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Abstract. Educational AI (AIEd) systems are increasingly designed and evalu-
ated with an awareness of the hybrid nature of adaptivity in real-world educational
settings. In practice, beyond being a property of AIEd systems alone, adaptivity is
often jointly enacted byAI systems and human facilitators (e.g., teachers or peers).
Despite much recent research activity, theoretical and conceptual guidance for the
design of such human–AI systems remains limited. In this paper we explore how
adaptivitymay be shared across AIEd systems and the various human stakeholders
who work with them. Based on a comparison of prior frameworks, which tend to
examine adaptivity in AIEd systems or human coaches separately, we first synthe-
size a set of dimensions general enough to capture human–AI hybrid adaptivity.
Using these dimensions, we then present a conceptual framework to map dis-
tinct ways in which humans and AIEd systems can augment each other’s abilities.
Through examples, we illustrate how this framework can be used to characterize
prior work and envision new possibilities for human–AI hybrid approaches in
education.

Keywords: Adaptivity · Human–AI hybrid · Orchestration · Collaboration ·
Framework

1 Introduction

Moving beyond a focus on adaptivity as a property ofAIEd systems alone, AIEd research
increasingly acknowledges that, in practice, adaptive learning experiencesmay be jointly
enacted by AI and human facilitators (e.g., [7, 15, 24, 30, 47, 58, 70]). For instance,
recent work indicates that in K-12 classrooms using AI tutoring software, the sequence
of educational activities students receive is often driven by a combination of AI-based
activity selection and the dynamic decision-making of classroom teachers (who may
selectively override algorithmic recommendations) [53]. Other work has explored the
nature and impacts of human–human interactions during AI-supported class sessions,
finding that these interactions can play critical roles in mediating AIEd technologies’
effectiveness [25, 26, 30, 41, 48, 70].Buildingupon suchobservations, a number of recent
projects have begun to explore how AIEd systems might more effectively work together

© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12163, pp. 240–254, 2020.
https://doi.org/10.1007/978-3-030-52237-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52237-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-52237-7_20


A Conceptual Framework for Human–AI Hybrid Adaptivity in Education 241

with human facilitators, to amplify their abilities and leverage their complementary
strengths [18, 24, 26, 42, 47, 66, 70].

As the AIEd community increasingly turns its attention to human–AI hybrid
approaches for education, some conceptual guidance may be helpful in navigating this
broaddesign space and indifferentiatingbetween fundamentally different kinds of hybrid
approaches. Different configurations of AIEd systems and humans, designed to integrate
human and AI abilities in different ways, may yield very different outcomes (e.g., [26,
55, 66, 70]). In this paper, we begin to map the diverse ways in which adaptivity may
be shared among humans and AIEd systems, to aid the community in (1) organizing
prior work through the lens of human–AI hybrid adaptivity, and (2) envisioning new
possibilities for human–AI hybrid approaches in education. To this end, we present a
conceptual framework for human–AI hybrid adaptivity in education. Drawing uponmul-
tiple existing frameworks for adaptive support—here defined broadly as support that is
responsive to unfolding learning situations in pursuit of educational goals—we begin
by synthesizing a set of dimensions general enough to capture human–AI adaptivity
(Sect. 2). Using these dimensions, we then introduce distinct ways in which humans and
AImight augment each other’s abilities, illustrating the framework’s utility via examples
of new directions it surfaces (Sect. 3).

2 Framing “Adaptivity”: Synthesizing Existing Frameworks

Several frameworks have been developed to characterize adaptivity in education. In this
paper, we build upon a small set of prior frameworks [3, 21, 50, 51, 56, 57, 61, 65]
to inform our thoughts about what a more encompassing framework should include.
In selecting this set we aimed to consider influential work across multiple research
areas, includingAIEd [3, 21, 50, 65], computer-supported collaborative learning (CSCL)
[56, 61, 65], teacher cognition [57], and classroom orchestration [51]. We searched
broadly for theoretically oriented articles that focus on characterizing adaptive instruc-
tional behavior. While the resulting selection of prior frameworks is not intended to be
exhaustive, this set presents several interesting contrasts and overlaps.

