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Abstract
The brain is the most important organ of the human body, and the conversations between the brain and an apparatus can not

only reveal a normally functioning or a dysfunctional brain but also can modulate the brain. Here, the apparatus may be a

nonbiological instrument, such as a computer, and the consequent brain–computer interface is now a very popular research

area with various applications. The apparatus may also be a biological organ or system, such as the gut and muscle, and

their efficient conversations with the brain are vital for a healthy life. Are there any common bases that bind these different

scenarios? Here, we propose a new comprehensive cross area: Bacomics, which comes from brain–apparatus conversations

(BAC) ? omics. We take Bacomics to cover at least three situations: (1) The brain is normal, but the conversation channel

is disabled, as in amyotrophic lateral sclerosis. The task is to reconstruct or open up new channels to reactivate the brain

function. (2) The brain is in disorder, such as in Parkinson’s disease, and the work is to utilize existing or open up new

channels to intervene, repair and modulate the brain by medications or stimulation. (3) Both the brain and channels are in

order, and the goal is to enhance coordinated development between the brain and apparatus. In this paper, we elaborate the

connotation of BAC into three aspects according to the information flow: the issue of output to the outside (BAC-1), the

issue of input to the brain (BAC-2) and the issue of unity of brain and apparatus (BAC-3). More importantly, there are no

less than five principles that may be taken as the cornerstones of Bacomics, such as feedforward and feedback control,

brain plasticity, harmony, the unity of opposites and systems principles. Clearly, Bacomics integrates these seemingly

disparate domains, but more importantly, opens a much wider door for the research and development of the brain, and the

principles further provide the general framework in which to realize or optimize these various conversations.
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Introduction

The brain is the most important organ of our human body.

Our high-quality life with its independence, mobility and

communication is based on the normal functioning of the

brain, various organs outside the brain, and the interactions

between the brain and the organs connected to it. Unfor-

tunately, hundreds of thousands of people suffer from brain

diseases or disorders of the brain’s input/output pathways

to peripheral nerves and muscles, for instance, the para-

lyzing disorders caused by spinal cord injury, brain paral-

ysis, brainstem stroke, amyotrophic lateral sclerosis,

depression, autism, schizophrenia, and aphasia (Chaudhary

et al. 2016; Hochberg et al. 2006, 2012). These diseases/

disorders lead people to lose their normal abilities to

communicate and interact with the inside/outside world or

engage in the basic social participation needed for a normal

life.

To improve the quality of life, the brain–computer

interface (BCI) was innovated as a technology to bypass

the normal biological output/input channel, and BCI was

verified to be an efficient method (Kubler et al. 2006; Mak

and Wolpaw 2009; Vidal 1973). The main body of BCI

applications is to translate brain signals into commands to

control external assistive devices, which could restore

mobility and independence for people with motor impair-

ments (Wolpaw et al. 2002). At the initial stage of devel-

opment, BCI was mainly used to decode the intentions of

the users for communication and control in a unidirectional

manner (Wolpaw et al. 2000). In recent decades, concep-

tual categories and technologies have rapidly developed

and extended beyond the original framework of BCI. The

extensions include a few aspects that are not independent

but interrelated: conceptual frameworks, technological

innovations, the objects of interaction and the applications.

The emergence of the various conceptual
frameworks

In addition to BCI, many terminologies have emerged to

define and describe various interface systems, such as

brain–machine interface (BMI) (Donoghue 2002; Graf and

Andersen 2014; Moxon and Foffani 2015), brain-to-brain

interface (BBI) (Grau et al. 2014; Lee et al. 2017; Rao et al.

2014), neurofeedback (Ramot et al. 2017; Sitaram et al.

2017), biological–machine system integration (BMSI)

(Lovell et al. 2010), brain–machine–brain interface

(BMBI) (O’Doherty et al. 2011), neural interface systems

(NIS) (Donoghue 2008; Hatsopoulos and Donoghue 2009),

and human brain/cloud interface (B/CI) (Martins et al.

2019). To capture the end-to-end definition and rapid

development, any of the listed terminologies may not be

appropriate for embracing all systems and applications, and

the various terminologies used in different parts of litera-

tures may confuse the scientific community to some extent.

The changing technological innovations

First, the control signals to convey the intention of the

users have extended across noninvasive and invasive

modalities, and have included the scalp electroen-

cephalography (EEG), magnetoencephalography (MEG),

functional MRI (fMRI), functional near-infrared spec-

troscopy (fNIRS), electrocorticography (ECoG), local field

potential (LFP), spikes, electromyography (EMG), and

electrooculogram (EOG) signals. Different modalities have

particular advantages and disadvantages, and have been

applied in different scenarios. The comparisons between

these modalities can be found in (Min et al. 2010; Nicolas-

Alonso and Gomez-Gil 2012; Ramadan and Vasilakos

2017). Second, new technologies have been developed and

include various types of brain stimulation (Gharabaghi

et al. 2014). These technologies have brought about

changes; in particular, the information transmission modes

include not only reading the neural activity from the brain

but also inputting digital information back into the brain

(Deuschl et al. 2006; Inman et al. 2018; Zrenner et al.

