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Upgrading ketone synthesis direct from carboxylic
acids and organohalides
Rehanguli Ruzi1,3, Kai Liu1,3, Chengjian Zhu1,2 & Jin Xie 1✉

The ketone functional group has a unique reactivity in organic chemistry and is associated

with a number of useful reactions. Catalytic methods for ketone synthesis are continually

being developed. Here, we report a photoredox, nickel and phosphoranyl radical synergistic

cross-electrophile coupling of commercially available chemicals, aromatic acids and aryl/alkyl

bromides. This allows for concise synthesis of highly functionalized ketones directly, without

the preparation of activated carbonyl intermediates or organometallic compounds, and thus

complements the conventional Weinreb ketone synthesis. Use of the appropriate photo-

catalyst, ligand amount and solvents can match the reaction rate required by any simple

catalytic cycle. The practicality and synthetic robustness of the reaction are illustrated by the

facile synthesis of complex ketones from readily available feedstock chemicals.

https://doi.org/10.1038/s41467-020-17224-2 OPEN

1 State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center
(ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. 2 College of Chemistry and Molecular Engineering,
Zhengzhou University, Zhengzhou 450001, China. 3These authors contributed equally: Rehanguli Ruzi, Kai Liu. ✉email: xie@nju.edu.cn

NATURE COMMUNICATIONS |         (2020) 11:3312 | https://doi.org/10.1038/s41467-020-17224-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17224-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17224-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17224-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17224-2&domain=pdf
http://orcid.org/0000-0003-2600-6139
http://orcid.org/0000-0003-2600-6139
http://orcid.org/0000-0003-2600-6139
http://orcid.org/0000-0003-2600-6139
http://orcid.org/0000-0003-2600-6139
mailto:xie@nju.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Ketones play a prominent role in organic chemistry. The
ketone moiety is extremely common in natural products
and pharmaceuticals1 and in dyes, fragrancies and fla-

vors2. It is also a versatile reaction center in organic synthesis3.
Many frequently used reactions, including the Mannich reac-
tion, Wittig reaction, Grignard reaction, Passerini reaction,
Baeyer–Villiger oxidation, and Wolff–Kishner–Huang reduc-
tion describe a wide array of transformations of ketones. The
development of a practical route to ketones from feedstock
chemicals has long been a subject of interest4–12. Carboxylic
acids and organohalides are commercially abundant and
structurally diverse, bench-stable feedstock chemicals com-
monly used in organic synthesis (Fig. 1a). When producing
ketones from carboxylic acids and organohalides, the stoi-
chiometric approach requires preparation of necessary inter-
mediates such as amides or aldehydes and Grignard
reagents13,14. If aldehydes are employed, reoxidation is neces-
sary15. Catalytic strategies for production of ketones rely on
transition metal-catalyzed carbon–carbon coupling between
activated carbonyls such as acid chlorides or anhydrides with
organometallic reagents (Fig. 1b)16–19. However, activated
carbonyls are generally prepared in as many as three steps from
carboxylic acids and organometallics are obtained typically by
metalation of organohalides20, which can often lead to poor
functional group compatibility or a lengthy functional group
protection/deprotection process.

In recent years, nickel-catalyzed cross-electrophile coupling
has attracted considerable attention21–30. The carbon–carbon
coupling arises from two different electrophiles in the pre-
sence of stoichiometric reductant. We posited that a car-
boxylic acid could be directly used as a latent electrophile (C-
terminus) rather than a nucleophile (O-terminus) in cross-
coupling. This could simplify and upgrade ketone synthesis
from carboxylic acids and organic halides13. Very recently, our
group and Doyle et al. reported an elegant photoredox-
promoted mild deoxygenation of carboxylic acids generating
acyl radicals31–35. Since photoredox and nickel-catalyzed C–O
bond formation between carboxylic acids and aromatic bro-
mides has been reported36 to achieve the desired cross-
electrophile coupling, acyl radical oxidative addition by a
metallaphotoredox pathway37–41 is essential to suppress the
C–O bond formation (Fig. 1c). Alternatively, a judicious
strategy reported by Gong et al. is conversion of carboxylic
acid into anhydrides in situ to suppress the C–O coupling22,23.
However, the use of free carboxylic acids as acyl radical

precursors is a challenge in the oxidative addition step as a
result of the strong bond dissociation energy of the C–O bond
(106 kcal mol−1)33.