Each of the frameworks considered offers a lens to examine particular aspects of
adaptive learning systems, while abstracting over others. As discussed below, some
frameworks, such as the Adaptivity Grid [3] and Plass’s framework [50] provide high
resolution lenses to analyze what an adaptive system might respond to and when an
adaptive system might respond, but do not, for example, offer explicit language for
describing how an adaptive systemmight respond (seeAction space below).Meanwhile,
other frameworks focus much of their resolution towards characterizing the design space
for instructional support actions. For example, VanLehn [65] and Rummel [56] offer
ways of characterizing how and when a system might respond, yet do not offer language
for what to respond to (see Perceptual capabilities below). One possible reason for
these differences is that different frameworks have tended to focus on different kinds of
adaptive learning systems. A related possibility is that because different frameworks are
grounded in different research literatures (e.g., CSCL versus AIEd [65]) they are heavily
influenced by the state of the empirical literature within each community. For example,
the Adaptivity Grid [3] offered finer-grained distinctions in areas where there was much
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existing empirical work at the time of writing, but offered coarser-grained distinctions
where less prior work existed.

In the remainder of this paper, we adopt a broad framing of adaptivity in terms of
perception-action cycles [11, 44, 62, 65] enacted by decision-making agents or systems
of agents (e.g., AI, students, and teachers) [56], in service of specified educational goals
[56, 65]. Building from prior frameworks, in this section we provide a set of dimensions
that are general enough to encompass prior frameworks, while also providing language
rich enough to characterize a broad possibility space for human–AI hybrid adaptivity.
Whereas prior frameworks focus on providing partial views of agents’ adaptive behavior,
as discussed above, our dimensions draw from multiple frameworks to provide a more
encompassing perspective (cf. [43]). At the same time, we abstract over dimensions from
these prior frameworks in the interest of generalizing across a broad range of instructional
systems and contexts. For instance, six of the dimensions proposed in [56] are collapsed
into the Actions dimension below, given that all of these dimensions capture properties
of instructional support actions in CSCL.

Goals and Targets: Adaptive instruction presupposes educational goals, or outcomes
that the adaptive behavior is intended to bring about (whichmay vary by student or group
and may change over time) [8]. For example, some AIEd systems may be designed to
adapt instruction with the ultimate goal of improving student learning outcomes within a
domain, whereas others may adapt with the goal of helping students become better self-
regulated learners or collaborators. Notably, only some prior frameworks for adaptive
instruction provide vocabulary to describe the end goal(s) of the adaptivity. Rummel
[56] explicitly names goals as the first dimension that needs to be defined upfront of
designing any support. Both Rummel [56] andVanLehn [65] further distinguish between
the ultimate goals of the support (e.g., the kind of change the adaptivity is intended to
produce in students), and the immediate targets of the support (e.g., whether the support
targets cognitive versus metacognitive knowledge).

Perceptual Capabilities: Decision-making agents can adapt to unfolding learning sit-
uations only to the extent that they can perceive (i.e., sense and interpret [11, 20]) and
represent these situations. An agent’s ability to perceive particular variables of a learning
situation defines what it can potentially adapt to. In addition to variables that are directly
observable, this may also include ones that the agent is able to infer from observable
attributes (e.g., inferring a student’s or teacher’s current knowledge from patterns in
their recent behavior). In an Intelligent Tutoring System (ITS), the system’s perceptual
capabilities are defined by its student modeling capabilities, which may include unob-
servable, inferred constructs such as “help avoidance” or “frustration” [13, 21, 29]. A
human teacher’s perceptual capabilities can be understood as the range of phenomena
the teacher is capable of sensing and inferring about a learning situation. In realistic
contexts, this may depend on factors such as the teacher’s current attentional load [51,
52], as well as the teacher’s skill in noticing instructionally relevant events and drawing
correct inferences based on potentially limited observations [51, 57, 59]. As noted above,
some, but not all prior frameworks included explicit language to characterize an adap-
tive agent’s perceptual capabilities. The Adaptivity Grid [3] categorized previously pub-
lished empirical evaluations of adaptive learning technologies, in part, based on whether



A Conceptual Framework for Human–AI Hybrid Adaptivity in Education 243

they adapt instruction based on perceptions of students’ prior knowledge & knowledge
growth, their path through an activity, their affective & motivational states, their SRL
strategies, metacognition, & effort, or based on a notion of learning styles. Similarly,
Plass (2016) categorized adaptive learning technologies based on whether they adapt
instruction based on perceptions of affective, cognitive, motivational, or socio-cultural
variables [50].

