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Abstract
We consider a two-population network consisting of both inhibitory (I) interneurons and excitatory (E) pyramidal cells.

This I–E neuronal network has adaptive dynamic I to E and E to I interpopulation synaptic strengths, governed by

interpopulation spike-timing-dependent plasticity (STDP). In previous works without STDPs, fast sparsely synchronized

rhythms, related to diverse cognitive functions, were found to appear in a range of noise intensity D for static synaptic

strengths. Here, by varying D, we investigate the effect of interpopulation STDPs on fast sparsely synchronized rhythms

that emerge in both the I- and the E-populations. Depending on values of D, long-term potentiation (LTP) and long-term

depression (LTD) for population-averaged values of saturated interpopulation synaptic strengths are found to occur. Then,

the degree of fast sparse synchronization varies due to effects of LTP and LTD. In a broad region of intermediate D, the

degree of good synchronization (with higher synchronization degree) becomes decreased, while in a region of large D, the

degree of bad synchronization (with lower synchronization degree) gets increased. Consequently, in each I- or E-popu-

lation, the synchronization degree becomes nearly the same in a wide range of D (including both the intermediate and the

large D regions). This kind of ‘‘equalization effect’’ is found to occur via cooperative interplay between the average

occupation and pacing degrees of spikes (i.e., the average fraction of firing neurons and the average degree of phase

coherence between spikes in each synchronized stripe of spikes in the raster plot of spikes) in fast sparsely synchronized

rhythms. Finally, emergences of LTP and LTD of interpopulation synaptic strengths (leading to occurrence of equalization

effect) are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and

the post-synaptic spike times.

Keywords Equalization effect � Interpopulation spike-timing-dependent plasticity � Fast sparsely synchronized rhythm �
Inhibitory and excitatory populations

Introduction

Recently, much attention has been paid to brain rhythms

that emerge via population synchronization between indi-

vidual firings in neuronal networks (Buzsáki 2006; Traub

and Whittington 2010; Buzsáki and Wang 2012; Garcia-

Rill 2015; Taxidis et al. 2015; Ujma et al. 2015;

Michalareas et al. 2016; Miyawaki and Diva 2016; Oliva

et al. 2016; Khodagholy et al. 2017; Ploner et al. 2017;

Roux et al. 2017; Saleem et al. 2017; Swann et al. 2017;

Veit et al. 2017). In particular, we are concerned about fast

sparsely synchronized rhythms, associated with diverse

cognitive functions (e.g., multisensory feature binding,

selective attention, and memory formation) (Wang 2010).

Fast sparsely synchronous oscillations [e.g., gamma

rhythm (30–80 Hz) during awake behaving states and rapid

eye movement sleep] have been observed in local field

potential recordings, while at the cellular level individual

neuronal recordings have been found to exhibit stochastic

& Woochang Lim

wclim@icn.re.kr

Sang-Yoon Kim

sykim@icn.re.kr

1 Institute for Computational Neuroscience and Department of

Science Education, Daegu National University of Education,

Daegu 42411, Korea

123

Cognitive Neurodynamics (2020) 14:535–567
https://doi.org/10.1007/s11571-020-09580-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-020-09580-y&amp;domain=pdf
https://doi.org/10.1007/s11571-020-09580-y


and intermittent spike discharges like Geiger counters at

much lower rates than the population oscillation frequency

(Csicsvari et al. 1999; Destexhe and Paré 1999; Fellous

and Sejnowski 2000; Hasenstaub et al. 2005). Hence, sin-

gle-cell firing activity differs distinctly from the population

oscillatory behavior. These fast sparsely synchronized

rhythms are in contrast to fully synchronized rhythms

where individual neurons fire regularly at the population

oscillation frequency like clocks.

Diverse states (which exhibit synchronous or asyn-

chronous population activity and regular or irregular sin-

gle-cell activity) appear in the real brain. In the case of

asynchronous irregular state, recordings of local field

potentials in the neocortex and the hippocampus in vivo do

not exhibit prominent field oscillations, along with irreg-

ular firings of single cells at low frequencies [as shown in

their Poisson-like histograms of interspike intervals (Burns

and Webb 1976; Douglas et al. 1991; Softky and Koch

1993; Bair et al. 1994)]. Hence, these asynchronous

irregular states show stationary global activity and irregular

single-cell firings with low frequencies (van Vreeswijk and

Sompolinsky 1996; van Vreeswijk and Sompolinksy 1998;

Brunel 2000). On the other hand, in the case of syn-

chronous irregular state, prominent oscillations of local

field potentials (corresponding to gamma rhythms) were

observed in the hippocampus, the neocortex, the cerebel-

lum, and the olfactory system (Eckhorn et al. 1988;

Eeckman and Freeman 1990; Gray et al. 1990; Bragin

et al. 1995; Buhl et al. 1998; Csicsvari et al. 1998; Fisahn

et al. 1998; Csicsvari et al. 1999; Destexhe and Paré 1999;

Destexhe et al. 1999; Kashiwadani et al. 1999; Fellous and

Sejnowski 2000; Fries et al. 2001; Logothetis et al. 2001;

Pesaran et al. 2002; Csicsvari et al. 2003; Hasenstaub et al.

2005; Compte et al. 2008; Rojas-Lı́bano and Kay 2008;

Colgin et al. 2009). We note that, even when recorded

local field potentials exhibit fast synchronous oscillations,

spike trains of single cells are still highly irregular and

sparse (Csicsvari et al. 1999; Destexhe and Paré 1999;

Fellous and Sejnowski 2000; Hasenstaub et al. 2005). For

example, Csicsvari et al. (Csicsvari et al. 1999) observed

that hippocampal pyramidal cells and interneurons fire

irregularly at lower rates (� 1.5 Hz for pyramidal cells

and � 15 Hz for interneurons) than the population fre-

quency of global gamma oscillation. In this work, we are

concerned about such fast sparsely synchronized rhythms

which exhibit oscillatory global activity and stochastic and

sparse single-cell firings.

Fast sparse synchronization was found to emerge under

balance between strong external noise and strong recurrent

inhibition in single-population networks of purely inhibi-

tory interneurons and also in two-population networks of

both inhibitory interneurons and excitatory pyramidal cells

(Brunel and Hakim 1999; Brunel 2000; Brunel and Wang

2003; Geisler et al. 2005; Brunel and Hansel 2006; Brunel

and Hakim 2008; Wang 2010). In neuronal networks,

architecture of synaptic connections has been found to have

complex topology which is neither regular nor completely

random (Sporns et al. 2000; Chklovskii et al. 2004; Song

et al. 2005; Bassett and Bullmore 2006; Sporns and Honey

2006; Larimer and Strowbridge 2008; Bullmore and Sporns

2009; Sporns 2011). In recent works (Kim and Lim

2015a, d, e), we studied the effects of network architecture

on emergence of fast sparse synchronization in small-

world, scale-free, and clustered small-world complex net-

works with sparse connections, consisting of inhibitory

interneurons. Thus, fast sparsely synchronized rhythms

were found to appear, independently of network structure.

In these works, synaptic coupling strengths were static.

However, in real brains synaptic strengths may vary for

adjustment to the environment. Thus, synaptic strengths

may be potentiated (Kornoski 1948; Hebb 1949; Shatz

1992) or depressed (Stent 1973; von der Malsburg 1973;

Sejnowski 1977; Bienenstock et al. 1982). This synaptic

plasticity provides the basis for learning, memory, and

development (Abbott and Nelson 2000). Here, we consider

spike-timing-dependent plasticity (STDP) for the synaptic

plasticity (Song et al. 2000; Bi and Poo 2001; Kepecs et al.

2002; Dan and Poo 2004, 2006; Caporale and Dan 2008;

Feldman 2012; Markram et al. 2012). For the STDP, the

synaptic strengths change through an update rule depend-

ing on the relative time difference between the pre- and the

post-synaptic spike times. Recently, effects of STDP on

diverse types of synchronization in populations of coupled

neurons were studied in various aspects (Popovych and

Tass 2012; Popovych et al. 2013; Borges et al.

2016, 2017a; Lameu et al. 2018; Kim and Lim

2018a, b, 2019). Particularly, effects of inhibitory STDP (at

inhibitory to inhibitory synapses) on fast sparse synchro-

nization have been investigated in small-world networks of

inhibitory fast spiking interneurons (Kim and Lim 2018c).

Synaptic plasticity at excitatory and inhibitory synapses

is of great interest because it controls the efficacy of

potential computational functions of excitation and inhi-

bition. Studies of synaptic plasticity have been mainly

focused on excitatory synapses between pyramidal cells,

since excitatory-to-excitatory (E to E) synapses are most

prevalent in the cortex and they form a relatively homo-

geneous population (Markram et al. 1997; Zhang et al.

1998; Bi and Poo 1998; Debanne et al. 1998; Egger et al.

1999; Tzounopoulos et al. 2004; Wittenberg and Wang

2006). A Hebbian time window was used for the excitatory

STDP (eSTDP) update rule (Song et al. 2000; Bi and Poo

2001; Kepecs et al. 2002; Dan and Poo 2004, 2006;

Caporale and Dan 2008; Feldman 2012; Markram et al.

2012). When a pre-synaptic spike precedes (follows) a

post-synaptic spike, long-term potentiation (LTP) [long-

536 Cognitive Neurodynamics (2020) 14:535–567

123



term depression (LTD)] occurs. In contrast, synaptic plas-

ticity at inhibitory synapses has attracted less attention

mainly due to experimental obstacles and diversity of

interneurons (Gaiarsa et al. 2002; Lamsa et al. 2010;

Kullmann et al. 2012; Vogels et al. 2013; Froemke 2015).

With the advent of fluorescent labeling and optical

manipulation of neurons according to their genetic types

(Deisseroth et al. 2006; Cardin 2012), inhibitory synaptic

plasticity has also begun to be focused. Particularly, studies

on inhibitory STDP (iSTDP) at inhibitory-to-excitatory (I

to E) synapses have been much made. Thus, iSTDP has

been found to be diverse and cell-specific (Soto-Trevino

et al. 2001; Gaiarsa et al. 2002; Woodin et al. 2003; Haas

et al. 2006; Talathi et al. 2008; Lamsa et al. 2010; Castilo

et al. 2011; Vogels et al. 2011; Kullmann et al. 2012;

Vogels et al. 2013; Froemke 2015; Borges et al. 2017b).

We are concerned about fast sparsely synchronized

rhythms, related to diverse cognitive functions such as

feature integration, selective attention, and memory for-

mation (Wang 2010) [e.g., gamma rhythm (30–80 Hz)

during awake behaving states and rapid eye movement

sleep]. They appear independently of network architecture

(Kim and Lim 2015a, d, e). Here, we consider clustered

small-world networks with both inhibitory (I) and excita-

tory (E) populations. The inhibitory small-world network

consists of fast spiking interneurons and the excitatory

small-world network is composed of regular spiking

pyramidal cells. We assume that random uniform connec-

tions are made between the I- and the E-populations. In the

case that specific connectivity rule between the two pop-

ulations is not known, it would be reasonable to assume

random uniform connectivity. This is the same logic as the

random matrix theory for studying statistics of energy

levels in nuclear physics (Wigner 1967). For the random

matrix theory, the matrix elements of the Hamiltonian are

assumed to be random variables because of lack of

knowledge on the matrix elements.

By taking into consideration interpopulation STDPs

between the I- and E-populations, we investigate their

effects on diverse properties of population and individual

behaviors of fast sparsely synchronized rhythms by varying

the noise intensity D in the combined case of both I to E

iSTDP and E to I eSTDP. A time-delayed Hebbian time

window is employed for the I to E iSTDP update rule. Such

time-delayed Hebbian time window was found experi-

mentally at inhibitory synapses onto principal excitatory

stellate cells in the superficial layer II of the entorhinal

cortex of rat (Haas et al. 2006). On the other hand, an anti-

Hebbian time window is used for the E to I eSTDP update

rule. This type of anti-Hebbian time window was experi-

mentally found at excitatory synapses onto the GABAergic

Purkinje-like cell in electrosensory lobe of electric fish

(Bell et al. 1997). We note that our present work is in

contrast to previous works on fast sparse synchronization

where STDPs were not considered in most cases (Brunel

and Hakim 1999; Brunel 2000; Brunel and Wang 2003;

Geisler et al. 2005; Brunel and Hansel 2006; Brunel and

Hakim 2008) and only in one case (Kim and Lim 2018c),

intrapopulation I to I iSTDP was considered in an inhibi-

tory small-world network of fast spiking interneurons.