2016). The invasive brain stimulation approaches include

vagus nerve stimulation (VNS) (George et al. 2000; Liu

et al. 2013) and deep brain stimulation (DBS) (Benabid

et al. 2009; Herron et al. 2017), optogenetic stimulation

(Iaccarino et al. 2016), etc. Noninvasive approaches

include music intervention (He et al. 2017; Hegde 2014),

video game interference (Anguera et al. 2013; Franceschini

et al. 2013; Nouchi et al. 2012), transcranial magnetic

stimulation (TMS) (Hallett 2000; Pascual-Leone et al.

1996; Perera et al. 2016), transcranial direct-current stim-

ulation (tDCS) (Fregni et al. 2005; Kuo et al. 2014; Nitsche

et al. 2009), ultrasound stimulation (Wang et al. 2020),

functional electrical stimulation (FES) (Biasiucci et al.

2018; Pfurtscheller et al. 2003; Yan et al. 2005), transcu-

taneous auricular vagus nerve stimulation (taVNS) (Rong

et al. 2016), and acupuncture (Eun-Sun et al. 2018; Wang

et al. 2012). Each approach may have its particular high-

priority application. For example, DBS has been efficient

for the treatment of Parkinson’s disease (Benabid et al.

2009), and FES combined with BCI has been valuable for

motor recovery after stroke (Biasiucci et al. 2018). Cur-

rently, the interactive mode has extended from the open-

loop unidirectional emitting or receiving information to

closed-loop bidirectional communication (Luu et al. 2016;

Shenoy and Carmena 2014; Sitaram et al. 2017). More

recently, a concept referred to as a neural coprocessor was

proposed to address the simultaneous decoding and

encoding for closed-loop control in a unifying framework
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with two deep recurrent artificial networks (Rao 2019).

Third, pharmacological or physical treatment is also a

typical interaction channel. When the biological molecule

related functions of the brain are problematic, pharmaco-

logical treatment may be a choice. For example, amphe-

tamine and methylphenidate have long been used in the

treatment of attention deficit hyperactivity disorder

(ADHD) in children and adolescents (Berman et al. 2009).

Another example is using acupuncture and moxibustion to

treat Crohn’s disease (CD), which is a chronic inflamma-

tory bowel disease (IBD), indicating gut–brain axis dys-

function (Bao et al. 2017; Liu et al. 2018). Numerous

recent studies have shown that structural and functional

abnormalities of the brain may play crucial roles in the

development of CD.

Extension in the interaction objects

Previously, the brain is the center and source of control

signals, and the modulated object. The main interacting

parts are the brain and external devices and the environ-

ment, such as the computer and assistive devices (Long

et al. 2012; Yu et al. 2012; Zhang et al. 2016a), and the

simulated visual environment (Coogan and He 2018;

Gateau et al. 2015, 2018; Xiao et al. 2019). Currently, the

notion of the interaction objects has been extended such

that, in addition to the brain and the nonbiological instru-

ment, these interactions may be between the brain and

biological organisms outside of the body and between the

brain and the organs inside the body. Regarding the former,

the interactions may be between two brains (Grau et al.

2014; Lee et al. 2017; Rao et al. 2014), multiple inter-

connected brains (Jiang et al. 2019a; Pais-Vieira et al.

2015), and the brain and another biological organism (Li

and Zhang 2016; Yoo et al. 2013; Zhang et al. 2019).

Regarding the latter, interactions occur between the brain

and the muscle system (Ajiboye et al. 2017; Bouton et al.

2016; Do et al. 2011), the peripheral physiological systems

(Gorelick et al. 2017), such as the gut–brain axis (Agusti

et al. 2018; Bonaz et al. 2018; Foster and McVey Neufeld

2013; Mayer 2011), the hypothalamic–pituitary–adrenal

(HPA) axis (Dallman et al. 2003; Sapolsky 2015; Torres-

Berrio and Nava-Mesa 2019), and the heart (Catrambone

et al. 2019; Faes et al. 2015), etc.

Regarding the interactions between the brain and sys-

temic organs, in recent years, the gut–brain axis has

attracted much interest. Some studies have demonstrated

that bidirectional communication exists between the brain

and the gut microbiota, and the gut microbiota plays a very

important role in the development and function of the

central nervous system (CNS) through specific channels,

such as metabolic, neuroendocrine, and immune pathways

(Cerdo et al. 2017; Cryan and Dinan 2012; Diaz Heijtz

et al. 2011). The brain–heart interactions are also an

interesting topics (Pereira et al. 2013; Samuels 2007; Sil-

vani et al. 2016; Van der Wall and Van Gilst 2013). For

instance, a recent study showed that the prefrontal brain

regions can modulate vagal control of heart rate at rest

(Patron et al. 2019). In fact, brain–heart interactions are

bidirectional, the measures of the directed interaction can

be achieved by Granger causality (GC) and transfer

entropy (TE) (Faes et al. 2015). During sleep, the brain–

heart interactions are dynamic across different sleep stages

that the information interaction become weaker from light

sleep to deep sleep (Faes et al. 2014). Besides, the imbal-

anced brain–heart interaction could result in a negative

impact on health (Silvani et al. 2016). Another example is

thyroid hormone, which is essential for normal brain

development (Zoeller et al. 2002). The deficit or excess of

thyroid hormone during development can have permanent

effects on adult neurological function, and maternal levels

of thyroid hormone can affect the neurological outcomes of

the fetus and neonate. The other systemic organs, e.g., the

liver, kidney, lung, endocrine and immune systems, age-

related alterations also could negatively influence brain

health. In turn, brain dysfunction and damage caused by

age and age-related systemic diseases may lead to delete-

rious effects on the cardiovascular system, which results in

alterations of neurohumoral mechanisms and cardiac

damage and hypertension. Another distinct example is the

interplay between the brain and peripheral physiology

under stress (Sapolsky 2015; Torres-Berrio and Nava-Mesa

2019). The stress response involves the activation of the

sympathetic nervous system and the HPA axis, and the

stress exposure could result in alterations in cognition,

emotion and behavior by endocrine transducers of stress.