Action Space: An agent’s ability to adapt instruction is also delimited by the set of
responses or instructional moves it has at its disposal [56, 57, 61, 62, 65]. For instance,
an ITS or a human tutor might try to adapt the kinds of help they provide to a student in
their class based on their perceptions of the student’s current knowledge state. However,
the tutor’s ability to adapt will be limited by the instructional moves they currently have
in their repertoire (e.g., providing correctness feedback, presenting a worked example,
or prompting a self-explanation). Some, but not all, of the frameworks we reviewed
included dimensions to characterize an agent’s action space. Soller [61] and VanLehn
[65] distinguish between actions that mirror an agent’s perceptions back to students
or human facilitators, actions that present an agent’s assessments of what it perceives,
and coaching actions (e.g., providing advice). Rummel [56] presents multiple related
dimensions classifying instructional support actions, for instance the directivity of an
action (i.e., whether and towhat extent the action presents explicit guidance). In addition,
VanLehn [65] and Rummel [56] both characterize instructional actions in terms of their
recipient or addressee (e.g., whether a system presents information to a student, a group
of students, or an instructor), and Rummel further specifies whether a student (or group
of students) is the direct target of an action, or whether the action is mediated through
other actors in the learning environment (e.g., where an adaptive system suggests that a
teacher or peer tutor help a given student).

Decision Policies: An agent’s adaptive behavior can be understood in terms of deci-
sion policies: sets of rules that map (in a potentially non-deterministic manner) from
perceived learning situations or states to particular actions that the agent will take in
response [62]. For example, an agent might adaptively respond to detected student frus-
tration by acknowledging or mirroring the student’s frustration [21, 50, 65]. However,
many alternative decision policies exist. The system might instead respond to detected
frustration by selecting alternative activities for the student to work on, or by asking
the student whether the system should alert their teacher/peers that they need help [28].
Prior frameworks do not typically provide explicit dimensions to categorize “types”
of decision policies (e.g., “responding to affect with affective responses” or “mastery
learning based activity selection policies”), although such categorizations often appear
in practice when empirically comparing different forms of adaptivity.

Granularity and Timing: Finally, many prior frameworks provide dimensions dedi-
cated to describing when a system adapts instruction (e.g., [3, 50, 51, 56, 65]). That is,
the frequency or granularity at which the perception-action cycle is enacted. This may
occur, for instance, once per task or per step of a task [3, 56, 65], once per turn in a
conversation [56], or even once per design iteration (when considering systems that are
iteratively improved based on data) [3]. Plass [50], Prieto [51], and Rummel [56] also
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distinguish the timing of the adaptation; e.g., whether the adaptation occurs prior to the
instructional activity, in the midst of the activity, or afterwards [50, 51, 56].

Many frameworks for adaptive instructional support have been developed, with each
offering a lens to examine particular aspects and particular kinds of adaptive learning
systems. The set of high-level dimensions presented in this section are intended to capture
essential components of adaptive learning systems, informed by a comparison across
frameworks (cf. [43]). In the next section, we use these dimensions to explore distinct
ways for adaptivity to be shared across humans and machines.

3 A Conceptual Framework for Human–AI Hybrid Adaptivity

In the following we present a conceptual framework for human–AI hybrid adaptivity
in education, examining the same set of basic components (goals/targets, perception,
action, decision policies, and granularity/timing) while broadening our focus. We use
this framework both to characterize prior work and to envision new possibilities, based
upon distinct ways in which humans and AIEd systems might augment one another:
(1) Goal Augmentation, (2) Perceptual Augmentation, (3) Action Augmentation, and
(4) Decision Augmentation. Within each category, possibilities exist both for augment-
ing performance (in which humans and AI systems, assumed to have complementary
strengths and weaknesses, augment one another’s abilities at “runtime”, but without nec-
essarily producing lasting changes in behavior) and for co-learning (inwhichhumans and
AI systems help one another improve over time). Finally, we discuss how theGranularity
and Timing of adaptivity might be understood in human–AI systems.