A proposed mechanism for the designed metallaphotoredox
cross-electrophile coupling is shown in Fig. 2. The photo-
excited *[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 [1/2Ered (*IrIII/IrII)=
+1.21 V vs SCE, τ= 2.3 μs]38 causes single-electron transfer

O

OH

Abundant

Br
CN

Br

Simple Abundant Diverse

N
N
H

O

OH

Feedstocks Commerical

Br

Carboxylic acid Organohalide

e–
hv

Ph3P

Ni

OH

O O

Br+

Cross-electrophile coupling

δ+

δ+

δ-

1–3 steps
(activation)

O

X

X = R2N, Cl, 
OR and H

M δ-

Conventional methods
(Weinreb ketone synthesis)

(Reoxidation if X= H)

Nin

O

O

C–O formation

(Ref. 36: Science, 2017, 355, 380)

C–C formation

Nin

X
Exchange

Ligand Oxidative
Addition

Nin+1O

This work
δ+

k1 k2

This work

M= Mg, Sn, B, Zn
Activated carbonyl

1–2 steps
(reduction)

C C C

a

b

c

Fig. 1 Catalytic cross-electrophile coupling between carboxylic acids
and organohalides. a The abundant feedstock chemicals in synthetic lab.
b Direct cross-electrophile coupling of acid and organohalides. c Key
challenge: C–O versus C–C formation.

Ph3P

Ph3P

*IrIII

IrII

IrIII
hv

Photoredox
catalysis

Nickel
catalysis

LNiI

LNi0

Ar-X

LNiII

Ar

X

LNiIII
Ar

X

O

R
r.e.

SET

SET

RCOOH

Base

β-scission

O

O
Ph3P

R

O

R

O

R
Ph3PO

O

R Ar

II III

IV

I

o.a.

Fig. 2 Proposed mechanism. Mechanistic proposal for cross-electrophile coupling of acid and aryl bromides. o.a. oxidative addition, r.e. reductive
elimination.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17224-2

2 NATURE COMMUNICATIONS |         (2020) 11:3312 | https://doi.org/10.1038/s41467-020-17224-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(SET) oxidation of triphenylphosphine (Ered =+0.98V vs
SCE)31, as indicated by our Stern–Volmer experimental results
(see Supplementary Fig. 7). The triphenylphosphine radical
cation (I) generated recombines with the carboxylate anion to
form a phosphoranyl radical intermediate (II). Owing to the
strong affinity between the phosphoranyl radical and oxygen, a
facile β-scission of the radical species (II) occurs, giving rise to
a nucleophilic acyl radical42, which can undergo oxidative
addition to the resulting aryl-NiII species (III) giving the NiIII

species (IV)43–45. Finally, reductive elimination from the NiIII

intermediate (IV) can generate the desired cross-electrophile
coupling product, R-CO-Ar. A second SET event from IrII

([IrIII/IrII]=−1.37 V vs SCE), leading to an NiI species com-
pletes both catalytic cycles. The synergistic combination of
photoredox with nickel catalysis proposed in Fig. 2 is a subject
of continuing research46–58, and several challenges remain in
this cross-electrophile coupling and must be addressed: (1)
Efficient control of the matching of the C–O bond cleavage and
the radical addition to the nickel center; (2) weakening of the
interference of stoichiometric triphenylphosphine in the nickel
catalytic unit; and (3) use of appropriate ligands and solvents to
significantly suppress the C–O bond formation. Herein, we
report a formal cross-electrophile coupling of carboxylic acids
with aryl or alkyl halides enabled by photoredox and nickel
catalysis, and phosphoranyl radical synergistic chemistry,
leading to concise synthesis of ketones (Fig. 1b).

Results
Reaction optimization. Our investigation of this cross-
electrophile coupling began with the reaction of 4-methyl-
benzoic acid (1) with 5-bromo-2-(trifluoromethyl) pyridine (2),
and the representative results are presented in Table 1.

The optimized reaction conditions include 2 mol% [Ir{dF(CF3)
ppy}2{dtbbpy}]PF6, 3 mol% NiBr2.dme together with 5 mol%
4,4′-di-tert-butyl-2,2′-bipyridine (L1, Fig. 3) and 1.5 equiv Ph3P
with a mixed DMF-CH3CN solvent (entry 1, Table 1). Under
the standard conditions, the desired cross-electrophile coupling
product (3) can be obtained in 82% yield while the yield of the
C–O coupling process, giving 3′ is suppressed to 16%. We
found the loading amount of ligand plays an important role in

Table 1 Optimization of the reaction conditions.

