted that, given
a problem set, a student who attempted only 3 problems would be included in
first-8 but not in first-4 to first-10, while a student who completed 10 problems
would be included in every dataset from first-3 to first-10. More generally, the
number of student-problem set pairs decreases as z increases, because there are
fewer students who attempt more problems.

Table 1. Criteria of non-persistence (NP), productive persistence (PP), and wheel-
spinning (WS) in the Skill Builder system.

Definition | Three Correct in a Row (Mastery) on |First ARRS Test | Ten or More Problems
or after the 10th Problem

NP Any Any No
PP Yes Passed Yes
WS No Any Yes

Yes No
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Next, we labeled each row of student-problem set pair as either productive
persistence (PP), wheel-spinning (WS) or non-persistence (NP), according to the
operational definitions in [10] (Table 1). If a student did fewer than 10 problems
in a problem set, the corresponding student-problem set pair is labeled as NP.
Otherwise, the pair is labeled as PP if the student reached mastery (i.e., get
three correct responses in a row and pass the ARRS test) or WS if she did not.

While our definitions involve the ARRS test, some students were not assigned
this test even after getting three correct responses in a row because the teachers
turned the ARRS feature off. These instances, which account for 211,612 pairs
from the original 287,093 student-problem set pairs, were considered out of scope
and removed from further analysis. Of the remaining student-problem set pairs,
6,855 were classified as WS and 2,093 as PP; these pairs are present in every
first-x dataset but take on different feature values depending on z. The number
of NP pairs in the datasets from first-3 to first-10 are 51866, 33197, 26983,
12663, 7833, 4290, 1900 and 0 respectively. As previously noted, there are fewer
NP records as z increases; the first-10 dataset, in particular, has no NP records
because students who reached the 10th problem were considered persistent.

2.3 Feature Engineering and Machine Learning

We built upon the feature set developed by [1], which consists of student actions
and attributes within the ASSISTments Skill Builder platform that provides
information on student persistence and learning. More specifically, we included
25 core features related to student hint usage, number of practice opportunities at
a problem set, number of skill opportunities, and time between student actions.
As in [10], we calculated the respective sum, minimum, maximum, average and
standard deviation values of these core attributes for each student sequence and
generated 125 features based on 25 core features. Next, we constructed a set of
models to distinguish between NP, PP and WS. Each model is based on one of
the first-z datasets. This process consists of three main steps:

Data splitting. We performed a student-stratified split of each first-z
dataset into a train-validate set (90% of students) and a test set (10% of
students).

Feature selection. For each value of z, we conducted outer-loop forward
feature selection on the train-validate set. This routine starts with an empty
feature set and, at each step, selects the feature that would generate the best
performance, according to the result of cross-validation. To reduce overfitting,
we set the maximum number of features to 20 and imposed an early-stopping
condition: if the next candidate feature does not yield a performance improve-
ment of more than 0.001, the routine would stop.

Model evaluation. We built a model based on the features from the previ-
ous step, and trained it on the whole train-validate set. Then we evaluated
the model on the test set based on macro-average AUC and pairwise AUC
between NP-WS, PP-WS, and NP-PP. In this way, we ensured that no data
was used for both feature selection and model evaluation, which would bias
the results.
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In the above steps, our performance metric is 10-fold cross-validated AUC.
Due to a class imbalance between WS, NP and PP, we oversampled the training
data by randomly adding copies of records from the minority classes. To measure
the goodness of the model, we adopted macro-averaging AUC for the multi-class
prediction. Finally, to compare to our results with those of [10]’s binary detector
that differentiates between wheel-spinning and productive persistent states, we
chose the decision tree implementation from [18]. We used entropy as the splitting
criterion, set the maximum tree depth as 12 and minimum number of instances
per leaf as 2. While these hyperparameters could be individually tuned for each
dataset model to potentially yield better performance, our goal is to use the same
model construction process across all eight datasets in order to compare their
performances as well as the salient features in each, and to avoid the over-fitting
associated with hyperparameter tuning.

Among the 125 features, some were computed based on student actions on
a certain number of past problems. Past8BottomOut and Past8HelpRequest, for
example, refer to the number of bottom-out hints and help requests made in the
past 8 problems. We removed these features from the feature selection process on
the datasets where they are not applicable - for this example, the first-3 to first-8
datasets, which do not include student-skill data from more than 8 problems.

3 Results

3.1 Feature Selection Results

By applying the forward feature selection algorithm, we identified the feature
sets that maximized the model performance for each first-z dataset. Among the
eight decision tree models, six have root node features which are related to hint
usage, such as the mean (first-3, first-7, first-8) and sum (first-4, first-6) of the
total number of hints used, and mean of the bottom-out hint requested in the last
eight opportunities (first-10). The root nodes of the other two models are time
factors, such as sum (first-5) and mean (first-9) of the duration since the last
time the student practiced the skill. While each dataset has its own feature set,
we observed that there were features shared across datasets. To better represent
this commonality, we summarized all the selected features into seven categories,
which include the question type in the problem set, help request behaviors,
hint use, scaffolding, opportunity number, amount of practice and time, and
the count of failed opportunities. In Table2, we listed three example feature
categories selected with their descriptions'. The number list after each feature
indicates which first-z dataset models it was selected for.