In the presence of interpopulation STDPs, interpopula-

tion synaptic strengths fJðXYÞij g between the source Y-pop-

ulation and the target X-population are evolved into limit

values fJðXYÞij

�
g saturated over a time course governed by

the learning rate of the STDP rule. Depending on D, mean

values hJðXYÞij

�
i of saturated limit values are potentiated

[long-term potentiation (LTP)] or depressed [long-term

depression (LTD)], in comparison with the initial mean

value J
ðXYÞ
0 . The degree of fast sparse synchronization

changes because of the effects of LTP and LTD. In the case

of I to E iSTDP, LTP (LTD) disfavors (favors) fast sparse

synchronization [i.e., LTP (LTD) tends to decrease (in-

crease) the degree of fast sparse synchronization] due to

increase (decrease) in the mean value of I to E synaptic

inhibition. On the other hand, the roles of LTP and LTD are

reversed in the case of E to I eSTDP. In this case, LTP

(LTD) favors (disfavors) fast sparse synchronization [i.e.,

LTP (LTD) tends to increase (decrease) the degree of fast

sparse synchronization] because of increase (decrease) in

the mean value of E to I synaptic excitation.

Due to the effects of the mean (LTP or LTD), an

‘‘equalization effect’’ in interpopulation (both I to E and E

to I) synaptic plasticity is found to emerge in a wide range

of D through cooperative interplay between the average

occupation and pacing degrees of spikes (i.e., the average

fraction of firing neurons and the average degree of phase

coherence between spikes in each synchronized stripe of

spikes in the raster plot of spikes) in fast sparsely syn-

chronized rhythms. In a broad region of intermediate D, the

degree of good synchronization (with higher synchroniza-

tion degree) becomes decreased due to LTP (LTD) in the

case of I to E iSTDP (E to I eSTDP). On the other hand, in

a region of large D the degree of bad synchronization (with

lower synchronization degree) gets increased because of

LTD (LTP) in the case of I to E iSTDP (E to I eSTDP).

Consequently, the degree of fast sparse synchronization

becomes nearly the same in a wide range of D.

The degree of fast sparse synchronization is measured

by employing the spiking measure (Kim and Lim 2014).

Then, the equalization effect may be well visualized in the

histograms of spiking measures (representing synchro-

nization degree) in the absence and in the presence of

interpopulation STDPs. The standard deviation from the

mean in the histogram in the case of interpopulation STDPs
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is much smaller than that in the case without STDP, which

clearly shows emergence of the equalization effect. We

also note that this kind of equalization effect in interpop-

ulation synaptic plasticity is distinctly in contrast to the

Matthew (bipolarization) effect in intrapopulation (I to I

and E to E) synaptic plasticity where good (bad) syn-

chronization gets better (worse) (Kim and Lim 2018a, c).

Emergences of LTP and LTD of interpopulation

synaptic strengths (resulting in occurrence of equalization

effect in interpopulation synaptic plasticity) are also

investigated through a microscopic method based on the

distributions of time delays fDtðXYÞij g between the nearest

spiking times of the post-synaptic neuron i in the (target) X-

population and the pre-synaptic neuron j in the (source) Y-

population. We follow time evolutions of normalized his-

tograms HðDtðXYÞij Þ in both cases of LTP and LTD. Because

of the equalization effects, the two normalized histograms

at the final (evolution) stage are nearly the same, which is

in contrast to the case of intrapopulation STDPs where the

two normalized histograms at the final stage are distinctly

different due to the Matthew (bipolarization) effect (Kim

and Lim 2018a, c).

This paper is organized as follows. In ‘‘Clustered small-

world networks composed of both I- and E-populations

with interpopulation synaptic plasticity’’ section, we

describe clustered small-world networks composed of fast

spiking interneurons (inhibitory small-world network) and

regular spiking pyramidal cells (excitatory small-world

network) with interpopulation STDPs. Then, in ‘‘Effects of

interpopulation STDP on fast sparsely synchronized

rhythms’’ section the effect of interpopulation STDPs on

fast sparse synchronization is investigated in the combined

case of both I to E iSTDP and E to I eSTDP. Finally, we

give summary and discussion in ‘‘Summary and discus-

sion’’ section.

Clustered small-world networks composed
of both I- and E-populations
with interpopulation synaptic plasticity

In this section, we describe our clustered small-world

networks consisting of both I- and E-populations with

interpopulation synaptic plasticity. A neural circuit in the

brain cortex is composed of a few types of excitatory

principal cells and diverse types of inhibitory interneurons.

It is also known that interneurons make up about 20% of all

cortical neurons, and exhibit diversity in their morpholo-

gies and functions (Buzsáki et al. 2004). Here, we consider

clustered small-world networks composed of both I- and

E-populations. Each I(E)-population is modeled as a

directed Watts–Strogatz small-world network, consisting

of NI (NE) fast spiking interneurons (regular spiking

pyramidal cells) equidistantly placed on a one-dimensional

ring of radius NI ðNEÞ=2p (NI :NE ¼ 1:4), and random

uniform connections with the probability pinter are made

between the two inhibitory and excitatory small-world

networks.

A schematic representation of the clustered small-world

networks is shown in Fig. 1. The Watts–Strogatz inhibitory

small-world network (excitatory small-world network)

interpolates between a regular lattice with high clustering

(corresponding to the case of pwiring ¼ 0) and a random

graph with short average path length (corresponding to the

case of pwiring ¼ 1) through random uniform rewiring with

the probability pwiring (Watts and Strogatz 1998; Strogatz

2001; Watts 2003). For pwiring ¼ 0; we start with a directed

regular ring lattice with NI (NE) nodes where each node is

coupled to its first M
ðIÞ
syn (M

ðEÞ
syn ) neighbors [M

ðIÞ
syn=2 (M

ðEÞ
syn=2)

on either side] through outward synapses, and rewire each

outward connection uniformly at random over the whole

ring with the probability pwiring (without self-connections

and duplicate connections). Throughout the paper, we

consider the case of pwiring ¼ 0:25. This kind of Watts–

Strogatz small-world network model with predominantly

local connections and rare long-range connections may be

regarded as a cluster-friendly extension of the random

network by reconciling the six degrees of separation

(small-worldness) (Milgram 1967; Guare 1990) with the

circle of friends (clustering).

As elements in the inhibitory small-world network (ex-

citatory small-world network), we choose the Izhikevich

inhibitory fast spiking interneuron (excitatory regular

spiking pyramidal cell) model which is not only biologi-

cally plausible, but also computationally efficient (Izhike-

vich 2003, 2004, 2007, 2010). Unlike Hodgkin-Huxley-

type conductance-based models, instead of matching neu-

ronal electrophysiology, the Izhikevich model matches

neuronal dynamics by tuning its parameters in the Izhike-

vich neuron model. The parameters k and b are related to

the neuron’s rheobase and input resistance, and a, c, and

Fig. 1 Schematic representation of clustered small-world networks

(SWNs) of the inhibitory (I) and the excitatory (E) populations with

random interpopulation connections. Black curves with circle and

triangle represent the I to I and the E to E intrapopulation connections,

respectively. Gray lines with circle and triangle denote the I to E and

the E to I interpopulation connections, respectively
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d are the recovery time constant, the after-spike reset value

of v, and the after-spike jump value of u, respectively.

Tuning the above parameters, the Izhikevich neuron

model may produce 20 of the most prominent neuro-

computational features of biological neurons (Izhikevich

2003, 2004, 2007, 2010). In particular, the Izhikevich

model is employed to reproduce the six most fundamental

classes of firing patterns observed in the mammalian neo-

cortex; (i) excitatory regular spiking pyramidal cells, (ii)

inhibitory fast spiking interneurons, (iii) intrinsic bursting

neurons, (iv) chattering neurons, (v) low-threshold spiking

neurons, and (vi) late spiking neurons (Izhikevich 2007).

Here, we use the parameter values for the fast spiking

interneurons and the regular spiking pyramidal cells in the

layer 5 rat visual cortex, which are listed in the 1st ad the

2nd items of Table 1 [see the captions of Figs. 8.12 and

8.27 in Izhikevich (2007)].

The following Eqs. (1)–(11) govern population dynam-

ics in the clustered small-world networks with the I- and

the E-populations:

CI

dv
ðIÞ
i

dt
¼ kI v

ðIÞ
i � vðIÞr

� �
v
ðIÞ
i � v

ðIÞ
t

� �
� u

ðIÞ
i þ Ii

ðIÞ

þ DIn
ðIÞ
i � I

ðIIÞ
syn;i � I

ðIEÞ
syn;i;

ð1Þ

du
ðIÞ
i

dt
¼ aI U v

ðIÞ
i

� �
� u

ðIÞ
i

n o
; i ¼ 1; . . .;NI ; ð2Þ

Table 1 Parameter values used in our computations; units of the capacitance, the potential, the current, and the time are pF, mV, pA, and ms,

respectively

(1) Single Izhikevich fast spiking interneurons (Izhikevich 2007)

CI ¼ 20 vðIÞr ¼ �55 v
ðIÞ
t ¼ �40 vðIÞp ¼ 25 v

ðIÞ
b ¼ �55

kI ¼ 1 aI ¼ 0:2 bI ¼ 0:025 cI ¼ �45 dI ¼ 0

(2) Single Izhikevich regular spiking pyramidal cells (Izhikevich 2007)

CE ¼ 100 vðEÞr ¼ �60 v
ðEÞ
t ¼ �40 vðEÞp ¼ 35

kE ¼ 0:7 aE ¼ 0:03 bE ¼ �2 cE ¼ �50 dE ¼ 100

(3) Random external excitatory input to each Izhikevich fast spiking interneurons and regular spiking pyramidal cells

Ii
ðIÞ ¼ Ii

ðEÞ ¼ Ii; Ii 2 ½680; 720� DI ¼ DE ¼ D: Varying

(4) Inhibitory synapse mediated by the GABAA neurotransmitter

(Brunel and Wang 2003)

I to I: sðIIÞl ¼ 1:5 sðIIÞr ¼ 1:5 sðIIÞd ¼ 8 V ðIÞsyn ¼ �80

I to E: sðEIÞl ¼ 1:5 sðEIÞr ¼ 1:5 sðEIÞd ¼ 8

(5) Excitatory synapse mediated by the AMPA neurotransmitter

(Brunel and Wang 2003)

E to E: sðEEÞl ¼ 1:5 sðEEÞr ¼ 0:4 sðEEÞd ¼ 2 V ðEÞsyn ¼ 0

E to I: sðIEÞl ¼ 1:5 sðIEÞr ¼ 0:2 sðIEÞd ¼ 1

(6) Intra- and inter-population synaptic connections between neurons in the clustered

Watts–Strogatz small-world networks with inhibitory and excitatory populations

Intrapopulation synaptic connection: NI ¼ 600 MðIÞsyn ¼ 40

NE ¼ 2400 MðEÞsyn ¼ 160 pwiring ¼ 0:25

Interpopulation synaptic connection: pinter ¼ 1=15

Synaptic strengthes: J
ðIIÞ
0 ¼ 1300 J

ðEEÞ
0 ¼ 300 J

ðEIÞ
0 ¼ 800

J
ðIEÞ
0 ¼ 487:5 ð¼ J

ðIIÞ
0 J

ðEEÞ
0 =J

ðIEÞ
0 Þ r0 ¼ 5

J
ðEIÞ
ij 2 ½0:0001; 2000� J

ðIEÞ
ij 2 ½0:0001; 2000�

(7) Delayed Hebbian I to E iSTDP rule

d ¼ 0:1 Aþ ¼ 0:4 A� ¼ 0:35 sþ ¼ 2:6 s� ¼ 2:8

(8) Anti-Hebbian E to I eSTDP rule

d ¼ 0:05 Aþ ¼ 1:0 A� ¼ 0:9 sþ ¼ 15:0 s� ¼ 15:0
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CE

dv
ðEÞ
i

dt
¼ kE v

ðEÞ
i � vðEÞr

� �
v
ðEÞ
i � v

ðEÞ
t

� �
� u

ðEÞ
i

þ Ii
ðEÞ þ DEn

ðEÞ
i � I

ðEEÞ
syn;i � I

ðEIÞ
syn;i;