3.1 Goal Augmentation: Informing Each Other’s Instructional Goals

A key way for humans and AIEd systems to support one another is by influencing each
other’s goals. To a large extent, AIEd technologies encode the assumptions and goals
of those who design and develop them—whether explicitly, via objective functions that
a system’s adaptive policies optimize towards, or implicitly, through design decisions
that promote certain goals over others. However, the goals baked into an AIEd system
may not always align with those of humans in real-world educational contexts [24, 46,
53]. For example, ITSs used in K-12 school contexts often implement mastery-based
activity selection policies, allowing each student to progress through the curriculum at
their own pace. Yet prior work suggests that teachers often struggle to balance their
desire to implement such personalized classrooms with external pressure to keep classes
“on schedule”. In practice, teachers often opt to manually push students forward in the
curriculum if they are slower to master certain skills [24, 53], sometimes even if they
are aware that doing so may harm students’ learning [24, 28]. As of yet, little work in
AIEd has explored the design of supports for goal augmentation.

AIEd Informing Human Goals. It may not always be desirable for AIEd systems to
adapt to human facilitators’ instructional goals. For instance, in some cases, teachers’ or
peer tutors’ goals may be fundamentally at odds with known instructional best practices.
Future systems could play an important role in helping humans productively reflect upon
their goals, helping them refine these goals or consider alternatives [4, 19].
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Humans Informing AIEd Goals. Human facilitators may hold critical, on-the-ground
knowledge about their instructional contexts and personal goals, to which AIEd systems
would not typically be privy. Building upon the above example, ITSs might be even
more effective in classroom contexts if designed to accept teachers’ input regarding the
goals they should be optimizing towards. By enabling teachers to help shape the system’s
goals, the system could in turn help teachersmore effectively navigate trade-offs between
competing goals (e.g., by supporting teachers in deciding when to push students ahead
in the curriculum, while causing minimal harm to their learning [28]).

3.2 Perceptual Augmentation: Leveraging Complementarity in Perception

A second way for AIEd systems and humans to augment one another is by enhancing
each other’s abilities to perceive instructionally relevant information, or opportunities
for action. This may take the form of (1) extending what the other is able to sense (i.e.,
what information is made available to them, prior to further interpretation [11, 20]); (2)
guiding how the other distributes their attention; or (3) guiding how the other interprets
incoming information. Each of these broad possibilities is discussed in turn, below.

3.2.1 Augmenting Sensing and Attention

AIEd systems can be designed to extend what humans are able to sense and notice about
learners, learning, or their own teaching, or from the other direction, to help humans
augment what AIEd systems sense and notice. Thus far, more work in AIEd has focused
on supporting AI→human than human→AI augmentation in this area.

AIEd Augmenting Human Sensing and Attention. A number of AIEd systems have
been developed to help human facilitators sense information to which the AI would
otherwise have unique access (e.g., [2, 5, 26, 38, 40, 55, 69, 70]). Prior work has focused
on augmenting what learners and peer tutors are able to sense and notice about a learning
situation. For example, theAdaptive Peer Tutoring Assistant (APTA) supports peer tutors
in recognizing opportunities for effective intervention, in the context of ongoing peer
tutoring [70]. In the context of self-regulated learning with an AI tutor, the Help Tutor
supports students in monitoring their own help-seeking behavior, and in noticing cases
where they may be using the software’s help functions in maladaptive ways [2]. More
recently, several projects have focused on designing ways to keep human teachers in
the loop in AI-supported classrooms (e.g., [27, 40, 47, 68]). For example, the Lumilo
teacher smartglasses are designed to direct teachers’ attention, during a class session, to
situations that an AI tutor may be poorly suited to handle on its own, or which require a
teacher’s further assessment [26, 27]. In each of the above examples, there is potential for
future AIEd systems not only to augment human facilitators’ abilities in-the-moment,
but also to help humans learn to notice relevant features of a learning situation even
when in-the-moment support is unavailable [2, 19, 59, 70].