Based on forward selection, all the models from first-3 to first-10 include
features related to hint requesting behaviors (HintTotal). In addition, features
related to HintTotal are selected for the root node of five models, which indicates
that features related to hint requests play a crucial role in predicting WS, NP

! The full table of features selected for each model can be viewed at https://github.
com/yeyuw215/ATED_WS_2020/blob/master/FullTable2.pdf.
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Table 2. Examples of selected features, categories and descriptions.

Features Features and descriptions
categories
Hint - HintTotal (3,4,5,6,7,8,9,10): The total number of hint requests

- Past8BottomOut (9,10): The number of bottom-out hint
requests in the past 8 attempts

Amount of
Practice
and Time

- TimeBetweenProblems (5,7,8,9): The duration of time in
between problems related to the skill

- TimeTaken (3,4,5,6): The amount of time spent to complete the
current problem

- TotalSkillOpportunities (5,6,7,8,9): The total number of
problems attempted that are related to the skill in the current
problem set

- TotalTimeOnSkill (3,4): The total amount of time spent on the
skill in the system

Wrong
Count

- TotalPastWrongCount (3,4,9): The total number of incorrect
attempts made on problems within the current problem set

- TotalPercentPastWrong (4,5): The percentage of incorrect
attempts made on problems within the current problem set

- Past5WrongCount (9): The number of attempts made that were
incorrect in the past 5 attempts

Table 3. Features selected for each first-z dataset model. Root feature denotes the

feature at the root node of each decision tree model.

“m” indicates the feature is

aggregated as mean; “_s” indicates the feature is aggregated as sum.

first-3 first-4 first-5 first-6

# of Features | 10 12 11 6

Root Feature | m_HintTotal | s_HintTotal |s_TimeBtwProb |s_HintTotal
first-7 first-8 first-9 first-10

# of Features | 11 8 10 5

Root Feature | m_HintTotal | m_HintTotal | m_TimeBtwProb | m_P8BottomOut

and PP. Other features, like the number of practice opportunities and amount of
time as well as the number of wrong attempts made on the previous problems,
are present across different models. We will discuss the implications of these
findings in the discussion section (Table 3).

3.2 Model Performance for “first-r” Datasets

For all first-z datasets, we applied the same feature selection and model evalu-
ation procedure. In order to identify how early we can predict wheel-spinning,
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Fig. 1. AUC scores for different first-x dataset.

we calculated the macro-averaging AUC (for the multiple classes of PP, NP and
WS) as goodness measurement and compared the improvement from including
more problems, or practice opportunities, into consideration. We also calculated
the pairwise AUC for WS-PP, NP-PP, and WS-NP predictions, to understand
how well the model can differentiate between specific pairs of states.

When including more and more practice opportunities into consideration,
the macro-average AUC scores of the multi-classes detector increases gradually
(see Fig.1). The model including the data for the first 9 opportunities has the
best performance, with a macro-averaging AUC of 0.62. For contrasting NP-
PP and WS-NP, the AUC shows an increase with more practice opportunity
data. For the prediction contrasting NP and PP, including data from the first
7 practice opportunities leads to the largest increase of AUC from 0.54 (first-6)
to 0.61 (first-7). Similarly, the AUC score of contrasting WS and NP increased
the most after including data from the first 5 practice opportunities, from 0.56
(first-4) to 0.62 (first-5). However, the AUC for the WS-PP detector fluctuates
around 0.625 and shows no rising trend from first-3 to first-10.

4 Discussion

4.1 Feature Selection Results

We observed that the hint-related features were present in all dataset models
as well as at the root node of five models, which indicates these features have
the most predictive power. This finding is consistent with previous studies. For
instance, [8] identified features involving hints to predict wheel-spinning, such as
hint use, count of previous practice opportunities with hint requests and whether
students requested at least five hint requests. Another finding in our model is
the effect of bottom-out hint requests for predicting WS. The average number of
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bottom-out hint requests for the past eight practice opportunities is selected as
a root node for predicting WS and PP (first-10), which indicates that bottom-
out hint is a strong predictor for predicting WS against PP. [2] also identified a
similar finding: after the 4th practice opportunities, bottom-out hint request is
positively associated with wheel-spinning. [10] similarly reported that heavy use
of bottom-out hints is associated with wheel-spinning.