The change in applications

Regarding the application of these technologies, classical

BCIs have been used for typing on computer screens

(Krusienski et al. 2008; Salvaris and Sepulveda 2009; Xu

et al. 2013), exoskeleton and prostheses control (Lopez-

Larraz et al. 2016; Muller-Putz and Pfurtscheller 2008;

Schwartz et al. 2006; Wang et al. 2018), 2D cursor control

(Li et al. 2010; Wolpaw and McFarland 2004; Wolpaw

et al. 1991), assistive technology applications (Cincotti

et al. 2008; Rebsamen et al. 2007, 2010), etc. Recently, the

applications have extended widely beyond communication

and control (Blankertz et al. 2016), and medical applica-

tions (Abdulkader et al. 2015; Van Erp et al. 2012). The

fields have already broadened to include rehabilitation

(Ang et al. 2009; Frisoli et al. 2012; Moldoveanu et al.

2019), neurofeedback (Arns et al. 2009; Ramot et al. 2017;

Thibault et al. 2016), neuromodulation (Bashivan et al.

2019; Grossman et al. 2017; Lubianiker et al. 2019; Ponce
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et al. 2019; Reinhart and Nguyen 2019), treatment of

neurological and psychiatric disorders (Daly and Wolpaw

2008; Fan et al. 2018; Lim et al. 2012; McFarland et al.

2017), mental state monitoring and evaluation (Chin-Teng

et al. 2010; Dimitrakopoulos et al. 2018), cognitive

improvement (Cinel et al. 2019; Lee et al. 2013), gaming

and entertainment (Beveridge et al. 2019), neuromarketing

(Khushaba et al. 2013; Vecchiato et al. 2011), research

tools in cognition and behavior (Arico et al. 2018; Hu et al.

2017; Jensen et al. 2011; Toppi et al. 2016), etc. More

applications can be found in (Blankertz et al. 2016; Moxon

and Foffani 2015; Rao 2013; Van Erp et al. 2012). In

addition, advanced visual prostheses (Lovell et al. 2010),

auditory prostheses (Bierer and Middlebrooks 2002) and,

mechanical prostheses (Gilja et al. 2011; Velliste et al.

2008) for sensory loss, are currently under development.

Interactions beyond BCI

In addition to the interaction objects mentioned above,

interactions between the living environment and the brain

has been not properly addressed. Increasing evidence had

demonstrated that human brain development and matura-

tion are shaped by environmental exposures for better or

worse (Kim et al. 2013; McEwen 2012; McEwen and

Gianaros 2010; Meyer-Lindenberg and Tost 2012; Tost

et al. 2015). For instance, early maltreatment, social

exclusion, and stressful life events can influence brain

health. In contrast, highly nurturing maternal care is ben-

eficial for the enhancement of neural plasticity, develop-

ment of mesolimbic dopaminergic pathways, and

enhancement of social and reproductive behaviors. For

individuals, an important aspect of the environmental sur-

roundings is their socioeconomic status, which is related to

the development of brain function and structure (Chan

et al. 2018; Kim et al. 2013; Noble et al. 2012). A study

demonstrated that socioeconomic status can shape func-

tional network organization and anatomy of the brain

across adult middle age (Chan et al. 2018). It is apparent

that these interactions are important for brain health and

should be integrated together.

From the reviewed progress and changes, this domain,

starting with BCI, has advanced from conventional appli-

cations that provide novel channels for communication and

control to a comprehensive cross area for engineering,

clinical, cognitive and other scientific research areas, and

no unified framework has embraced the conceptual depth

and developments in this field. In 2010, at the first Chinese

brain–computer interface competition workshop (Oct. 26,

2010, Tsinghua University in Beijing), Dr. Dezhong Yao

was invited to give a keynote speech, and he chose a title

‘‘From Brain–Computer Interface (BCI) to Brain–Appara-

tus Interaction’’. Since then, we began to argue for the

necessity of a unified framework for brain–computer and

brain–biological organ interactions. Actually, the word

‘‘apparatus’’ appeared in a seminal paper where Vidal

argued that ‘‘Can these observable electrical brain signals

be put to work as carriers of information in man–computer

communication or for the purpose of controlling such

external apparatus as prosthetic devices or spaceships?’’

(Vidal 1973), and the word ‘‘apparatus’’ also has appeared

in biological communication studies as ‘‘there is a notice-

able evolutionary direction toward the development of a

biological communication apparatus that supported ever

more sophisticated forms of speech, or increased commu-

nication complexity, culminating in the development of

complex speech by Homo sapiens’’ (Kock 2005).