Humans Augmenting AIEd Sensing and Attention. From the other side, humans
may have relevant on-the-ground knowledge to which AIEd systems are likely to be
blind. AIEd systems may be designed so that humans can help them perceive such
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information. For instance, future systems might be designed to allow teachers and par-
ents to update individual student models with relevant information about the student’s
broader context; e.g., whether the student is currently facing at-home difficulties that
may impact their performance (cf. [9]). Similarly, an AIEd system might be designed to
periodically poll students regarding their subjective feeling of knowing particular skills
that are targeted by the instruction [12, 36]. In addition to having humans input infor-
mation directly, some research has begun to explore approaches in which humans teach
AIEd systems, via demonstration, to perceive instructionally relevant features to which
they should attend in the future (e.g., [35]).

3.2.2 Augmenting Interpretation

AIEd systems can also be designed to support humans in interpreting and drawing
inferences from what they notice, or to assist humans in shaping or mediating AIEd
systems’ interpretations of the events they are able to sense.

AIEd Augmenting Human Interpretation. Beyond extending human sensing capac-
ities, AIEd systems may also support human facilitators in productively interpreting
and reflecting upon the information available to them. Whereas some technologies are
designed to present information to humans with low-level, minimally pre-interpreted
data (e.g., “number of help requests”) [4, 5, 16], several of the AIEd systems discussed
above, includingAPTA, theHelp Tutor, andLumilo rely upon advanced studentmodeling
techniques (e.g., automated detectors of “help abuse” or “help avoidance” behaviors).
Thus, beyond augmenting human sensing and attention, these systems perform a con-
siderable amount of pre-interpretation on behalf of human facilitators or learners [5].
Emerging lines of research are beginning to explore the design of interfaces that canmore
actively guide humans towards particular interpretations of learning data (e.g., [17]) or
interfaces that can scaffold humans in more productive forms of reflection (e.g., [19]).
However, it remains an open question for future research how best to productively guide
human interpretation, while still leveraging (rather than diminishing) humans’ unique
inferential capacities [5, 14, 17, 23, 33].

Humans Augmenting AIEd Interpretation. Future AIEd systems may be designed
to support human facilitators in detecting cases where the AI misinterprets learning
data (e.g., by misclassifying patterns in collaborating groups’ behaviors) and to pro-
vide corresponding feedback in order to shape these interpretations in more meaningful
directions. As of yet, the question of how AIEd systems can be designed to effectively
elicit and learn from such feedback remains underexplored (cf. [9, 10, 14, 23, 34, 54]).

3.3 Action Augmentation: Leveraging Complementarity in Action Spaces

A thirdway inwhichAIEd systems and humans canwork together to support more adap-
tive instruction is by augmenting and extending the other’s capacities for instructional
action. In particular, AIEd systems and humans can (1) enhance each other’s ability
to perform particular kinds of instructional actions, and relatedly expand the range of
actions available to each; and (2) enhance each other’s scalability and capacity for
action. Each of these broad possibilities is discussed below.
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3.3.1 Enhancing Ability and Expanding the Availability of Actions

Many open research and design opportunities exist for human–AI systems that augment
and expand each other’s action spaces. Just a few examples are presented below.

AIEd Augmenting Human Actions. AIEd systemsmay be designed to support human
facilitators in providing more effective help. For example, while a human coach works
with a student, a future AIEd system might follow along with what the coach is doing,
and adaptively present educational resources (e.g., relevant readings, videos, or practice
materials) that support their current goals [28, 70]. Alternatively, a system may respond
during or after human coaching by adaptively providing feedback on the quality of the
instruction (e.g., the clarity of a particular explanation the coach provides), to help the
coach adjust and improve over time (cf. [19, 28, 70]).

Humans Augmenting AIEd Actions. Humans can also augment the set of instruc-
tional moves available to an AIEd system by either customizing or creating new actions
for the system. For example, AIEd systems may be designed to adaptively deliver hints
written by peers or instructors (cf. [22, 28, 72]). Authoring tools have been developed
to support non-programmer authoring, but further research is needed to support easy
authoring in everyday educational settings (e.g., by teachers or students) [1, 29, 37, 39].