ð3Þ

du
ðEÞ
i

dt
¼ aE U v

ðEÞ
i

� �
� u

ðEÞ
i

n o
; i ¼ 1; . . .;NE; ð4Þ

with the auxiliary after-spike resetting:

ifv
ðXÞ
i � vðXÞp ; then v

ðXÞ
i  cX and u

ðXÞ
i  u

ðXÞ
i þ dX ; ðX ¼ I orEÞ

ð5Þ

where

UðvðIÞÞ ¼
0 for vðIÞ\v

ðIÞ
b

bI vðIÞ � v
ðIÞ
b

� �3

for vðIÞ � v
ðIÞ
b

8<
: ; ð6Þ

UðvðEÞÞ ¼ bE vðEÞ � v
ðEÞ
b

� �
; ð7Þ

I
ðXXÞ
syn;i ðtÞ ¼

1

dintrain;i

XNX

j¼1ðj6¼iÞ
J
ðXXÞ
ij w

ðXXÞ
ij s

ðXXÞ
j ðtÞðvðXÞi � V ðXÞsyn Þ;

ð8Þ

I
ðXYÞ
syn;i ðtÞ ¼

1

dinterin;i

XNY

j¼1

J
ðXYÞ
ij w

ðXYÞ
ij s

ðXYÞ
j ðtÞðvðXÞi � V ðYÞsyn Þ; ð9Þ

s
ðXYÞ
j ðtÞ ¼

XFj

f¼1

EXY t � t
ðjÞ
f � sðXYÞl

� �
ðX ¼ Y or X 6¼ YÞ;

ð10Þ

EXYðtÞ ¼
1

sðXYÞd � sðXYÞr

e�t=s
ðXYÞ
d � e�t=s

ðXYÞ
r

� �
HðtÞ: ð11Þ

Here, the state of the ith neuron in the X-population (X ¼ I

or E) at a time t is characterized by two state variables: the

membrane potential v
ðXÞ
i and the recovery current u

ðXÞ
i . In

Eq. (1), CX is the membrane capacitance, v
ðXÞ
r is the resting

membrane potential, and v
ðXÞ
t is the instantaneous threshold

potential. After the potential reaches its apex (i.e., spike

cutoff value) v
ðXÞ
p , the membrane potential and the recovery

variable are reset according to Eq. (5). The units of the

capacitance CX , the potential vðXÞ, the current uðXÞ and the

time t are pF, mV, pA, and ms, respectively. All these

parameter values used in our computations are listed in

Table 1. More details on the random external input, the

synaptic currents and plasticity, and the numerical method

for integration of the governing equations are given in the

following subsections.

Random external excitatory input to each
Izhikevich fast spiking interneuron and regular
spiking pyramidal cell

Each neuron in the X-population (X ¼ I or E) receives

stochastic external excitatory input I
ðXÞ
ext;i from other brain

regions, not included in the network (i.e., corresponding to

background excitatory input) (Brunel and Hakim 1999;

Brunel 2000; Brunel and Wang 2003; Geisler et al. 2005).

Then, I
ðXÞ
ext;i may be modeled in terms of its time-averaged

constant Ii
ðXÞ

and an independent Gaussian white noise nðXÞi

(i.e., corresponding to fluctuation of I
ðXÞ
ext;i from its mean)

[see the 3rd and the 4th terms in Eqs. (1) and (3)] satisfying

hnðXÞi ðtÞi ¼ 0 and hnðXÞi ðtÞ n
ðXÞ
j ðt0Þi ¼ dij dðt � t0Þ, where

h� � �i denotes the ensemble average. The intensity of the

noise nðXÞi is controlled by using the parameter DX . For

simplicity, we consider the case of Ii
ðIÞ ¼ Ii

ðEÞ ¼ Ii and

DI ¼ DE ¼ D.

Figure 2 shows spiking transitions for both the single

Izhikevich fast spiking interneuron and regular spiking

pyramidal cell in the absence of noise (i.e., D ¼ 0). The

fast spiking interneuron exhibits a jump from a resting state

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Single Izhikevich fast spiking interneuron for D ¼ 0: a bifur-

cation diagram (i.e., plot of vðIÞ versus the time-averaged constant I of

the external input Iext) and b plot of the mean firing rate f versus I.

Single Izhikevich regular spiking pyramidal cell for D ¼ 0: c bifur-

cation diagram (i.e, plot of vðEÞ versus I) and d plot of f versus I. In a,

c, solid lines denote stable equilibrium points, and solid circles

represent maximum and minimum values of the membrane potential

vðXÞ (X ¼ I or E) for the spiking states. Time series of the membrane

potential vðXÞ of e the Izhikevich fast spiking interneuron and f the

Izhikevich regular spiking pyramidal cell for I ¼ 700
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to a spiking state via subcritical Hopf bifurcation for I
�
h ’

73:7 by absorbing an unstable limit cycle born via a fold

limit cycle bifurcation for I
�
l ’ 72:8 (see Fig. 2a) (Izhike-

vich 2007). Hence, the fast spiking interneuron shows type-

II excitability because it begins to fire with a non-zero

frequency, as shown in Fig. 2b (Hodgkin 1948; Izhikevich

2000). Throughout this paper, we consider a suprathreshold

case such that the value of Ii is chosen via uniform random

sampling in the range of [680,720], as shown in the 3rd

item of Table 1. At the middle value of I ¼ 700, the

membrane potential vðIÞ oscillates very fast with a mean

firing rate f ’ 271 Hz (see Fig. 2e). On the other hand, the

regular spiking pyramidal cell shows a continuous transi-

tion from a resting state to a spiking state through a saddle-

node bifurcation on an invariant circle for I
� ’ 51:5, as

shown in Fig. 2c (Izhikevich 2007). Hence, the regular

spiking pyramidal cell exhibits type-I excitability because

its frequency f increases continuously from 0 (see Fig. 2d).

For I ¼ 700, the membrane potential vðEÞ oscillates with

f ’ 111 Hz, as shown in Fig. 2f. Hence, vðIÞðtÞ (of the fast

spiking interneuron) oscillates about 2.4 times as fast as

vðEÞðtÞ (of the regular spiking pyramidal cell) when

I ¼ 700.

Synaptic currents and plasticity

Here, we choose the numbers of fast spiking interneurons

and regular spiking pyramidal cells as NI ¼ 600 and NE ¼
2400; respectively which satisfy the 1:4 ratio (i.e,

NI :NE ¼ 1:4). The last two terms in Eq. (1) represent

synaptic couplings of fast spiking interneurons in the

I-population with NI ¼ 600. I
ðIIÞ
syn;iðtÞ and I

ðIEÞ
syn;iðtÞ in Eqs. (8)

and (9) denote intrapopulation I to I synaptic current and

interpopulation E to I synaptic current injected into the fast

spiking interneuron i, respectively, and V
ðIÞ
syn [V

ðEÞ
syn ] is the

synaptic reversal potential for the inhibitory (excitatory)

synapse. Similarly, regular spiking pyramidal cells in the

E-population with NE ¼ 2400 also have two types of

synaptic couplings [see the last two terms in Eq. (3)]. In

this case, I
ðEEÞ
syn;i ðtÞ and I

ðEIÞ
syn;iðtÞ in Eqs. (8) and (9) represent

intrapopulation E to E synaptic current and interpopulation

I to E synaptic current injected into the regular spiking

pyramidal cell i, respectively.

The intrapopulation synaptic connectivity in the X-

population (X ¼ I or E) is given by the connection weight

matrix W ðXXÞð¼ fwðXXÞij gÞ where w
ðXXÞ
ij ¼ 1 if the neuron j is

pre-synaptic to the neuron i; otherwise, w
ðXXÞ
ij ¼ 0. Here,

the intrapopulation synaptic connection is modeled in

terms of the Watts–Strogatz small-world network. Then,

the intrapopulation in-degree of the neuron i, dintrain;i (i.e., the

number of intrapopulation synaptic inputs to the neuron i)

is given by dintrain;i ¼
PNX

j¼1ðj6¼iÞ w
ðXXÞ
ij . In this case, the aver-

age number of intrapopulation synaptic inputs per neuron is

given by M
ðXÞ
syn ¼ 1

NX

PNX

i¼1 d
intra
in;i . Throughout the paper, we

consider a sparsely connected case of M
ðIÞ
syn ¼ 40 in the

I-population with NI ¼ 600. In this case, the sparseness

degree for the synaptic inputs to each interneuron may be

given by M
ðIÞ
syn=NI ¼ 1=15. In the E-population with

NE ¼ 2400, we also consider the case with the same

sparseness degree (i.e., 1/15), which leads to M
ðEÞ
syn ¼ 160.

These values of M
ðIÞ
syn ¼ 40 and M

ðEÞ
syn ¼ 160 are shown in

the 6th item of Table 1.

Next, we consider interpopulation synaptic couplings.

The interpopulation synaptic connectivity from the source

Y-population to the target X-population is given by the

connection weight matrix W ðXYÞ (=fwðXYÞij g) where w
ðXYÞ
ij ¼

1 if the neuron j in the source Y-population is pre-synaptic

to the neuron i in the target X-population; otherwise,

w
ðXYÞ
ij ¼ 0. Random uniform connections are made with the

probability pinter between the two I- and E-populations.

Here, we consider the case of pinter ¼ 1=15 which is the

same as the sparseness degree for the intrapolulation con-

nections. Then, the average number of E to I synaptic

inputs per each fast spiking interneuron and I to E synaptic

inputs per each regular spiking pyramidal cell are 160 and

40, respectively.

We consider synapses from the Y source population to

the X target population. The post-synaptic ion channels are

opened due to the binding of neurotransmitters (emitted

from the Y source population) to receptors in the X target

population. The fraction of open ion channels at time t is

denoted by sðXYÞðtÞ. The time course of s
ðXYÞ
j ðtÞ of the

neuron j in the source Y-population is given by a sum of

delayed double-exponential functions EXYðt � t
ðjÞ
f � sðXYÞl Þ

[see Eq. (10)], where sðXYÞl is the synaptic delay for the Y to

X synapse, and t
ðjÞ
f and Fj are the fth spiking time and the

total number of spikes of the jth neuron in the Y-population

at time t, respectively. Here, EXYðtÞ in Eq. (11) [which

corresponds to contribution of a pre-synaptic spike occur-

ring at time 0 to s
ðXYÞ
j ðtÞ in the absence of synaptic delay] is

controlled by the two synaptic time constants: synaptic rise

time sðXYÞr and decay time sðXYÞd , and HðtÞ is the Heaviside

step function: HðtÞ ¼ 1 for t� 0 and 0 for t\0. For the

inhibitory GABAergic synapse (involving the GABAA

receptors), the values of sðXIÞl , sðXIÞr , sðXIÞd , and V
ðIÞ
syn (X ¼ I or

E) are listed in the 4th item of Table 1 (Brunel and Wang

2003). For the excitatory AMPA synapse (involving the
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AMPA receptors), the values of sðXEÞl , sðXEÞr , sðXEÞd , and V
ðEÞ
syn

(X ¼ E or I) are given in the 5th item of Table 1 (Brunel

and Wang 2003).