Another category of features highly related to wheel-spinning detection is the
correctuness of previous practice opportunities ( TotalPast WrongCount, TotalPer-
centPastWrong, and Past5 WrongCount). This finding is also consistent with
previous studies [8,15,22]. In particular, [22] compared wheel-spinning detection
across different tutors, algorithms and features. They found that a logistic regres-
sion model with only one feature, correct response percentage, achieved less but
comparable accuracy with other multi-feature models built using random forest,
indicating that correctness is a strong predictor for wheel-spinning prediction.
Furthermore, according to [8], the number of previous incorrect responses on
the same skill has a positive relationship with wheel-spinning. In a math learn-
ing game, [15] also found that prior knowledge measured by missing rate and
nonproficiency of skills is highly related to wheel-spinning.

Features related to the amount of practice and time ( TimeTaken, TotalTime-
OnSkill, TotalSkillOpportunities, TimeBetweenProblems) are selected in all the
first-r models. For models including fewer opportunities to practice the skill
(first-8 to first-6), timetaken and totalfrtimeonskill are predictive of wheel-
spinning. However, for the models with more accumulated data (first-5 to first-
9), the features switched from time duration (TotalTimeOnSkill) to measures
of the number of opportunities (TotalSkillOpportunities). [2] also found that
response time is more predictive on the first several practice opportunities. For
the later responses, fast response might indicate either the mastery of skill or
gaming the system, which makes the meaning of response time ambiguous.

4.2 Model Performance of Multi-class and Pairwise Prediction

According to Fig. 1, the performance of the multi-class prediction increases as we
include data from more practice opportunities. When including data from the
first 9 practice opportunities, the macro-averaging AUC reached 0.62. To our
best knowledge, this is the first study exploring the integrated detection of non-
persistence, wheel-spinning, and productive persistence together, extending the
previous research on WS detector using a decision tree classifier [10]. Therefore,
it could be used as a baseline to evaluate model performance in future work.
In differentiating wheel-spinning (WS) from productive persistence (PP), we
found that model performance AUC values fluctuate around 0.625 from the
first-3 to the first-10 datasets, which implies that our predictive model is sta-
ble and able to differentiate between students at-risk of wheel-spinning from
students who are productively persistent early on from the third practice oppor-
tunity onward. This finding may appear to contradict prior studies that find
that models improve with more data [8,14,22]. This difference between stud-
ies may be due to the difference in how mastery is defined across the various
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studies. In prior studies, the criteria of productive mastery is defined based on
in-system performance, like three-correct-in-a-row [8]. However, the stricter def-
inition of productive persistence in our study requires students to not only meet
the “three-correct-in-a-row” mastery criteria, but also pass the delayed ARRS
test to demonstrate learning retention [10]. It is possible that a definition of mas-
tery based on robust learning, a higher bar than simply achieving three correct
answers in a row, might be easier to detect early. However, a contrasting finding
is obtained by [22], who obtained more accurate prediction and earlier detection
when using a more generous criterion of mastery than three-correct-in-a-row.
In our models generated to differentiate between wheel-spinning (WS) and
non-persistence (NP), we observed that while model performance increased with
the number of practice opportunities, the increase in AUC value is highest
between the 4th and 5th practice opportunities. This implies that our detectors
may be able to differentiate WS from NP with sufficient accuracy by the 5th
practice opportunity. [4] examined the performance of Long-Short Term Mem-
ory Networks to predict wheel-spinning and non-persistence on ASSISTments
in terms of how many opportunities to practice were provided to the algorithm.
They found that the 3rd opportunity might be the earliest timing to predict
both WS and NP, an earlier point than seen in our study. Our detectors there-
fore require more data than [4]. However, we are able to interpret the features in
our model based on the decision tree structures to derive more general insights.
This tradeoff between model performance and interpretability is also present in
other areas of learning analytics such as knowledge component modeling [13].

5 Conclusion

In this study, we explore the potential for early detection of wheel-spinning,
productive persistence and non-persistence in ASSISTments. By constructing
decision tree models and observing the change of model performance as data
about more practice opportunities is aggregated, we found that the model based
on nine practice opportunities results in the best performance; the model based
on the first three practice opportunities allows early detection of wheel-spinning
versus productive persistence, the first five practice opportunities are sufficient
for differentiation of wheel-spinning from non-persistence, and the first seven
practice opportunities are sufficient for differentiation of productive persistence
from non-persistence. Due to the interpretability of decision tree models, we
examined the common features across models and the root node features of
each. The predictive features, like hint and bottom-out hint usage, correctness
and amount of time and opportunities on the previous practice, offer us insights
about the factors which might lead to wheel-spinning.

Another potential area for future work, personalized intervention based on
which features are predictive could be integrated into the existing learning sys-
tem to better optimize student learning. Since the features which are predictive
of wheel-spinning are at least somewhat consistent across studies and datasets
(see discussion above), this may help us to design future intelligent tutoring sys-
tems that are more adaptive to the possibility of wheel-spinning in their early
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stages of learning. Such a system could encourage students to use the bottom-
out hints at the first several practice opportunities, if needed; then the system
could limit bottom-out hints availability in the later practice opportunities. In
this way, the system could leverage what we know about wheel-spinning to help
us prevent it.
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