As the all noted above, BCI and other existed termi-

nologies are not be appropriate for embracing all systems

and applications. Accordingly, in this paper, a framework,

i.e., Brain–Apparatus Conversation (BAC), is provided to

integrate the various concepts, technologies, approaches

and applications into a unified area. In the BAC, the

apparatus denotes both the nonbiological computer/instru-

ments and biological organs/systems, conversation denotes

the unidirectional or bidirectional communication between

the brain and apparatus. Finally, BAC is further updated as

a new comprehensive cross area, Bacomics (BAC ?

omics), with some basic principles being summarized for

guiding BAC in the future. At the end, we also present the

opportunity and challenges in this area.

Brain–apparatus conversation (BAC):
concept and framework

For a BAC system (Yao 2017), the brain is at the center.

The brain’s interactions with the world outside itself can be

divided into two categories. One category is the interaction

with nonliving machines and the environment, and the

other category is the interaction with animate machines or

biological organs. Certainly, BAC can also be divided into

‘‘activating brain’’, ‘‘modulating brain’’ and ‘‘brain

enhancement’’ according to its functional goal (Yao 2017).

In detail, BAC refers to information communication

between the brain and a biological organ or a nonliving

machine or environment (Fig. 1). Here, the word ‘‘appa-

ratus’’ is adopted because the word refers to not just

computers or machines (Vidal 1973), but it may also rep-

resent a biological organ of a living system (Kock 2005).

The word ‘‘conversation’’ represents both one-way and

bidirectional communication in nature. In this way, BAC

can have another category focusing on information output

(BAC-1), information input (BAC-2), and harmonious

dialogue (BAC-3), respectively (Fig. 1).
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Regarding BAC-1 (the issue of output to the outside) in

Fig. 1b, the color brain is intact and normal. The problem

lies in the channels or the biological apparatus/organ out-

side the brain. The goal of the research is to functionally

activate the brain by repairing the biological output

channels or creating new channels to make full use of the

brain functions by passing neural signals through the

channel to interact/control something outside the brain. An

example is the output to biological organs by the brain–

spine interfaces in primates (Capogrosso et al. 2016). In the

Fig. 1 Illustration of brain–apparatus conversation (BAC). a Left:

brain functionalized with perception/execution, decision making,

memory, consciousness, etc. Right: apparatus including both biolog-

ical organs within a body and machine-like computers outside the

body. Conversation covers unidirectional and bidirectional commu-

nication. b BAC-1 (the issue of output to the outside, releasing the

brain): the color brain is normal, and the purpose is to functionally

release the brain by repairing or reconstructing the biological output

channels (i.e., blue arrow to inside organs such as the Gut and

heart;green one to outside environment and tools by such as hand or

artificial limb) or creating new channels (red one by neural signal

decoding to control computer etc.) to make full use of the brain

functions; BAC-2 (the issue of input to the brain, modulating brain):

the dim brain is in disorder or needs to be enhanced, and the purpose

is to utilize or repair the normal channels (i.e., blue one by such as

medicine; green one by visual feedback or visual prostheses etc.) or

create new channels (red one by encoded neural stimulus etc.) to

intervene, repair or modulate brain function; and BAC-3 (the issue of

unity of Brain and apparatus, developing brain): both the brain and

the communication channels are normal, and the purpose is to

enhance coordinated development between the brain and apparatus.

(Color figure online)

Cognitive Neurodynamics (2020) 14:425–442 429

123



BAC-1, the brain is the base and active. The applications

that create new output channels allow brain output inde-

pendent of the biological pathways of peripheral nerves

and muscles, which can be realized by directly reading out

the neural signals, i.e., EEG, ECoG, LFP, neural spikes, or

metabolic signals, i.e., fMRI, fNIRS, or EMG, EOG, to

express the movement or other communication intent of the

subject. Typical applications have included aiding para-

lyzed humans to communicate and interact with the outside

world by invasive or noninvasive BCI technology (He et al.

2015; Mak and Wolpaw 2009; Miao et al. 2019). The most

popular control signals used for BCI include sensorimotor

rhythms (Ang and Guan 2017; Jin et al. 2019; Li et al.

2014; Liao et al. 2007a, b; Zhang et al. 2017), steady-state

visual evoked potential (SSVEP) (Jiao et al. 2018; Maye

et al. 2017; Yin et al. 2015; Zhang et al. 2010, 2018b),

motion-onset visual evoked potential (mVEP) (Guo et al.

2008; Jin et al. 2012b; Ma et al. 2018), P300 (Jin et al.

2011, 2017; Long et al. 2011; Pan et al. 2013; Zhang et al.

2008), etc. Except for these BCI approaches, another

interesting approach is the brainwave music developed in

our laboratory (Fig. 2), where the power law followed by

both music and EEG was utilized to generate scale-free

brainwave music from EEG signals (Lu et al. 2012; Wu

et al. 2009), and the resulting music may vividly indicate

different states, such as rapid eye movement (REM) sleep,

slow wave sleep (SWS) or wake states with eyes closed or

open. Brainwave music moves the field forward by illus-

trating the scale-free physiological signals of the brain by a

new auditory mode.