3.3.2 Enhancing Scalability and Capacity

Much prior research in AIEd has focused on augmenting human scalability, whereas
relatively less research has targeted the reverse direction. However, many open questions
remain in each direction, which emerging work is beginning to tackle.

AIEd Augmenting Human Scalability. AIEd systems have often been promoted as
“scaling up” some of the benefits of one-on-one tutoring, effectively providing each
student with their own, personal AI tutor [6, 31, 58, 64]. In doing so, AIEd systems
can serve as teachers’ aides [24, 73], helping human coaches or teachers personalize
instruction beyond what might otherwise be feasible, while also freeing up humans’
limited time and attention for other activities (e.g., providing socio-emotional support
or coaching for students most in need) [22, 24, 58, 73]. Thus, one way in which AIEd
systems can augment human scalability and capacity is through selective delegation
[27]. Some research has begun to explore the design of AIEd systems that adaptively,
dynamically delegate instructional roles between AI systems, teachers, and peers, based
upon an awareness of trade-offs between the instructional ability and capacity of each
[28, 47, 49, 63]. A second emerging way for AIEd systems to help human facilitators
scale their efforts is by supporting them in teaching the AI tutor (as discussed below),
transferring their unique expertise and pedagogical preferences into a system that can
reach more students than they themselves can [37, 39, 60, 74].

Humans Augmenting AIEd Scalability. It can also be useful to consider the ways
in which human facilitators can (and in practice, often do) support AIEd systems in
scaling. Increased scalability risks reducing a system’s fit with particular educational
contexts, as system developers design solutions to fit constraints of multiple contexts
simultaneously [32, 45, 46]. On-the-ground facilitators may support AIEd systems in
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scaling to diverse contexts by adapting the way these systems are implemented in use to
the needs of their local contexts (e.g., [24, 30, 46, 58]). For example, when classroom
teachers useAIEd systems that are poorly alignedwith their school’s existing curriculum,
they may selectively assign particular modules to students, overriding the systems’ built
in sequencing algorithms in the interest of providing better aligned learning experiences
[23, 45]. Future AIEd systems may be explicitly designed to facilitate such adaptability
(e.g., local customizations and overrides) [16], improving their chances for adoption
across varied contexts of use [22, 24, 28, 45].

3.4 Decision Augmentation: Leveraging Complementarity in Decision-Making

Beyond informing each other’s goals or augmenting each other’s capacities for per-
ception and action, a fourth major way in which AIEd systems and humans can work
together is by helping each other make more effective pedagogical decisions (i.e., help-
ing each other more effectively link between perception and action). Prior work has
explored forms of both AI→human and human→AI decision augmentation. However,
much additional research is needed in order to fully realize the visions of AIEd systems
as, for instance, effective decision support and professional development tools [5, 19,
23, 24, 66] and as teachable machines [37, 39, 60, 74].

AIEd Augmenting Human Decision-Making. In addition to providing instruction to
students directly, AIEd systems may be designed as decision support for human facil-
itators, helping humans take more effective instructional actions in particular learning
situations [2, 26, 27, 66, 67, 70]. To an extent, all forms of human augmentation dis-
cussed thus far can function as forms of decision support. Indeed, decision support is
often conceptualized as a continuous spectrum rather than a binary design choice [5, 56,
65, 71]. For instance, perceptual augmentation may enhance decision-making by direct-
ing humans’ attention towards learning phenomena that require their further assessment
or action [5]. However, AIEd systems may also be designed to support human decision-
making more directly and explicitly. For example, an AIEd system might automatically
suggest effective ways for a human facilitator to help a group of students, in the moment,
based on its perceptions of the students’ and/or facilitator’s current states (effectively
functioning as hints or bug messages, targeted for a human in an instructional role rather
than a learner; see [27, 28, 68, 70]). With knowledge of a facilitator’s instructional goals,
future AIEd systems might help the facilitator make more informed trade-offs between
competing goals or nudge them away from practices that are at odds with their goals
[28]. Such systems could function not only as decision support, but also as professional
development, helping humans improve over time, potentially even in the absence of such
support [19, 27, 28, 70].