The coupling strength of the synapse from the pre-sy-

naptic neuron j in the source Y-population to the post-sy-

naptic neuron i in the target X-population is J
ðXYÞ
ij ; for the

intrapopulation synaptic coupling X ¼ Y , while for the

interpopulation synaptic coupling, X 6¼ Y . Initial synaptic

strengths are normally distributed with the mean J
ðXYÞ
0 and

the standard deviation r0 ð¼ 5Þ. Here, J
ðIIÞ
0 ¼ 1300;

J
ðEEÞ
0 ¼ 300, J

ðEIÞ
0 ¼ 800, J

ðIEÞ
0 ¼ 487:5 (=J

ðIIÞ
0 J

ðEEÞ
0 =J

ðEIÞ
0 )

(see the 6th item of Table 1). In this initial case, the E–I

ratio (given by the ratio of average excitatory to inhibitory

synaptic strengths) is the same in both fast spiking

interneurons and regular spiking pyramidal cells [i.e.,

J
ðEEÞ
0 =J

ðEIÞ
0 (E-population) = J

ðIEÞ
0 =J

ðIIÞ
0 (I-population)]

(Brunel and Wang 2003; Geisler et al. 2005; Brunel and

Hakim 2008). Hereafter, this will be called the ‘‘E–I ratio

balance,’’ because the E–I ratios in both E- and I-popula-

tions are balanced. In our previous works (Kim and Lim

2018a, c), we studied the effect of intrapopulation (E to E

and I to I) synaptic plasticity on synchronized rhythms, and

the Matthew (bipolarization) effect where good (bad)

synchronization becomes better (worse) has thus been

found. Here, we restrict our attention only to the inter-

population (I to E and E to I) synaptic plasticity. Thus,

intrapopulation synaptic strengths are static in the present

study.

For the interpopulation synaptic strengths fJðXYÞij g; we

consider a multiplicative STDP (dependent on states)

(Rubin et al. 2001; Popovych et al. 2013; Kim and Lim

2018c). To avoid unbounded growth and elimination of

synaptic connections, we set a range with the upper and the

lower bounds: J
ðXYÞ
ij 2 ½Jl; Jh�, where Jl ¼ 0:0001 and

Jh ¼ 2000. With increasing time t, synaptic strength for

each interpopulation synapse is updated with a nearest-

spike pair-based STDP rule (Morrison et al. 2007):

J
ðXYÞ
ij ! J

ðXYÞ
ij þ d J� � J

ðXYÞ
ij

� �
DJðXYÞij DtðXYÞij

� ����
���; ð12Þ

where J� ¼ Jh ðJlÞ for the LTP (LTD) and DJðXYÞij ðDt
ðXYÞ
ij Þ is

the synaptic modification depending on the relative time

difference DtðXYÞij ð¼ t
ðpost;XÞ
i � t

ðpre;YÞ
j Þ between the nearest

spike times of the post-synaptic neuron i in the target X-

population and the pre-synaptic neuron j in the source Y-

population. The values of the update rate d for the I to E

iSTDP and the E to I eSTDP are 0.1 and 0.05, respectively

(see the 7th and the 8th items of Table 1)

For the I to E iSTDP, we use a time-delayed Hebbian

time window for the synaptic modification DJðEIÞij ðDt
ðEIÞ
ij Þ

(Haas et al. 2006; Talathi et al. 2008; Borges et al. 2017a):

DJðEIÞij DtðEIÞij

� �
¼

Eþ DtðEIÞij

� �
DtðEIÞij

b
forDtðEIÞij � 0

E� DtðEIÞij

� �
DtðEIÞij

b
forDtðEIÞij \0

8><
>:

:

ð13Þ

Here, EþðDtðEIÞij Þ and E�ðDtðEIÞij Þ are Hebbian exponential

functions used in the case of E to E eSTDP (Song et al.

2000; Kim and Lim 2018a):

Eþ DtðEIÞij

� �
¼ Aþ Nþ e

�DtðEIÞ
ij

=sþ and

E� DtðEIÞij

� �
¼ A� N� e

DtðEIÞ
ij

=s� ;
ð14Þ

where Nþ ¼ eb

bb sbþ
, N� ¼ eb

bb sb�
, b ¼ 10, Aþ ¼ 0:4,

A� ¼ 0:35, sþ ¼ 2:6 ms, and s� ¼ 2:8 ms (these values

are also given in the 7th item of Table 1).

We note that the synaptic modification DJðEIÞij in

Eq. (13) is given by the products of Hebbian exponential

functions in Eq. (14) and the power function DtðEIÞij

b
. As in

the E to E Hebbian time window, LTP occurs for

DtðEIÞij [ 0, while LTD takes place for DtðEIÞij \0. However,

due to the effect of the power function, DJðEIÞij � 0 near

DtðEIÞij � 0, and delayed maximum and minimum for DJðEIÞij

appear at DtðEIÞij ¼ bsþ and �bs�; respectively. Thus,

Eq. (13) is called a time-delayed Hebbian time window, in

contrast to the E to E Hebbian time window. This time-

delayed Hebbian time window was experimentally found

in the case of iSTDP at inhibitory synapses (from hip-

pocampus) onto principal excitatory stellate cells in the

superficial layer II of the entorhinal cortex (Haas et al.

2006).

For the E to I eSTDP, we employ an anti-Hebbian time

window for the synaptic modification DJðIEÞij ðDt
ðIEÞ
ij Þ (Bell

et al. 1997; Abbott and Nelson 2000; Caporale and Dan

2008):

DJijðDtijÞ ¼
�Aþ e�Dt

ðIEÞ
ij

=sþ forDtðIEÞij [ 0

A� e
DtðIEÞ

ij
=s� forDtðIEÞij \0

8<
: ; ð15Þ

where Aþ ¼ 1:0, A� ¼ 0:9, sþ ¼ 15 ms, s� ¼ 15 ms

(these values are also given in the 8th item of Table 1), and

DJðIEÞij ð0Þ ¼ 0: For DtðIEÞij [ 0, LTD occurs, while LTP

takes place for DtðIEÞij \0, in contrast to the Hebbian time

window for the E to E eSTDP (Song et al. 2000; Kim and

Lim 2018a). This anti-Hebbian time window was
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experimentally found in the case of eSTDP at excitatory

synapses onto the GABAergic Purkinje-like cell in elec-

trosensory lobe of electric fish (Bell et al. 1997).

Numerical method for integration

Numerical integration of stochastic differential Eqs. (1)–

(11) with a multiplicative STDP update rule of Eq. (12) is

done by employing the Heun method (which is developed

by modifying the Euler method for the stochastic differ-

ential equations) (San Miguel and Toral 2000) with the

time step Dt ¼ 0:01 ms. For each realization of the

stochastic process, we choose random initial points

½vðXÞi ð0Þ; u
ðXÞ
i ð0Þ� for the neuron i ði ¼ 1; . . .;NXÞ in the X-

population (X ¼ I or E) with uniform probability in the

range of v
ðXÞ
i ð0Þ 2 ð�50;�45Þ and u

ðXÞ
i ð0Þ 2 ð10; 15Þ.

Effects of interpopulation STDP on fast
sparsely synchronized rhythms

We consider clustered small-world networks with both I-

and E-populations in Fig. 1. Each Watts–Strogatz small-

world network with the rewiring probability pwiring ¼ 0:25

has high clustering and short path length due to presence of

predominantly local connections and rare long-range con-

nections. The inhibitory small-world network consists of

NI fast spiking interneurons, and the excitatory small-world

network is composed of NE regular spiking pyramidal cells.

Random and uniform interconnections between the inhi-

bitory and the excitatory small-world networks are made

with the small probability pinter ¼ 1=15. Throughout the

paper, NI ¼ 600 and NE ¼ 2400, except for the cases in

Fig. 4a1–a3. Here we consider sparsely connected case.

The average numbers of intrapopulation synaptic inputs per

neuron are M
ðIÞ
syn ¼ 40 and M

ðEÞ
syn ¼ 160, which are much

smaller than NI and NE, respectively. For more details on

the values of parameters, refer to Table 1.

We first study emergence of fast sparse synchronization

and its properties in the absence of STDP in the

‘‘3.1’’Emergence of fast sparse synchronization and its

properties in the absence of STDP section. Then, in the

‘‘Effect of interpopulation (both I to E and E to I) STDPs

on population states in the I- and the E-populations’’ sec-

tion, we investigate the effects of interpopulation STDPs

on diverse properties of population and individual behav-

iors of fast sparse synchronization in the combined case of

both I to E iSTDP and E to I eSTDP.

Emergence of fast sparse synchronization and its
properties in the absence of STDP

Here, we are concerned about emergence of fast sparse

synchronization and its properties in the I- and the

E-populations in the absence of STDP. We also consider an

interesting case of the E–I ratio balance where the ratio of

average excitatory to inhibitory synaptic strengths is the

same in both fast spiking interneurons and regular spiking

pyramidal cells (Brunel and Wang 2003; Geisler et al.

2005; Brunel and Hakim 2008). Initial synaptic strengths

are chosen from the Gaussian distribution with the mean

J
ðXYÞ
0 and the standard deviation r0 ð¼ 5Þ. The I to I

synaptic strength J
ðIIÞ
0 ð¼ 1300Þ is strong, and hence fast

sparse synchronization may appear in the I-population

under the balance between strong inhibition and strong

external noise. This I-population is a dominant one in our

coupled two-population system because J
ðIIÞ
0 is much

stronger in comparison with the E to E synaptic strength

J
ðEEÞ
0 ð¼ 300Þ. Moreover, the I to E synaptic strength

J
ðEIÞ
0 ¼ 800 is so strong that fast sparse synchronization

may also appear in the E-population when the noise

intensity D passes a threshold. In this state of fast sparse

synchronization, regular spiking pyramidal cells in the

E-population make firings at much lower rates than fast

spiking interneurons in the I-population. Finally, the E to I

synaptic strength J
ðIEÞ
0 ð¼ 487:5Þ is given by the E–I ratio

balance (i.e., J
ðEEÞ
0 =J

ðEIÞ
0 ¼ J

ðIEÞ
0 =J

ðIIÞ
0 ). In this subsection,

all these synaptic strengths are static because we do not

consider any synaptic plasticity.

By varying the noise intensity D, we investigate emer-

gence of diverse population states in both the I- and the

E-populations. Figure 3a shows a bar diagram for the

population states (I, E) in both I- and E-populations, where

FS, FSS, NF, and DS represents full synchronization, fast

sparse synchronization, non-firing, and desynchronization,

respectively. Population synchronization may be well

visualized in the raster plot of neural spikes which is a

collection of spike trains of individual neurons. Such raster

plots of spikes are fundamental data in experimental neu-

roscience. As a population quantity showing collective

behaviors, we use an instantaneous population spike rate

which may be obtained from the raster plots of spikes

(Brunel and Hakim 1999; Brunel 2000; Brunel and Wang

2003; Geisler et al. 2005; Brunel and Hansel 2006; Brunel

and Hakim 2008; Wang 2010; Kim and Lim 2014). For a

synchronous case, ‘‘spiking stripes’’ (consisting of spikes

and indicating population synchronization) are found to be

formed in the raster plot, while in a desynchronized case

spikes are completely scattered without forming any

stripes.
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Such raster plots of spikes are well shown for various

values of D in Fig. 3b1–b8. In each raster plot, spikes of

NI ð¼ 600Þ fast spiking interneurons are shown with black

dots in the upper part, while spikes of NE ð¼ 2400Þ regular

spiking pyramidal cells are shown with gray dots in the

lower part. Hence, in a synchronous case where spiking

stripes in the raster plot appear successively at the popu-

lation frequency f
ðXÞ
p , the corresponding instantaneous

population spike rate RXðtÞ (X ¼ I or E) exhibits an

oscillating behavior with the population frequency f
ðXÞ
p . On

the other hand, in a desynchronized case, RXðtÞ is nearly

stationary because spikes are completely scattered in the

raster plot. To obtain a smooth instantaneous population

spike rate, we employ the kernel density estimation (kernel

smoother) (Shimazaki and Shinomoto 2010). Each spike in

the raster plot is convoluted (or blurred) with a kernel

function KhðtÞ [such as a smooth Gaussian function in

Eq. (17)], and then a smooth estimate of instantaneous

population spike rate RXðtÞ is obtained by averaging the

convoluted kernel function over all spikes for all neurons in

the X-population (X ¼ I or E):

RXðtÞ ¼
1

NX

XNX

i¼1

XnðXÞi

s¼1

Kh t � tði;XÞs

� �
; ð16Þ

where t
ði;XÞ
s is the sth spiking time of the ith neuron in the

X-population, n
ðXÞ
i is the total number of spikes for the ith

neuron, and we use a Gaussian kernel function of band

width h:

KhðtÞ ¼
1ffiffiffiffiffiffi
2p
p

h
e�t

2=2h2

; �1\t\1: ð17Þ

Throughout the paper, the band width h of KhðtÞ is 1 ms.