Regarding BAC-2 (the issue of input to the brain) in

Fig. 1b, brain function is abnormal, and we need to utilize

the normal channels or create new channels to intervene,

repair or modulate brain function. In this category, the

brain is passive. The approaches to repair/remold the brain

functions by existing channels could be drug therapy (the

digestive system and metabolic system), psychotherapy

(auditory and visual channels), visual/auditory/tactile

feedback treatment, etc. These conversations between the

brain and the interactive object, such as drug, are realized

through the biological channels and apparatus, which is

different from the conventional BCI. For the drug therapy,

Fig. 2 Scale-free music of the brain. The left panel shows the

translation rules. Parameters of EEG, such as amplitude, period and

power, are translated to the parameters of a note in music, such as

pitch, duration, and volume, respectively. The timbre is arbitrarily

defined as a piano or other instrument. The right panel is an

illustration from EEG (up) to music MIDI (middle) and score

(bottom) (the right panel is reproduced with permission from Wu

et al. 2009)
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a study showed that oxytocin may differentially act via the

amygdala to enhance the salience of positive social attri-

butes in women but the salience of negative attributes in

men (Gao et al. 2016), implicitly indicating the potential of

oxytocin for various mood/emotion disorders. For the

psychotherapy, the approaches include auditory prostheses

(cochlear implants) (Moore and Shannon 2009) and visual

prostheses (Lovell et al. 2010) were used to repair the

normal biological input channels,. For the feedback treat-

ment, visual feedback has been used for the treatment of

many chronic neurological disorders, such as phantom pain

and hemiparesis from stroke (Ramachandran and Alt-

schuler 2009; Walker et al. 2000), and various computer

based cognitive therapies did similar work (Kendrick and

Yao 2017). Another approach was the application of cus-

tomized brainwave music. The researches demonstrated

that the brainwave music can relieve orofacial pain (Huang

et al. 2016), and the music exposure to Mozart K.448 was

found to improve spatial cognition by enhancing brain-

derived neurotrophic factor levels in dorsal hippocampal

subregions of developing rats (Xing et al. 2016a), promote

human subjects’ performance in the paper folding and

cutting test and the pencil-and-paper maze test (Xing et al.

2016c). Another example is the Mozart music improved the

clinical symptoms of schizophrenia (He et al. 2017; Yang

et al. 2018) or reduced cognitive impairment in pilo-

carpine-induced status epilepticus rats (Xing et al. 2016b).

In general, the approaches to creating new input chan-

nels could be realized with invasive and noninvasive

technologies. For example, DBS can be used for the

treatment of Parkinson’s disease (Benabid et al. 2009).

Other approaches include transcranial magnetic stimulation

(TMS) (Si et al. 2018), transcranial direct-current stimu-

lation (tDCS) (Geddes 2015), vagus nerve stimulation

(VNS) (Englot et al. 2016), FES (Ang and Guan 2013;

Ring and Weingarden 2007). A well-known example is to

deliver electrical stimulation to rat whisker areas as a cue

for left–right motions (Talwar et al. 2002). Recently, we

found that electroconvulsive therapy (ECT) increased

global functional connectivity density within the default

mode network (DMN) in schizophrenia patients who were

treatment resistant to pharmaceutical therapy (Huang et al.

2018; Jiang et al. 2019b).

Regarding BAC-3 (the issue of unity of Brain and

apparatus) in Fig. 1b, the starting point is to pursuit the

unity of Brain and apparatus, and enhance the coordinated

development between the brain and apparatus with the

BAC channels. The harmony between brain and apparatus

need to enhance or correct. By means of the bidirectional

conversation between brain and apparatus, the collabora-

tive capacity can be enhanced and specific functions can be

reinforced. Because of the brain’s plasticity, training or

repeatedly practicing can enhance the related brain

function and even change our brain (Cotman and Berchtold

2002). In general, brain enhancements can be explicitly and

specifically fostered by iteratively performing specific

training tasks, such as music training (Gordon et al. 2015;

Zatorre et al. 2007), physical training (Curlik and Shors

2013), cognitive task training (Taya et al. 2015), video

gaming (Kuhn et al. 2014) and cyborg intelligence (Wu

et al. 2016), etc. These trainings are usually interactively

conducted with various information from apparatuses out-

side or inside the body to the brain, and the brain vividly

make decision for further action. For example, in a virtual

rehabilitation system, as shown in Fig. 3, which can be

used to improve the motor rehabilitation of a paralyzed

child after surgery. In this virtual rehabilitation system, the

subject uses motor imagery paradigm to control the hand

movement of the virtual man on the screen by EEG signals

(output), and get feedback from the movement of virtual

man on the screen (input). Regarding action video games

(AVG), as shown in Fig. 4, it was found that gaming can

enhance functional connectivity and alter structures in

brain regions associated with attention and sensorimotor

control (Gong et al. 2015). By examining insular subre-

gions and their functional networks in AVG experts and

amateurs, we found that gray matter volume in insular

subregions changed, and the functional connectivity among

the insular subregions, or between insular and attentional,

sensorimotor areas was increased in experts compared with

amateurs. In another related study, the findings showed that

just 1-h AVG experience could improve the performance

of nonexperts (Qiu et al. 2018). Meanwhile, it was also

found that dancing might enhance the cortico-basal ganglia

loops (Li et al. 2015, 2019). Obviously, the brain and the

game process or the dace process are strongly interacted

and mutually advancing.

Fig. 3 An EEG based virtual rehabilitation training system. In this

virtual rehabilitation system, the subject uses motor imagery

paradigm to control the hand movement of the virtual man on the

screen by EEG signals. The system is used to assist in the

rehabilitation training of hand movement disorders, and can provide

the real-time visual feedback to the subject
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In general, nourishment, exercise and learning are

thought to be the three main factors that enhance our brain.