Humans Augmenting AIEd Decision-Making. AIEd systems may also be designed
to help human facilitatorsmediateor shape these systems’ instructional decision-making.
Mediation may occur in practice where a facilitator such as a teacher overrides a deci-
sion made by an AIEd system (e.g., by selecting an alternative activity for a student
to work on, or an alternative group for a student to collaborate with, rather than ones
selected by the system) [5, 24, 47, 49]. As discussed under Goal Augmentation above,
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such overriding behavior occurs regularly inK-12 classroom contexts; as noted, although
teachers’ overrides can often be seen as adaptive, they can also bemaladaptive when they
detract from (some) goals for the instruction. In addition to mediating AIEd systems’
decision-making, humans might also help systems learn more effective policies or ones
better suited to their particular educational contexts [23]. Recent work onmachine teach-
ing for AIEd suggests promise for approaches in which humans teach the AI to teach
through feedback and demonstrations [37, 39]. However, further research is needed to
develop interaction paradigms for machine teaching that are fast and intuitive enough
for everyday use in educational settings [60, 74].

3.5 Granularity and Timing in Human–AI Systems

Finally, we briefly discuss how granularity and timingmight be understood in human–AI
systems.WhenAIEd systems andhumanswork together, theymay each adapt instruction
at different grain sizes. For instance, in classrooms using step-based tutoring software,
teachers may provide substep feedback on-the-spot (i.e., feedback on a step while the
student is, from the system’s perspective, still in themidst of completing the step) [23, 27,
30].While an AIEd systemwaits for the student to submit their input, a human facilitator
might perceive an opportunity to intervene within a long pause in student typing. The
timing of adaptation may also vary across humans and machines. For instance, Aleven
et al’s “design loop adaptivity” [3] can be viewed as involving a form of shared adaptivity
in which human facilitators or instructional designers repeatedly adapt an AIEd system’s
design (informed by educational data and/or their own observations) before or after an
instructional activity, while the AIEd system in turn takes care of adapting to learning
situations during the activity.

4 Conclusions

AIEd systems are increasingly designed and evaluated with an awareness of the shared
nature of adaptivity in real-world educational settings. Despite much recent research
into human–AI hybrid approaches for education, theoretical and conceptual guidance in
this area remains limited. Whereas prior frameworks have tended to examine adaptivity
in AIEd systems or human coaches separately, in this paper we have explored how
adaptivity may be shared across AIEd systems and the various human stakeholders who
work with them.

Based on a comparison and synthesis of prior frameworks, we have presented a gen-
eralized set of dimensions, with the goal of capturing essential components of adaptive
instructional behavior (cf. [43]). Using these dimensions, we have introduced a concep-
tual framework for human–AI hybrid adaptivity in education, suggesting distinct ways in
which AIEd systems and human facilitators might augment one another. Throughout the
previous section, we have presented several examples to illustrate how this framework
can be used both to characterize prior work and to surface new possibilities and open
questions for human–AI hybrid approaches in education.

We view the current framework as a step towards the development of richer the-
ory for human–AI hybrid adaptivity in education, and for human–AI hybrid approaches
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more broadly. As an empirical and design science, AIEd needs theory to productively
guide hypothesis generation, prediction, understanding, and design. Theory can help
researchers adopt common concepts and vocabulary, which may in turn accelerate com-
munication and innovation. Theory can shape—for better or worse—how researchers
and designers see the world, how they make sense of their observations, and what alter-
natives they are able to envision. The current framework should be viewed as a starting
point, not a finished product. We invite others in the community will challenge this
framework and expand upon it.

The design space for human–AI hybrid approaches in education is large and combi-
natorial: almost any real case will involve combinations of the categories of human–AI
adaptivity specified in this framework (e.g., an AIEd system might augment human
decision-making via a human-augmented perceptual model). It is our hope that the
present work will help to guide future research and design, assisting others in navigating
this broad design space, in formulating more useful hypotheses, and in differentiating
among fundamentally different kinds of human–AI hybrid approaches.
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