The instantaneous population spike rates RIðtÞ [REðtÞ] for

the I-(E-)population are shown for various values of D in

Fig. 3c1–c8 (Fig. 3d1–d8).

Fig. 3 Synchronized rhythms in both I- and E-populations in the

absence of STDP. a Bar diagram for the population states (I, E) in the

I- and E-populations. FS, FSS, NF, and DS denote full synchroniza-

tion, fast sparse synchronization, non-firing, and desynchronization,

respectively. b1–b8 Raster plots of spikes for various values of D;

lower gray dots and upper black dots denote spikes in the E- and

I-populations, respectively. c1–c8 (d1–d8) Instantaneous population

spike rates RIðtÞ [REðtÞ] of the I (E) population for various values of

D. Plots of the population frequency hf ðXÞp ir (represented by open

circles) and the population-averaged mean firing rates of individual

neurons hhf ðXÞi iir (denoted by crosses) versus D; e1 X ¼ I (I-

population) and e2 X ¼ E (E-population)
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For sufficiently small D, individual fast spiking

interneurons in the I-population fire regularly with the

population-averaged mean firing rate hhf ðIÞi iir which is the

same as the population frequency hf ðIÞp ir of the instanta-

neous population spike rate RIðtÞ. Throughout the paper,

h� � �i denotes a population average and h� � �ir represents an

average over 20 realizations. In this case, all fast spiking

interneurons make spikings in each spiking stripe in the

raster plot, and hence each stripe is fully occupied by

spikes of all fast spiking interneurons. As a result, full

synchronization with hhf ðIÞi iir ¼ hf
ðIÞ
p ir occurs. As an

example of full synchronization in the I-population, we

consider the case of D ¼ 50. Figure 3b1 shows the raster

plot of spikes where black spiking stripes for the I-popu-

lation appear successively, and the corresponding instan-

taneous population spike rate RIðtÞ with a large amplitude

oscillates regularly with hf ðIÞp ir ’ 40 Hz (see Fig. 3c1).

In contrast, for D ¼ 50, regular spiking pyramidal cells

in the E-population do not make firings (i.e., the E-popu-

lation is in the non-firing state) due to strong I to E synaptic

strength J
ðEIÞ
0 (=800). In the isolated E-population (without

synaptic coupling with the I-population), regular spiking

pyramidal cells make firings with hhf ðEÞi iir ’ 189:9 Hz in a

complete incoherent way, and hence population state

becomes desynchronized (i.e., in this case, spikes of reg-

ular spiking pyramidal cells are completely scattered

without forming any stripes in the raster plot). However, in

the presence of strong I to E synaptic current, the popu-

lation state for the E-population is transformed into a non-

firing state. Thus, for D ¼ 50 there are no spikes of regular

spiking pyramidal cells in the raster plot and no instanta-

neous population spike rate REðtÞ appears.

The full synchronization in the I-population persists

until D ¼ D�1 ð’ 62Þ. For D[D�1; full synchronization is

developed into fast sparse synchronization with

hf ðIÞp ir [ hhf
ðIÞ
i iir through a pitchfork bifurcation, as shown

in Fig. 3e1. In the case of fast sparse synchronization for

D[D�1; hf
ðIÞ
p ir (hhf ðIÞi iir) increases (decreases) monotoni-

cally from 40 Hz with increasing D. In each realization, we

get the population frequency f
ðXÞ
p (X ¼ I or E) from the

reciprocal of the ensemble average of 104 time intervals

between successive maxima of RXðtÞ, and obtain the mean

firing rate f
ðXÞ
i for each neuron in the X-population via

averaging for 2� 104 ms; hf ðXÞi i denotes a population-av-

erage of f
ðXÞ
i over all neurons in the X-population. Due to

the noise effect, individual fast spiking interneurons fire

irregularly and intermittently at lower rates than the pop-

ulation frequency hf ðIÞp ir. Hence, only a smaller fraction of

fast spiking interneurons fire in each spiking stripe in the

raster plot (i.e., each spiking stripe is sparsely occupied by

spikes of a smaller fraction of fast spiking interneurons).

Figure 3b2, c2, d2 show an example of fast sparse

synchronization in the I-population for D ¼ 85. In this

case, the instantaneous spike rate RIðtÞ of the I-population

rhythm makes fast oscillations with the population fre-

quency hf ðIÞp ir (’ 48:3 Hz), while fast spiking interneurons

make spikings intermittently with lower population-aver-

aged mean firing rate hhf ðIÞi iir ð’ 32.2 Hz) than the popu-

lation frequency hf ðIÞp ir. Then, the black I-stripes (i.e., black

spiking stripes for the I-population) in the raster plot

become a little sparse and smeared, in comparison to the

case of full synchronization for D ¼ 50, and hence the

amplitude of the corresponding instantaneous population

spike rate RIðtÞ (which oscillates with increased hf ðIÞp ir )

also has a little decreased amplitude. Thus, fast sparsely

synchronized rhythm appears in the I-population. In con-

trast, for D ¼ 85 the E-population is still in a non-firing

state (see Fig. 3b2, d2).

However, as D passes a 2nd threshold D�2 (’ 91), a

transition from a non-firing to a firing state occurs in the

E-population (i.e., regular spiking pyramidal cells begin to

make noise-induced intermittent spikings). (Details on this

kind of firing transition will be given below in Fig. 4a1.)

Then, fast sparse synchronization also appears in the

E-population due to strong coherent I to E synaptic current

to stimulate coherence between noise-induced spikings.

Thus, fast sparse synchronization occurs together in both

the (stimulating) I- and the (stimulated) E-populations, as

shown in the raster plot of spikes in Fig. 3b3 for D ¼ 95.

The instantaneous population spike rates RIðtÞ and REðtÞ
for the sparsely synchronized rhythms in the I- and the

E-populations oscillate fast with the same population fre-

quency hf ðIÞp ir ¼ hf
ðEÞ
p ir ð’ 51.3 Hz). Here, we note that

the population frequency of fast sparsely synchronized

rhythms is determined by the dominant stimulating I-pop-

ulation, and hence hf ðEÞp ir for the E-population is just the

same as hf ðIÞp ir for the I-population. However, regular

spiking pyramidal cells fire intermittent spikings with

much lower population-averaged mean firing rate hhf ðEÞi iir
(’ 2:7 Hz) than hhf ðIÞi iir (’ 30 Hz) of fast spiking

interneurons. Hence, the gray E-stripes (i.e., gray spiking

stripes for the E-population) in the raster plot of spikes are

much more sparse than the black I-stripes, and the ampli-

tudes of REðtÞ are much smaller than those of RIðtÞ.
With further increasing D, we study evolutions of (FSS,

FSS) in both the I- and the E-populations for various values

of D (D ¼110, 250, 400, and 500). For these cases, raster

plots of spikes are shown in Fig. 3b4–b7, and instantaneous

population spike rates RIðtÞ and REðtÞ are given in
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Fig. 3c4–c7 and d4–d7, respectively. In the I-population, as

D is increased, more number of black I-stripes appear

successively in the raster plots, which implies increase in

the population frequency hf ðIÞp ir (see Fig. 3e1). Further-

more, these black I-stripes become more sparse (i.e., den-

sity of spikes in the black I-stripes decreases) due to

decrease in hhf ðIÞi iir (see Fig. 3e1), and they also are more

and more smeared. Hence, with increasing D monotonic

decrease in amplitudes of the corresponding instantaneous

population spike rate RIðtÞ occurs (i.e. the degree of fast

sparse synchronization in the I-population is decreased).

Eventually, when passing the 3rd threshold D�3 (’ 537), a

transition from fast sparse synchronization to desynchro-

nization occurs because of complete overlap between black

I-stripes in the raster plot. Then, spikes of fast spiking

interneurons are completely scattered in the raster plot, and

the instantaneous population spike rate RIðtÞ is nearly

stationary, as shown in Fig. 3b8, c8 for D ¼ 600.

In the E-population, the instantaneous population spike

rate REðtÞ for the sparsely synchronized rhythm oscillates

fast with the population frequency hf ðEÞp ir which is the same

as hf ðIÞp ir for the I-population; hf ðEÞp ir increases with D (see

Fig. 3e2). As D is increased, population-averaged mean

firing rate hhf ðEÞi iir also increases due to decrease in the

coherent I to E synaptic current (which results from

decrease in the degree of fast sparse synchronization in the

I-population) (see Fig. 3e2), in contrast to the case of

hhf ðIÞi iir in the I-population (which decreases with D).

Hence, as D is increased, density of spikes in gray E-stripes

in the raster plot increases (i.e., gray E-stripes become less

sparse), unlike the case of I-population. On the other hand,

with increasing D for D[ 110 E-stripes are more and more

smeared, as in the case of I-population.

The degree of fast sparse synchronization is determined

by considering both the density of spikes [denoting the

average occupation degree (corresponding to average

fraction of regular spiking pyramidal cells in each

E-stripe)] and the pacing degree of spikes (representing the

degree of phase coherence between spikes) in the E-stripes,

the details of which will be given in Fig. 4. Through

competition between the (increasing) occupation degree

and the (decreasing) pacing degree, it is found that the

E-population has the maximum degree of fast sparse syn-

chronization for D� 250; details on the degree of fast

sparse synchronization will be given below in Fig. 4. Thus,

the amplitude of REðtÞ (representing the overall degree of

fast sparse synchronization) increases until D� 250, and

then it decreases monotonically. Like the case of I-popu-

lation, due to complete overlap between the gray E-stripes

in the raster plot, a transition to desynchronization occurs

at the same 3rd threshold D�3. Then, spikes of regular

spiking pyramidal cells are completely scattered in the

Fig. 4 Characterization of population synchronization in the absence

of STDP. a1 Plot of the average firing probability hPðEÞf ir versus D in

the E-population. a2 Plot of the thermodynamic order parameter

hOIir versus D in the I-population. a3 Plot of the thermodynamic

order parameter hOEir versus D in the E-population. Plots of b1 the

average occupation degree hhOðIÞi iir , b2 the average pacing degree

hhPðIÞi iir , and b3 the statistical-mechanical spiking measure hMðIÞs ir
versus D in the I-population. Plots of c1 the average occupation

degree hhOðEÞi iir , c2 the average pacing degree hhPðEÞi iir , and c3 the

statistical-mechanical spiking measure hMðEÞs ir versus D in the

E-population. In b1–b3 and c1–c3, D�1ð’ 62Þ, D�2ð’ 91Þ, and D�3ð’
537Þ are marked on the upper horizontal axes
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raster plot and the instantaneous population spike rate

REðtÞ is nearly stationary (see Figs. 3b8, d8 for D ¼ 600).