Therefore, in addition to explicit conversations in the

context of specific training/learning tasks, brain enhance-

ment may be implicitly achieved by experience and envi-

ronmental impact. During interactions in a wealthy society

and environment, our cognitive, affective and learning

skills might be enhanced during these interactions (Garthe

et al. 2016; Grabinger and Dunlap 1995). Regarding brain

development, stable and supportive social environments

are crucial (McEwen and Gianaros 2010; Tost et al. 2015).

Environmental factors can either promote or hinder brain

health. For example, during development and aging, early

maltreatment and lower socioeconomic environments can

discordantly influence the structural and functional plas-

ticity of the brain, which affect patterns of emotional

expression and regulation, stress reactivity (McEwen and

Gianaros 2010), etc. Meanwhile, exercise may induce

hepatokines and adipokines to have beneficial impact on

neurogenesis, cognitive function, appetite and metabolism,

thus supporting the existence of a muscle–brain endocrine

loop (Pedersen 2019). Furthermore, some cognitive

enhancers (drugs) as treatments for neurodegenerative

diseases and psychiatric disorders are being increasingly

used by healthy individuals, although raising safety, ethical

and regulatory concerns (Bruhl and Sahakian 2016;

d’Angelo et al. 2017). It is the illegal use without scientific

evidence support that may breakdown the harmony

between the brain and the biological apparatus.

The main principles behind BAC

The above BAC involves seemingly disparate scenarios, so

are there common cornerstones behind these approaches?

In other words, what is the basic science behind these

engineering issues? With these concerns, BAC is further

updated as a new comprehensive cross area, Bacomics

(BAC ? omics). Here, we summarize five basic principles

that appeared in the current BAC, which could guide BAC

in the future.

The control principle

When the brain and an apparatus work together for a

purpose, their conversations also act as feedforward and

feedback from one to the other. Whether a message is

considered as feedforward or feedback depends on the

relative definition of the subject versus object. For a BCI

system or an EEG-based neurofeedback system, the brain

is usually taken as the subject, and the apparatus (com-

puter/instrument actuator) could provide the visual/audi-

tory/tactile feedback to the brain after a message is initially

sent by the brain to the apparatus; this feedback can

motivate the brain to initiate a new feedforward message to

the apparatus. The various control principles in automatic

control would be the cornerstones for a stable and valuable

BAC system, where positive and negative feedback are the

most essential elements. For example, a study showed that

a system with feedback based on virtual reality techniques

could improve feedback control, specifically for untrained

subjects (Ron-Angevin and Dı́az-Estrella 2009). Another

study showed that visual feedback and somatosensory

feedback were both effective for functional recovery from

severe hemiplegia due to chronic stroke, but somatosensory

feedback could be more effective for rehabilitation than

visual feedback (Ono et al. 2014). In addition, a review

paper concluded that there was a potential of BCI games

with neurofeedback for children with the autism spectrum

(Friedrich et al. 2014).

Fig. 4 Interactive game. Left: video game scenario. Right: the enhanced links among different subregions of insula (reproduced, with

permission, from Gong et al. 2015)
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The harmonious principle

The pursuit of harmony is a fundamental drive in this world

and a dream of humans. For BAC, harmony means the

unity of brain and apparatus, and the coordinated devel-

opment between the brain and apparatus by their conver-

sations. The conversations will result in that the brain and

an apparatus can enjoy and affect each other; otherwise, the

conversation would be terminated or distorted. Interest-

ingly, many studies have revealed that all sounds and their

elements (pitch, melody, rhythm), natural images and

geographical features that humans find enjoyable are

composed of scale-free structures (Wu et al. 2015), which

implies that the human brain may have adapted to the

scale-free natural environment during evolution, runs in a

scale-free manner in which healthy human body move-

ments and brain activity (EEG and fMRI signals) all follow

a scale-free pattern (Wu et al. 2009); this would mean that

scale-free features, mathematically following the power

law or Zipf’s law (Wu et al. 2015), would be an indicator of

harmony. Based on this rule, we translated scalp EEGs into

scale-free brainwave music (Wu et al. 2009), and the out-

comes can vividly reflect intrinsic features of different

brain states, such as REM, SWS, and eyes closed or eyes

open wake states (Fig. 2) (Lu et al. 2012; Wu et al. 2013).

Regardless, harmony would be one cornerstone of an

effective conversation. The harmony or unity of brain and

apparatus can be fostered by iteratively performing specific

training tasks, such as mental and physical training (Li

et al. 2015), maintaining the health of the body and mind

(Sakaki et al. 2016; Shaffer et al. 2014) and exposure to

supportive social environments (Di et al. 2019), etc.

The systems principle

As shown above, the brain, various human internal organs/

apparatuses, and external devices/environments are inte-

grated as a unified whole (Fig. 1). When this system

becomes problematic, it may have stemmed from the

organs or the conversation channels. Thus, for any problem

of a BAC system, we need to systematically but not uni-

laterally investigate and explore the problems.

The principle of brain function plasticity

The brain is an inherently dynamic system that retains a

capacity for plasticity and adaptive reorganization and can

flexibly reconfigure interactions between spatially dis-

tributed networks. For example, previous studies have

found that playing AVGs might enhance functionality and

alter structures in brain regions associated with attention

and sensorimotor control (Gong et al. 2015; Kendrick and

Yao 2017) (Fig. 5), and a brain plasticity-based training

program can be designed and used to enhance memory in

healthy older adults (Mahncke et al. 2006). In addition,

brain networks show dynamic functional segregation and

integration during complex tasks (Shen et al. 2017),

dynamic reconfiguration during learning (Bassett et al.