Entry Variation of standard conditions Isolated yield: 3 (3′)
1 None 82% (16%)
2 10mol% L1 46% (37%)
3 15 mol% L1 23% (53%)
4 3mol% of L1 19% (10%)
5 5mol% L2 31% (33%)
6 5mol% L3 42% (28%)
7 5mol% L4 35% (40%)
8 5mol% L5 nd
9 5mol% L6 nd
10 DCM instead of DMF/MeCN nd
11 DMA instead of DMF/MeCN 25% (17%)
12 no PC or NiBr2 or Ph3P or light nd

Standard conditions: photocatalyst (2 mol%), NiBr2·dme (3mol%), L1 (5 mol%), 1a (0.2 mmol), 2a (0.4 mmol), Ph3P (0.3 mmol), K3PO4 (0.2 mmol), Cs2CO3 (0.2 mmol), DMF-CH3CN (2.0 mL, v/v=
1:1), blue LEDs, ambient temperature, 20 h.
DMF N,N-dimethylformamide; DMA N,N-dimethylacetamide, DCM dichloromethane, DME 1,2-dimethoxyethane, nd not detected.
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the control of the C–C and C–O bond formation (entries 2–4,
Table 1). An increased or decreased loading amount of 4,4′-di-
tert-butyl-2,2’-bipyridine can facilitate the formation of the
C–O coupling by-product (3′). Screening of different ligands
and solvents indicated that both a ligand effect and a solvent
effect are crucial for a successful cross-electrophile coupling
(entries 5–11, Table 1). We speculated that only compatible
consecutive steps with well-matched rates would benefit this
cross-electrophile coupling. In the absence of either photo-
catalyst, NiBr2·dme, triphenylphosphine or light irradiation, the
model reaction failed to occur. The quantum yield of the model
reaction was determined to be 0.35, arguing against a radical
chain pathway.

Substrate scope. With the optimized conditions in hand, we
investigated the scope of the cross-electrophile coupling reac-
tion with regard to aromatic carboxylic acids, and obtained the
results in Fig. 4. In general, this protocol is highly efficient and
has a broad substrate scope. The electron-rich and electron-
poor functional groups on the ortho-, meta-, and para-positions
on the phenyl groups of the aromatic acids have little influence
on the coupling process and the desired ketones (3–21) are
formed in 62–83% yield. A series of useful functional groups,
such as bromine (6), reactive carbonyl groups (13–16), a
terminal alkene (18), an internal alkyne (19) and an acetal (21)
tolerate the reaction conditions well. Some of these functional
groups have difficulty surviving the conventional Weinreb
ketone synthesis method toward Grignard reagents. Hetero-
aromatic carboxylic acids are satisfactory starting materials
and can uniformly produce the synthetically valuable diheter-
oaromatic ketones (22–26) with moderate to good yields.
However, examination of the reaction of aliphatic carboxylic
acids under these standard conditions showed that only a trace
amount of the desired product can be produced while both
decarboxylative C–C coupling and direct C–O coupling can
occur.

Subsequently, we studied the substrate scope of aromatic
bromides (Fig. 5) and found that many commercially available
aromatic bromides can be used to deliver the desired ketones
(27–46) in good yields. The excellent functional group
tolerance of –COOR (28, 33, 44, 45), –CN (29, 34), terminal
unsaturated chemical bonds (43, 44), and heteroarenes (38–43,
46) support the practicality of the reaction. With this strategy, it
is also very easy to construct fluorine- and fluoroalkyl-
containing diaryl ketones (30–32, 36, 37, 39–42) with
acceptable yields. Several alkyl halides also serve as coupling
partners in this cross-electrophile coupling reaction, leading to
functionalized ketones (47–49) in good yields (up to 92%).
When benzyl chloride was employed, 46% yield of ketone (49)
was obtained and a significant amount of by-product ester
was formed possibly because of the nucleophilic
substitution side reaction. This coupling reaction can allow
for the construction of highly functionalized ketones in an
operationally simple, step-economical and gram-scale reaction
(29, 5 mmol scale).