For characterization of fast sparse synchronization

(shown in Fig. 3b3–b8), we first determine the 2nd and 3rd

thresholds D�2 ð’ 91Þ and D�3 ð’ 537Þ. When passing the

2nd threshold D�2, a firing transition (i.e., transition from a

non-firing to a firing state) occurs in the E-population. We

quantitatively characterize this firing transition in terms of

the average firing probability P
ðEÞ
f (Lim and Kim 2008). In

each raster plot of spikes in the E-population, we divide a

long-time interval into bins of width d ð¼ 5 ms) and cal-

culate the firing probability in each ith bin (i.e., the fraction

of firing regular spiking pyramidal cells in the ith bin):

P
ðEÞ
f ðiÞ ¼

N
ðEÞ
f ðiÞ
NE

; i ¼ 1; 2; . . .; ð18Þ

where N
ðEÞ
f ðiÞ is the number of firing regular spiking

pyramidal cells in the ith bin. Then, we get the average

firing probability P
ðEÞ
f via time average of P

ðEÞ
f ðiÞ over

sufficiently many bins:

P
ðEÞ
f ¼

1

Nb

XNb

i¼1

P
ðEÞ
f ðiÞ; ð19Þ

where Nb is the number of bins for averaging. In each

realization, the averaging is done for sufficiently large

number of bins (Nb ¼ 4000). For a firing (non-firing) state,

the average firing probability P
ðEÞ
f approaches a non-zero

(zero) limit value in the thermodynamic limit of NE !1.

Figure 4a1 shows a plot of log10hP
ðEÞ
f ir versus the noise

intensity D. For D[D�2 ð’ 91Þ, firing states appear in the

E-population (i.e., regular spiking pyramidal cells make

noise-induced intermittent spikings) because hPðEÞf ir tends

to converge toward non-zero limit values. Then, strong

coherent I to E synaptic input current stimulates fast sparse

synchronization between these noise-induced intermittent

spikes in the E-population. Thus, when passing the 2nd

threshold D�2; (FSS, FSS) occurs in both the I- and the

E-populations.

However, as D is further increased, the degree of (FSS,

FSS) decreases, and eventually when passing the 3rd

threshold D�3 ð’ 537Þ, a transition to desynchronization

occurs in both the I- and the E-populations, due to a

destructive role of noise to spoil fast sparse synchroniza-

tion. We characterize this kind of synchronization-desyn-

chronization transition in the X-population (X ¼ I or E) in

terms of the order parameter OX ; corresponding to the

mean square deviation of the instantaneous population

spike rate RXðtÞ (Kim and Lim 2014):

OX ¼ ðRXðtÞ � RXðtÞÞ2: ð20Þ

This order parameter may be regarded as a thermodynamic

measure because it concerns just the macroscopic instan-

taneous population spike rate RXðtÞ without any consider-

ation between RXðtÞ and microscopic individual spikes. For

a synchronized state, RXðtÞ exhibits an oscillatory behavior,

while for a desynchronized state it is nearly stationary.

Hence, the order parameter OX approaches a non-zero

(zero) limit value in the synchronized (desynchronized)

case in the thermodynamic limit of NX !1. In each

realization, we obtain OX by following a stochastic tra-

jectory for 3� 104 ms.

Figure 4a2, a3 show plots of log10hOIir and log10hOEir
versus D, respectively. For D\D�3 (’ 537), (FSS, FSS)

occurs in both the I- and the E-populations because the

order parameters hOIir and hOEir tend to converge toward

non-zero limit values. In contrast, for D[D�3, with

increasing NI and NE both the order parameters hOIir and

hOEir tend to approach zero, and hence a transition to

desynchronization occurs together in both the I- and the

E-populations.

We now measure the degree of fast sparse synchro-

nization in the I- and the E-populations by employing the

statistical-mechanical spiking measure M
ðXÞ
s (X ¼ I or E)

(Kim and Lim 2014). This spiking measure M
ðXÞ
s has been

successively applied for characterization of various types

of spike and burst synchronizations (Kim and Lim

2014, 2015a, b, c, d, e, 2016, 2017a, b, 2018a, b, c, 2019).

For a synchronous case, spiking I-(E-)stripes appear suc-

cessively in the raster plot of spikes of fast spiking

interneurons (regular spiking pyramidal cells). The spiking

measure M
ðXÞ
i of the ith X-stripe is defined by the product

of the occupation degree O
ðXÞ
i of spikes (denoting the

density of the ith X-stripe) and the pacing degree P
ðXÞ
i of

spikes (representing the degree of phase coherence

between spikes in the ith X-stripe):

M
ðXÞ
i ¼ O

ðXÞ
i � P

ðXÞ
i : ð21Þ

The occupation degree O
ðXÞ
i of spikes in the X-stripe is

given by the fraction of spiking neurons:

O
ðXÞ
i ¼

N
ðs;XÞ
i

NX

; ð22Þ

where N
ðs;XÞ
i is the number of spiking neurons in the ith X-

stripe. In the case of sparse synchronization, O
ðXÞ
i \1, in

contrast to the case of full synchronization with O
ðXÞ
i ¼ 1.

The pacing degree P
ðXÞ
i of spikes in the ith X-stripe can

be determined in a statistical-mechanical way by consid-

ering their contributions to the macroscopic instantaneous
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population spike rate RXðtÞ. Central maxima of RXðtÞ
between neighboring left and right minima of RXðtÞ coin-

cide with centers of X-stripes in the raster plot. A global

cycle begins from a left minimum of RXðtÞ, passes a

maximum, and ends at a right minimum. An instantaneous

global phase UðXÞðtÞ of RXðtÞ was introduced via linear

interpolation in the region forming a global cycle [for

details, refer to Eqs. (16) and (17) in (Kim and Lim 2014)].

Then, the contribution of the kth microscopic spike in the

ith X-stripe occurring at the time t
ðs;XÞ
k to RXðtÞ is given by

cosUðXÞk , where UðXÞk is the global phase at the kth spiking

time [i.e., UðXÞk 	 UðXÞðtðs;XÞk Þ]. A microscopic spike makes

the most constructive (in-phase) contribution to RXðtÞ when

the corresponding global phase UðXÞk is 2pn
(n ¼ 0; 1; 2; . . .). In contrast, it makes the most destructive

(anti-phase) contribution to RXðtÞ when UðXÞk is

2pðn� 1=2Þ. By averaging the contributions of all micro-

scopic spikes in the ith X-stripe to RXðtÞ, we get the pacing

degree of spikes in the ith X-stripe [refer to Eq. (18) in Kim

and Lim (2014)]:

P
ðXÞ
i ¼

1

S
ðXÞ
i

XSðXÞi

k¼1

cosUðXÞk ; ð23Þ

where S
ðXÞ
i is the total number of microscopic spikes in the

ith X-stripe. Then, via averaging M
ðXÞ
i of Eq. (21) over a

sufficiently large number N
ðXÞ
s of X-stripes, we obtain the

statistical-mechanical spiking measure M
ðXÞ
s , based on the

instantaneous population spike rate RXðtÞ [refer to Eq. (19)

in (Kim and Lim 2014)]:

MðXÞs ¼ 1

N
ðXÞ
s

XNðXÞs

i¼1

M
ðXÞ
i : ð24Þ

In each realization, we obtain hOðXÞi i; hP
ðXÞ
i i; and M

ðXÞ
s by

following 6� 103 X-stripes.

We first consider the case of I-population (i.e., X ¼ I)

which is a dominant one in our coupled two-population

network. Figure 4b1–b3 show the average occupation

degree hhOðIÞi iir, the average pacing degree hhPðIÞi iir, and

the statistical-mechanical spiking measure hMðIÞs ir in the

range of 0\D\D�3, respectively. With increasing D from

0 to D�1 ð’ 62Þ, full synchronization persists, and hence

hhOðIÞi iir ¼ 1. In this range of D, hhPðIÞi iir decreases very

slowly from 1.0 to 0.98. In the case of full synchronization,

the statistical-mechanical spiking measure is equal to the

average pacing degree (i.e., hMðIÞs ir ¼ hhP
ðIÞ
i iir). However,

as D is increased from D�1, full synchronization is devel-

oped into fast sparse synchronization. In the case of fast

sparse synchronization, at first hhOðIÞi iir (representing the

density of spikes in the I-stripes) decreases rapidly due to

break-up of full synchronization, and then it slowly

decreases toward a limit value of hhOðIÞi iir ’ 0:37 for

D ¼ D�3, like the behavior of population-averaged mean

firing rate hhf ðIÞi iir in Fig. 3e1. The average pacing degree

hhPðIÞi iir denotes well the average degree of phase coher-

ence between spikes in the I-stripes; as the I-stripes become

more smeared, their pacing degree gets decreased. With

increasing D, hhPðIÞi iir decreases due to intensified smear-

ing, and for large D near D�3 it converges to zero due to

complete overlap between sparse spiking I-stripes. The

statistical-mechanical spiking measure hMðIÞs ir is obtained

via product of the occupation and the pacing degrees of

spikes. Due to the rapid decrease in hhOðIÞi iir, at first

hMðIÞs ir also decreases rapidly, and then it makes a slow

convergence to zero for D ¼ D�3, like the case of hhPðIÞi iir.
Thus, three kinds of downhill-shaped curves (composed of

solid circles) for hhOðIÞi iir, hhP
ðIÞ
i iir and hMðIÞs ir are formed

(see Fig. 4b1–b3).

Figure 4c1–c3 show hhOðEÞi iir, hhP
ðEÞ
i iir, and hMðEÞs ir in

the E-population for D�2\D\D�3, respectively. When

passing the 2nd threshold D�2, fast sparse synchronization

appears in the E-population because strong coherent I to E

synaptic input current stimulates coherence between noise-

induced intermittent spikes [i.e., sparsely synchronized

E-population rhythms are locked to (stimulating) sparsely

synchronized I-population rhythms]. In this case, at first,

the average occupation degree hhOðEÞi iir begins to make a

rapid increase from 0, and then it increases slowly to a

saturated limit value of hhOðEÞi iir ’ 0:22. Thus, an uphill-

shaped curve for hhOðEÞi iir is formed, similar to the case of

population-averaged mean firing rate hhf ðEÞi iir in Fig. 3e2.

In contrast, just after D ¼ D�2, the average pacing degree

hhPðEÞi iir starts from a non-zero value (e.g., hhPðEÞi iir ’
0:409 for D ¼ 92), it increases to a maximum value

(’ 0:465) for D� 150, and then it decreases monotonically

to zero at the 3rd threshold D�3 because of complete overlap

between sparse E-stripes. Thus, for D[ 150 the graph for

hhPðEÞi iir is a downhill-shaped curve. Through the product

of the occupation (uphill curve) and the pacing (downhill

curve) degrees, the spiking measure hMðEÞs ir forms a bell-

shaped curve with a maximum (’ 0:089) at D� 250; the

values of hMðEÞs ir are zero at both ends (D�2 and D�3). This

spiking measure hMðEÞs ir of the E-population rhythms is

much less than that hMðIÞs ir of the dominant I-population

rhythms.
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In addition to characterization of population synchro-

nization in Fig. 4, we also characterize individual spiking

behaviors of fast spiking interneurons and regular spiking

pyramidal cells in terms of interspike intervals (ISIs) in

Fig. 5. In each realization, we obtain one ISI histogram

which is composed of 105 ISIs obtained from all individual

neurons, and then we get an averaged ISI histogram for

hISIðXÞir (X ¼ I or E) via 20 realizations.

We first consider the case of (stimulating) dominant

I-population. In the case of full synchronization for

D ¼ 50, the ISI histogram is shown in Fig. 5a1. It has a

sharp single peak at hISIðIÞir ’ 25 ms. In this case, all fast

spiking interneurons exhibit regular spikings like clocks

with hhf ðIÞi iir ’ 40 Hz, which leads to emergence of fully

synchronized rhythm with the same population frequency

hf ðIÞp i ’ 40 Hz.