2011), etc. In summary, the conversation between brain

and apparatus follows the basic principle of brain func-

tional plasticity, so as to be helpful in understanding,

protecting, nourishing, developing, and enhancing the

brain, and not the other way around.

The principle of unity of opposites

Everything has two sides: amphetamine and methylpheni-

date could be used to treat ADHD in children and ado-

lescents, but they have adverse effects when abused

(Berman et al. 2009). Games can be used to improve per-

formance, but gaming addiction has attracted great atten-

tion as a serious public and mental health issue (Weng et al.

2013). Similarly, not all music is beneficial as evidenced by

Schoenberg music (Chamber symphony No. 2 Op. 38-I.

Adagio) inducing a negative effect (Bates and Horvath

1971), and the retrograde version of Mozart K.448 and its

rhythm having a negative cognitive effect that reduced

spatial reasoning and memory capacity (Xing et al. 2016c).

Another example is that thyroid hormone is essential for

normal brain development, and either a deficit or an excess

during development can have permanent effects on adult

neurological function (Zoeller et al. 2002). These facts

mean that our brain is very special, therefore, in addition to

historical evidence confirming the effects of particular

training, interventions or nutrients, any other new conver-

sation needs to be evaluated carefully before application.

Opportunity, challenges, and future
prospects

Opportunity and challenges

Research on BAC has experienced impressive growth in

past decades, but along with the opportunities, significant

scientific and technological challenges remain. One of the

fundamental issues is the neural mechanisms behind BAC.

As the brain is at the center of the BAC system, we need to

know how the brain most effectively works and how this

conversation influences the brain. In fact, BAC extends

deep roots into basic neuroscience and becomes a powerful

tool to investigate how neural circuits encode and decode

information in real time and how this coding changes with

physiological learning and plasticity (Moxon and Foffani

2015). For example, better knowledge of the neural
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mechanisms underpinning self-regulation will likely assist

in the design of more efficient experimental protocols, tools

and technologies for neurofeedback and in discovering

more knowledge of neurophysiology (Sitaram et al. 2017).

Understanding the mechanisms of individual differences in

a BAC system would greatly hasten the effective applica-

tion of BAC in various scenarios, and understanding the

mechanisms from the brain network perspective could

provide some new insight toward explaining individual

differences (Gong et al. 2017; Li et al. 2016; Zhang et al.

2013a, b, 2015, 2016b). Furthermore, the signals used in

BAC studies are modality dependent. For noninvasive

studies, one or more techniques such as EEG, MEG, fMRI

and NIRS can be adopted. For invasive studies, spikes,

LFP, and ECoG may be adopted. The signals from dif-

ferent modalities could have different temporal–spatial

resolutions. For noninvasive recording, EEG is the most

popular because of the portability and low cost, but the

recording electrodes still need to be optimized (e.g., con-

venient wear, removing the need for conductive gel) for the

BAC system to go beyond the laboratory. For invasive

recording, development of reliable and long-term recording

devices and methods are still in the early stages (Hong and

Lieber 2019). In the future, neural mechanism-based signal

choice and utilization would be an important topic for an

efficient BAC system.

In the framework of BAC, brainformatics methods are

vital tools to decode neural activities (Yao 2017). Although

current BAC may provide new channel for paralyzed

people, it is slow when compared to natural behavior. To

bridge the gap, new experimental paradigms and algo-

rithms for Bacomics should be developed. For instances, in

BAC-1, the paradigms that can evoke or induce fast, reli-

able and robust response will be promising, and recent

efforts including face paradigm for P300 BAC (Jin et al.

2012a; Zhang et al. 2012) and joint frequency–phase

modulation method for SSVEP BAC (Chen et al. 2015),

etc. To decode neural activities, more powerful signal

processing is desired, such as sparse Bayesian learning,

extreme learning machine, deep learning, reinforcement

leaning, and transfer learning, are anticipated to improve

BAC system performance (Jin et al. 2018; Lawhern et al.

2018; Li et al. 2017; Lotte et al. 2007, 2018; Quitadamo

et al. 2017; Sakhavi et al. 2018; Schirrmeister et al. 2017;

Shanechi 2017; Zhang et al. 2017, 2018a). In EEG-based

BAC systems, EEG signals are prone to interference by

various noises, and the systems need to collect training

samples for robust classifier training before online opera-

tion, which is time consuming (Jiao et al. 2019; Zerafa

et al. 2018). One solution could be designing a powerful

method based on machine learning and signal processing

algorithms to exploit the intersubject information from

available datasets (Jiao et al. 2019; Jin et al. 2020; Yuan

et al. 2015). An alternative solution can resort to transfer

learning which could be a useful option to reduce tedious

calibration times (Jayaram et al. 2016; Nakanishi et al.

2019). Besides, another challenging and exciting BAC

research could be the speech synthesis from human cortical

activity, significant progress has been made with the help

Fig. 5 Brain plasticity in AVG experts. The shapes represent brain

areas [middle frontal gyrus (MFG), anterior and posterior subregions

of the insula]. The lines with two arrowheads represent functional

connectivity (FC). Left: the pattern of the insular network in

amateurs. Right: the pattern observed in the insular network in

experts. Note that the right panel shows an expanded transitional

subregion (the dotted line circle), a direct connection between the

MFG and posterior subregion of the insula (purple line) and enhanced

FC (reproduced, with permission, from Gong et al. 2015). (Color

figure online)
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of deep learning methods (Anumanchipalli et al. 2019;

Moses et al. 2019).