Synthetic application. To further demonstrate the synthetic
robustness of the reaction, we applied the strategy for the con-
struction of a series of complex ketones from carboxylic acids and
aromatic bromides (Fig. 6). Fenofibrate (50) is a drug used to
adjust lipid levels and blood viscosity and it could be prepared in
one step in 65% yield. The complex ketones (50–55) can be
obtained in synthetically useful yields. The precise cross-
electrophile coupling also allows for introduction of functional

groups at an early synthetic stage to limit the number of synthetic
steps thus improving the efficiency.

Mechanism of stoichiometric reactions. We performed the
stoichiometric reactions of Ar–Ni(II) intermediate (56) with
1.5 equiv. Ph3P in DMF/MeCN. Interestingly, no ligand
exchange was observed by 31P NMR analysis (Fig. 7, also see
Supplementary Fig. 10). Treatment of Ar–Ni(II) intermediate
(56) under the photoredox conditions, led to the desired
deoxygenative C–C coupling product (35), which was obtained
in 42% yield, further supporting the proposed mechanism
(Fig. 7).

Discussion
We have developed a cross-electrophile coupling between aro-
matic carboxylic acids and organic bromides, inexpensive and
abundant feedstock chemicals, enabled by photoredox and a
nickel and phosphoranyl radical synergistic combination,
affording a wide array of structurally diverse ketones with
excellent functional group compatibility. This strategy for
ketone synthesis can significantly improve the synthetic effi-
ciency and step-economy, and it also opens a door to construct
highly functionalized or complex ketones which are still
difficult to prepare by a conventional Weinreb ketone synthesis.
We found that the use of appropriate ligand loading amount
(5 mol% of 4,4′-di-tert-butyl-2,2′-bipyridine), mixed solvents
(DMF/CH3CN) and combined inorganic bases (K3PO4 and
Cs2CO3) is crucial to achieve the desired C–C bond formation
reactions, affording the desired ketone products. The employ-
ment of more or less of ligand results in a sharply decreased
yield of the ketone product and an increased yield of the ester
by-product. Use of combined bases and mixed solvents would
improve the deprotonation of carboxylic acids to expedite the
acyl radical generation and use of the precise amount of a
ligand would promote the acyl radical oxidative addition to the
arylnickel (II) species. We speculated that a facile C–O bond
cleavage and subsequent rapid acyl radical oxidative addition
rate can control the selective C–C bond formation. We believe
this cross-electrophile coupling strategy of carboxylic acids and
organic halides will upgrade the synthesis of ketones with great
potential application in organic synthesis, drug discovery and
optochemical biology given the importance and ubiquity of
ketones.

Methods
General procedure for cross-electrophile coupling of carboxylic acids and
organohalides. Preparation of Ni-based catalyst solution: In the nitrogen-filled
glove box, a stirring bar, NiBr2·dme (1.9 mg, 3.0 mol%), 4,4′-di-tert-butyl-2,2′-
bipyridine (2.7 mg, 5.0 mol%) and CH3CN/DMF (2.0 mL, V/V= 1:1) were suc-
cessively added to an oven-dried vial (8 mL screw-cap threaded). The vial was then
sealed with a Teflon-lined plastic screw-cap and stirred until the resulting mixture
become homogeneous (about 20 min).

Photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 (4.5 mg, 2 mol%), aromatic
carboxylic acid (0.2 mmol, 1.0 equiv), aryl bromide (0.4 mmol, 2.0 equiv), Ph3P
(78.6 mg, 0.3 mmol, 1.5 equiv), anhydrous powder K3PO4 (42.4 mg, 0.2 mmol,
1.0 equiv), and anhydrous powder Cs2CO3 (65.0 mg, 0.2 mmol, 1.0 equiv) were
added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring
bar. The tube was evacuated and backfilled with argon three times. Subsequently,
the nickel-catalyst solution was transferred into this Schlenk tube under argon.
The tube was then sealed and placed ~5 cm from 2 × 45W blue LEDs. The
reaction mixture was stirred for 20–36 h at room temperature (air-condition was
used to keep the temperature is 25 °C or so). After completion, the reaction
mixture was removed from the light, diluted with water and the aqueous layer
was extracted with EtOAc (3 × 2.0 mL). The combined organic layers were
washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated.
The residue was purified by flash chromatography on silica gel to afford the
corresponding ketone products.
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