However, when passing the 1st threshold D�1 ð’ 62Þ; fast

sparse synchronization emerges via break-up of full syn-

chronization due to a destructive role of noise. Due to the

noise effect, individual fast spiking interneurons exhibit

intermittent spikings phase-locked to the instantaneous

population spike rate RIðtÞ at random multiples of the

global period T
ðIÞ
G of RIðtÞ, unlike the case of full syn-

chronization. This ‘‘stochastic phase locking,’’ resulting in

‘‘stochastic spike skipping,’’ is well shown in the ISI his-

togram with multiple peaks appearing at integer multiples

of T
ðIÞ
G , as shown in Fig. 5a2 for D ¼ 85, which is in

contrast to the case of full synchronization with a single-

peaked ISI histogram. In this case, the 1st-order main peak

at T
ðIÞ
G (’ 20:7 ms) is a dominant one, and smaller 2nd-

and 3rd-order peaks (appearing at 2 T
ðIÞ
G and 3 T

ðIÞ
G ) may

also be seen. Here, vertical dotted lines in Fig. 5a2, b1–b5,

c1–c5 represent multiples of the global period T
ðXÞ
G of the

instantaneous population spike rate RXðtÞ (X ¼ I or E). In

the case of D ¼ 85, the average ISI hhISIðIÞiri (’ 31:0 ms)

is increased, in comparison with that in the case of full

synchronization. Hence, fast spiking interneurons make

intermittent spikings at lower population-averaged mean

firing rate hhf ðIÞi iri ð’ 32:3 Hz) than the population fre-

quency hf ðIÞp ir (’ 48:3 Hz), in contrast to the case of full

synchronization with hhf ðIÞi iir ¼ hf
ðIÞ
p ir (’ 40 Hz).

This kind of spike-skipping phenomena (characterized

with multi-peaked ISI histograms) have also been found in

networks of coupled inhibitory neurons where noise-in-

duced hoppings from one cluster to another one occur

(Golomb and Rinzel 1994), in single noisy neuron models

exhibiting stochastic resonance due to a weak periodic

external force (Longtin 1995, 2000), and in inhibitory

networks of coupled subthreshold neurons showing

stochastic spiking coherence (Hong et al. 2011; Lim and

Kim 2011; Kim and Lim 2013). Because of this stochastic

spike skipping, the population-averaged mean firing rate of

individual neurons becomes less than the population fre-

quency, which leads to occurrence of sparse

Fig. 5 Characterization of individual spiking behaviors in the absence

of STDP. ISI histograms for D ¼ a1 50 and a2 85 in the I-population.

ISI histograms for various values of D in the I-population (X ¼ I)

(b1–b6) and the E-population (X ¼ E) (c1–c6). Vertical dotted lines

in a2, b1–b5, and c1–c5 represent multiples of the global period T
ðXÞ
G

of the instantaneous population spike rate RXðtÞ (X ¼ I or E). Plots of

the coefficient of variation CVX versus D; X ¼ d I and e E. In d, e,

(FSS, FSS) occurs in the intermediate gray-shaded region, and

D�1ð’ 62Þ, D�2ð’ 91Þ, and D�3ð’ 537Þ are marked on the upper

horizontal axes
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synchronization (i.e., sparse occupation occurs in spiking

stripes in the raster plot).

As D passes the 2nd threshold D�2 (’ 91), fast sparse

synchronization emerges in the E-population because of

strong coherent I to E synaptic input current stimulating

coherence between noise-induced intermittent spikes.

Thus, for D[D�2 fast sparse synchronization occurs

together in both the I- and the E-populations. However,

when passing the large 3rd threshold D�3 (’ 537), a tran-

sition from fast sparse synchronization to desynchroniza-

tion occurs due to a destructive role of noise to spoil fast

sparse synchronization. Hence, for D[D�3 desynchronized

states exist in both the I- and the E-populations. With

increasing D from D�2, we investigate individual spiking

behaviors in terms of ISIs in both the I- and the

E-populations.

Figure 5b1–b5 show ISI histograms for various values

of D in the case of fast sparse synchronization in the

(stimulating) dominant I-population. Due to the stochastic

spike skippings, multiple peaks appear at integer multiples

of the global period T
ðIÞ
G of RIðtÞ. As D is increased, fast

spiking interneurons tend to fire more irregularly and

sparsely. Hence, the 1st-order main peak becomes lowered

and broadened, higher-order peaks also become wider, and

thus mergings between multiple peaks occur. Hence, with

increasing D, the average ISI hhISIðIÞiri increases due to

developed tail part. We note that the population-averaged

mean firing rate hhf ðIÞi iir corresponds to the reciprocal of

the average ISI hhISIðIÞiri. Hence, as D is increased in the

case of fast sparse synchronization, hhf ðIÞi iir decreases (see

Fig. 3e1). These individual spiking behaviors make some

effects on population behaviors. Because of decrease in

hhf ðIÞi iir with increasing D, spikes become more sparse, and

hence the average occupation degree hhOðIÞi iir in the

spiking stripes in the raster plots decreases, as shown in

Fig. 4b1. Also, due to merging between peaks (i.e., due to

increase in the irregularity degree of individual spikings),

spiking stripes in the raster plots in Fig. 3b3–b7 become

more smeared as D is increased, and hence the average

pacing degrees hhPðIÞi iir of spikes in the stripes get

decreased (see Fig. 4b2).

Eventually, when passing the 3rd threshold D�3ð’ 537Þ,
a desynchronized state where spikes in the raster plot are

completely scattered. In this case of desynchronization, a

broad single peak appears in the ISI histogram due to

complete overlap of multiple peaks. Thus, for D ¼ 600 a

single-peaked ISI histogram with a long tail appears, as

shown in Fig. 5b6. In this case of D ¼ 600, the average ISI

hhISIðIÞiri (’ 39:7 ms) is a little shorter than that

(’ 40 ms) for D ¼ 500, in contrast to the increasing

tendency in the case of fast sparse synchronization. In the

desynchronized state for D[D�3; the I to I synaptic current

is incoherent (i.e., the instantaneous population spike rate

RIðtÞ is nearly stationary), and hence noise no longer

causes stochastic phase lockings. In this case, noise just

makes fast spiking interneurons fire more frequently, along

with the incoherent synaptic input currents. Thus, with

increasing D in the desynchronized case, the average ISI

hhISIðIÞiri tends to decrease, in contrast to the case of fast

sparse synchronization. The corresponding population-av-

eraged mean firing rate hhf ðIÞi iir in the desynchronized case

also tends to increase, in contrast to the decreasing ten-

dency in the case of fast sparse synchronization.

We now consider the case of (stimulated) E-population

for D[D�2. Figure 5c1–c5 show ISI histograms for vari-

ous values of D in the case of fast sparse synchronization.

In this case, both the coherent I to E synaptic input and

noise make effects on individual spiking behaviors of

regular spiking pyramidal cells. Due to the stochastic spike

skippings, multiple peaks appear, as in the case of I-pop-

ulation. However, as D is increased, stochastic spike

skippings become weakened (i.e., regular spiking pyrami-

dal cells tend to fire less sparsely) due to decrease in

strengths of the stimulating I to E synaptic input currents.

Hence, the heights of major lower-order peaks (e.g. the

main 1st-order peak and the 2nd- and 3rd-order peaks)

continue to increase with increasing D, in contrast to the

case of I-population where the major peaks are lowered due

to noise effect.

Just after appearance of fast sparse synchronization

(appearing due to coherent I to E synaptic current), a long

tail is developed so much in the ISI histogram (e.g., see

Fig. 5c1 for D ¼ 95), and hence multiple peaks are less

developed. As D is a little more increased, multiple peaks

begin to be clearly developed due to a constructive role of

coherent I to E synaptic input, as shown in Fig. 5c2 for

D ¼ 110. Thus, the average pacing degree hhPðEÞi iir of

spikes in the E-stripes for D ¼ 110 increases a little in

comparison with that for D ¼ 95, as shown in Fig. 4c2.

However, as D is further increased for D[ 150, mergings

between multiple peaks begin to occur due to a destructive

role of noise, as shown in Fig. 5c3–c5. Hence, with

increasing D from 150, the average pacing degree hhPðEÞi iir
of spikes also begins to decrease (see Fig. 4c2), as in the

case of I-population.

With increasing D in the case of fast sparse synchro-

nization, the average ISI hhISIðEÞiri decreases mainly due

to increase in the heights of major lower-order peaks, in

contrast to the increasing tendency for hhISIðIÞiri in the

I-population. This decreasing tendency for hhISIðEÞiri
continues even in the case of desynchronization.
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Figure 5c6 shows a single-peaked ISI histogram with a

long tail (that appears through complete merging between

multiple peaks) for D ¼ 600 (where desynchronization

occurs). In this case, the average ISI hhISIðEÞiri
(’ 54:9 ms) is shorter than that (56.8 ms) in the case of

fast sparse synchronization for D ¼ 500. We also note that

for each value of D (in the case of fast sparse synchro-

nization and desynchronization), hhISIðEÞiri is longer than

hhISIðIÞiri in the case of I-population, due to much more

developed tail part.

As a result of decrease in the average ISI hhISIðEÞiri, the

population-averaged mean firing rate hhf ðEÞi iir (corre-

sponding to the reciprocal of hhISIðEÞiri) increases with

D (see Fig. 3e2). We also note that these population-av-

eraged mean firing rates hhf ðEÞi iir are much lower than

hhf ðIÞi iir in the (stimulating) I-population, although the

population frequencies in both populations are the same. In

the case of fast sparse synchronization, due to increase in

hhf ðEÞi iir with D, E-stripes in the raster plot become less

sparse (i.e., the average occupation degree hhOðEÞi iir of

spikes in the E-stripes increases, as shown in Fig. 4c1). The

increasing tendency for hhf ðEÞi iir continues even in the case

of desynchronization. For example, the population-aver-

aged mean firing rate hhf ðEÞi iir ð’ 18:2 Hz) for D ¼ 600 is

increased in comparison with that (’ 17:6 Hz) for

D ¼ 500.

We are also concerned about temporal variability of

individual single-cell discharges. Such temporal variability

of individual single-cell firings may be characterized in

terms of the coefficient of variation for the distribution of

ISIs (defined by the ratio of the standard deviation to the

mean for the ISI distribution) (Dayan and Abbott 2001).

The larger the coefficient of variation is, the more irregular

single-cell firings get. Using this coefficient of variation,

spiking and bursting patterns have been well characterized

(Lei et al. 2011). As the coefficient of variation is

increased, the irregularity degree of individual firings of

single cells increases. For example, in the case of a Poisson

process, the coefficient of variation takes a value 1. How-

ever, this (i.e., to take the value 1 for the coefficient of

variation) is just a necessary, though not sufficient, con-

dition to identify a Poisson spike train. When the coeffi-

cient of variation for a spike train is less than 1, it is more

regular than a Poisson process with the same mean firing

rate (Gerstner et al. 2014). On the other hand, if the coef-

ficient of variation is larger than 1, then the spike train is

more irregular than the Poisson process [e.g., see Fig. 1C in

Brunel (2000)]. By varying D, we obtain coefficients of

variation from the realization-averaged ISI histograms.

Figure 5d, e show plots of the coefficients of variation, CVI

and CVE, versus D for individual firings of fast spiking

interneurons (I-population) and regular spiking pyramidal

cells (E-population), respectively. Gray-shaded regions in

Fig. 5d, e correspond to the regions of (FSS, FSS) (i.e.,

D�2\D\D�3) where fast sparse synchronization appears in

both the I- and the E-populations.

We first consider the case of fast spiking interneurons in

Fig. 5d. In the case of full synchronization for

D\D�1 ð’ 62Þ, the coefficient of variation is nearly zero;

with increasing D in this region, the coefficient of variation

increases very slowly. Hence, individual firings of fast

spiking interneurons in the case of full synchronization are

very regular. However, when passing the 1st threshold D�1,

fast sparse synchronization appears via break-up of full

synchronization. Then, the coefficient of variation increa-

ses so rapidly, and the irregularity degree of individual

firings increases. In the gray-shaded region, the coefficient

of variation continues to increase with relatively slow rates.

Hence, with increasing D, spike trains of fast spiking

interneurons become more irregular. This increasing ten-

dency for the coefficient of variation continues in the

desynchronized region. For D ¼ 600 in Fig. 5b6, fast

spiking interneurons fire more irregularly in comparison

with the case of D ¼ 500, because the value of the coef-

ficient of variation for D ¼ 600 is increased.