The diagnosis and intervention of brain diseases exac-

erbate societal and family burden. It is urgent to find effi-

cient drugs and develop effective diagnostic and

therapeutic approaches for brain disorders, neuropsychi-

atric disorders, and neurodegenerative brain diseases. Early

intervention and modulation approaches are usually very

important to halt or delay disease progression. The BAC

has shown promise for the early intervention and modu-

lation of a number of neurological and psychiatric disor-

ders, and the methods included DBS, tDCS, neurofeedback

(Benabid et al. 2009; Kuo et al. 2014; Ramot et al. 2017;

Sitaram et al. 2017), and music and game. Apparently,

BAC is not just a crucial and powerful tool to intervene and

treat various brain disorders, it also opens new windows to

understand the neural mechanisms underlying various

dysfunctions.

In addition to applications in the treatment of brain

disorders, BAC also opens an avenue for screening, culti-

vating and training people in specific professions. The

BAC could provide more objective criteria for measure-

ment and evaluation based on physiological measures. For

example, BAC could be used with astronauts in their daily

training, task execution and evaluation and with top ath-

letes in their training for Olympic Games.

In this paper, we take the brain at the center of Baco-

mics, and definitely for specific organs, such as the gut, it is

possible to use the conversation between the gut and brain

to modulate the gut function by the brain. In this way,

Bacomics covers an even larger domain to be explored as

the organ to be modulated may be the gut, immune system,

endocrine system, metabolic system, etc.

Finally, Bacomics entails ethical issues that are similar

to other areas of neuroscience while raising special ethical

considerations as well. Given that brain activating, modu-

lating and enhancing technologies all touch the innermost

parts of humans, there may be important ethical and social

concerns to be considered, and these concerns should be

investigated in a timely manner along the progress being

made, to ensure that studies are being conducted under

continuously updated rules of ethics.

Future prospects

Under the framework of BAC, many technologies are

described in the above sections. Here, we specifically list

several new directions that could be anticipated in the

future (Fingelkurts and Fingelkurts 2018).

Neural tissue engineering and stem cell chimeras

A previous study has demonstrated the possibility to

implant brain cells from a ‘‘more advanced’’ species to a

‘‘less advanced’’ species for augmenting brain function

(Han et al. 2013). Han and colleagues implanted human

astroglial cells into a mouse brain and discovered that the

transplanted cell survived and the behavior and perfor-

mance of the mouse in several evaluated tasks were

enhanced.

Genetic brain–mind enhancement

Genetic manipulations could be another way leading to

brain and cognitive enhancement, which has been

demonstrated in rats and mice (Sandberg and Bostrom

2006). By genetic manipulations, the memory formation

and retention of an adult mice were improved (Tang et al.

1999). Similarly, by increasing the amount of brain growth

factors, memory and cognition was improved (Routtenberg

et al. 2000). In addition, through pharmacological, dietary,

or nutritional supplementation, gene modification can be

achieved. For instance, children can gain cognitive

enhancement when their mothers consume sufficient

amounts of choline during pregnancy (Caudill et al. 2018).

Neural dust

The neural dust is an innovative technology that could

provide an ultrasonic, low power solution for chronic

brain–machine interfaces. The neural dust system consists

of an external ultrasonic transceiver board that powers and

communicates with a millimeter-scale implanted sensor

(Seo et al. 2013, 2015, 2016). The neural dust could be

placed throughout the brain and could remain in the brain

for a lifetime, and it holds the potential for future bio-

electronics-based therapies.

Human brain/cloud interface

Human knowledge has been accumulating at an accelerated

exponential pace in the cloud, and it is impossible to keep

pace with this increasingly rapid generation of human

knowledge owing to our biologically constrained cognitive

abilities. In the future, neural nanorobotics may provide a

technology for creating a real-time system that allows the

human brain to interface with the cloud (Martins et al.

2019). Such a system might allow the individuals to

instantaneously access to all of the cumulative human

knowledge available in the cloud, which could significantly

improve human learning capacities and intelligence, etc.
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Conclusion

The interfaces between the brain and the external world

have shown tremendous advancements over the past dec-

ades. In the current paper, we provided a unified frame-

work, i.e., brain–apparatus conversations (BAC), to further

integrate the conversations between brain and various

human internal organs and external instruments together.

We further proposed Bacomics as a new comprehensive

cross area and summarized some basic principles. In gen-

eral, Bacomics open a much wider door for interdisci-

plinarity in the study of the brain, and the principles behind

it further provide the general framework in which to realize

or optimize various conversations. The potential opportu-

nities and challenges coexist in the future.

Bacomics will bring potential benefits to the relevant

research fields and practical applications. BAC not only

opens its branches into many traditional neural engineering

fields but also has become a powerful tool to investigate

fundamental questions in neuroscience, intervene and treat

various brain disorders and simultaneously open new

windows to understand the neural mechanisms underlying

various function and dysfunctions. The BAC also provides

many specific avenues for screening, cultivating and

training people in specific professions.
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