In the case of regular spiking pyramidal cells in the

E-population, the coefficients of variation form a well-

shaped curve with a minimum at D ’ 250 in Fig. 5e. Just

after passing D�2 (e.g., D ¼ 95), regular spiking pyramidal

cells fire very irregularly and sparsely, and hence its

coefficient of variation becomes very high. In the states of

fast sparse synchronization, the values of coefficient of

variation are larger than those in the case of fast spiking

interneurons, and hence regular spiking pyramidal cells in

the (stimulated) E-population exhibit more irregular spik-

ings than fast spiking interneurons in the (stimulating)

I-population. In the case of desynchronization, the

increasing tendency in the coefficient of variation contin-

ues. However, the increasing rate becomes relatively slow,

in comparison with the case of fast spiking interneurons.

Thus, for D ¼ 600, the value of coefficient of variation is

less than that in the case of fast spiking interneurons.

We emphasize that a high coefficient of variation is not

necessarily inconsistent with the presence of population

synchronous rhythms (Wang 2010). In the gray-shaded

region in Fig. 5d, e, fast sparsely synchronized rhythms

emerge, together with stochastic and intermittent spike

discharges of single cells. Due to the stochastic spike

skippings (which results from random phase-lockings to

the instantaneous population spike rates), multi-peaked ISI

histograms appear. Due to these multi-peaked structure in

the histograms, the standard deviation becomes large,
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which leads to a large coefficient of variation (implying

high irregularity). However, in addition to such irregular-

ity, the presence of multi peaks (corresponding to phase

lockings) also represents some kind of regularity. In this

sense, both irregularity and regularity coexist in spike

trains for the case of fast sparse synchronization, in contrast

to both cases of full synchronization (complete regularity)

and desynchronization (complete irregularity).

We also note that the reciprocal of the coefficient of

variation represents regularity degree of individual single-

cell spike discharges. It is expected that high regularity of

individual single-cell firings in the X-population (X ¼ I or

E) may result in good population synchronization with high

spiking measure hMðXÞs i of Eq. (24). We examine the cor-

relation between the reciprocal of the coefficient of varia-

tion and the spiking measure hMðXÞs i in both the I- and the

E-populations. In the I-population, plots of both the

reciprocal of the coefficient of variation and the spiking

measure hMðIÞs i versus D form downhill-shaped curves, and

they are found to have a strong correlation with Pearson’s

correlation coefficient r ’ 0:966 (Pearson 1895). On the

other hand, in the case of E-population, plots of both the

reciprocal of the coefficient of variation and the spiking

measure hMðEÞs i versus D form bell-shaped curves. They

also shows a good correlation, although the Pearson’s

correlation coefficient is reduced to r ’ 0:643 due to some

quantitative discrepancy near D�2. As a result of such good

correlation, the maxima for the reciprocal of the coefficient

of variation and the spiking measure hMðEÞs i appear at the

same value of D (’ 250).

Effect of interpopulation (both I to E and E to I)
STDPs on population states in the I- and the E-
populations

In this subsection, we consider a combined case including

both I to E iSTDP and E to I eSTDP, and study their effects

on population states (I, E) by varying the noise intensity

D in both the I- and the E-populations. Depending on

values of D, population-averaged values of saturated

interpopulation synaptic strengths are potentiated (LTP) or

depressed (LTD) in comparison to the initial average value,

and they make effects on the degree of fast sparse syn-

chronization. Due to the effects of these LTP and LTD, an

equalization effect in interpopulation synaptic plasticity is

found to emerge in an extended wide range of D. In a broad

region of intermediate D, the degree of good synchro-

nization (with higher synchronization degree) gets

decreased due to iLTP (in the case of I to E iSTDP) and

eLTD (in the case of E to I eSTDP). On the other hand, in a

region of large D the degree of bad synchronization (with

lower synchronization degree) becomes increased because

of iLTD (in the case of I to E iSTDP) and eLTP (in the case

of E to I eSTDP). Particularly, some desynchronized states

for D[D�3 ð’ 537Þ in the absence of STDP becomes

transformed into fast sparsely synchronized ones in the

presence of interpopulation STDPs, and hence the region of

fast sparse synchronization is so much extended. Thus, the

degree of fast sparse synchronization becomes nearly the

same in such an extended wide region of D (including both

the intermediate and the large D). We note that this kind of

equalization effect is distinctly in contrast to the Matthew

(bipolarization) effect in the case of intrapopulation (I to I

and E to E) STDPs where good (bad) synchronization

becomes better (worse) (Kim and Lim 2018a, c).

Here, we are concerned about population states (I, E) in

the I- and the E-populations for D[D�2 ð’ 91Þ. In the

absence of STDP, (FSS, FSS) appears for

D�2\D\D�3 ð’ 537Þ, while for D[D�3 desynchronization

occurs together in both the I- and the E-populations (see

Fig. 3a). The initial synaptic strengths are chosen from the

Gaussian distribution with the mean J
ðXYÞ
0 and the standard

deviation r0 ð¼ 5Þ, where J
ðIIÞ
0 ¼ 1300; J

ðEEÞ
0 ¼ 300,

J
ðEIÞ
0 ¼ 800, and J

ðIEÞ
0 ¼ 487:5 (=J

ðIIÞ
0 J

ðEEÞ
0 =J

ðEIÞ
0 ). (These

initial synaptic strengths are the same as those in the

absence of STDP.) We note that this initial case satisfies

the E–I ratio balance (i.e.,

J
ðEEÞ
0 =J

ðEIÞ
0 ¼ J

ðIEÞ
0 =J

ðIIÞ
0 ¼ 0:375). In the case of combined

interpopulation (both I to E and E to I) STDPs, both

synaptic strengths fJðEIÞij g and fJðIEÞij g are updated accord-

ing to the nearest-spike pair-based STDP rule in Eq. (12),

while intrapopulation (I to I and E to E) synaptic strengths

are static. By increasing D from D�2 ð’ 91Þ, we investigate

the effects of combined interpopulation STDPs on popu-

lation states (I, E) in the I- and the E-populations, and make

comparison with the case without STDP.

We first consider the case of I to E iSTDP. Figure 6a

shows a time-delayed Hebbian time window for the

synaptic modification DJðEIÞij ðDt
ðEIÞ
ij Þ of Eq. (13) (Haas

et al. 2006; Talathi et al. 2008; Borges et al. 2017a). As in

the E to E Hebbian time window (Song et al. 2000; Bi and

Poo 2001; Kepecs et al. 2002; Dan and Poo 2004, 2006;

Caporale and Dan 2008; Feldman 2012; Markram et al.

2012), LTP occurs in the black region for DtðEIÞij [ 0, while

LTD takes place in the gray region for DtðEIÞij \0. However,

unlike the E to E Hebbian time window, DJðEIÞij � 0 near

DtðEIÞij � 0, and delayed maximum and minimum for DJðEIÞij

appear at DtðEIÞij ¼ bsþ and �bs�; respectively.
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DJðEIÞij ðDt
ðEIÞ
ij Þ varies depending on the relative time

difference DtðEIÞij ð¼ t
ðpost;EÞ
i � t

ðpre;IÞ
j Þ between the nearest

spike times of the post-synaptic regular spiking pyramidal

cell i and the pre-synaptic fast spiking interneuron j. When

a post-synaptic spike follows a pre-synaptic spike (i.e.,

DtðEIÞij is positive), inhibitory LTP (iLTP) of I to E synaptic

strength appears; otherwise (i.e., DtðEIÞij is negative), inhi-

bitory LTD (iLTD) occurs. A schematic diagram for the

nearest-spike pair-based I to E iSTDP rule is given in

Fig. 6b, where I: Pre and E: Post correspond to a pre-

synaptic fast spiking interneuron and a post-synaptic reg-

ular spiking pyramidal cell, respectively. Here, gray and

light gray boxes represent I- and E-stripes in the raster plot

of spikes, respectively, and spikes in the stripes are denoted

by black solid circles.

When the post-synaptic regular spiking pyramidal cell

(E: Post) fires a spike, iLTP (represented by solid lines)

occurs via I to E iSTDP between the post-synaptic spike

and the previous nearest pre-synaptic spike of the fast

spiking interneuron (I: Pre). In contrast, when the pre-sy-

naptic fast spiking interneuron (I: Pre) fires a spike, iLTD

(denoted by dashed lines) occurs through I to E iSTDP

between the pre-synaptic spike and the previous nearest

post-synaptic spike of the regular spiking pyramidal cell

(E: Post). In the case of fast sparse synchronization, indi-

vidual neurons make stochastic phase lockings (i.e., they

make intermittent spikings phase-locked to the instanta-

neous population spike rate at random multiples of its

global period). As a result of stochastic phase lockings

(leading to stochastic spike skippings), nearest-neighboring

pre- and post-synaptic spikes may appear in any two sep-

arate stripes (e.g., nearest-neighboring, next-nearest-

neighboring or farther-separated stripes), as well as in the

same stripe, in contrast to the case of full synchronization

where they appear in the same or just in the nearest-

neighboring stripes [compare Fig. 6b with Fig. 4b (corre-

sponding to the case of full synchronization) in Kim and

Lim (2018a)]. For simplicity, only the cases, corresponding

(a) (b)

(c) (d)

Fig. 6 Time windows for the interpopulation STDPs and schematic

diagrams for the nearest-spike pair-based interpopulation STDP rules.

a Time window for the delayed Hebbian I to E iSTDP [see Eq. (13)].

Plot of synaptic modification DJðEIÞij versus DtðEIÞij ð¼ t
ðpost;EÞ
i � t

ðpre;IÞ
j Þ.

b Schematic diagram for the nearest-spike pair-based I to E iSTDP

rule. I : Pre and E : Post correspond to a pre-synaptic fast spiking

interneuron and a post-synaptic regular spiking pyramidal cell,

respectively. c Time window for the anti-Hebbian E to I eSTDP

[see Eq. (15)]. Plot of synaptic modification DJðIEÞij versus DtðIEÞij

ð¼ t
ðpost;IÞ
i � t

ðpre;EÞ
j Þ. d Schematic diagram for the nearest-spike pair-

based E to I eSTDP rule. E : Pre and I : Post correspond to a pre-

synaptic regular spiking pyramidal cell and a post-synaptic fast

spiking interneuron, respectively
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to the same, the nearest-neighboring, and the next-nearest-

neighboring stripes, are shown in Fig. 6b.

Next, we consider the case of E to I eSTDP. Figure 6c

shows an anti-Hebbian time window for the synaptic

modification DJðIEÞij ðDt
ðIEÞ
ij Þ of Eq. (15) (Abbott and Nelson

2000; Bell et al. 1997; Caporale and Dan 2008). Unlike the

case of the I to E time-delayed Hebbian time window (Haas

et al. 2006; Talathi et al. 2008; Borges et al. 2017a), LTD

occurs in the gray region for DtðIEÞij [ 0, while LTP takes

place in the black region for DtðIEÞij \0. Furthermore, the

anti-Hebbian time window for E to I eSTDP is in contrast

to the Hebbian time window for the E to E eSTDP (Song

et al. 2000; Bi and Poo 2001; Kepecs et al. 2002; Dan and

Poo 2004, 2006; Caporale and Dan 2008; Feldman 2012;

Markram et al. 2012), although both cases correspond to

the same excitatory synapses (i.e., the type of time window

may vary depending on the type of target neurons of

excitatory synapses).

The synaptic modification DJðIEÞij ðDt
ðIEÞ
ij Þ changes

depending on the relative time difference DtðIEÞij ð¼
t
ðpost;IÞ
i � t

ðpre;EÞ
j Þ between the nearest spike times of the

post-synaptic fast spiking interneurons i and the pre-sy-

naptic regular spiking pyramidal cell j. When a post-sy-

naptic spike follows a pre-synaptic spike (i.e., DtðIEÞij is

positive), excitatory LTD (eLTD) of E to I synaptic

strength occurs; otherwise (i.e., DtðIEÞij is negative), excita-

tory LTP (eLTP) appears. A schematic diagram for the

nearest-spike pair-based E to I eSTDP rule is given in

Fig. 6d, where E: Pre and I: Post correspond to a pre-

synaptic regular spiking pyramidal cell and a post-synaptic

fast spiking interneuron, respectively. As in the case of I to

E iSTDP in Fig. 6b, gray and light gray boxes denote I- and

E-stripes in the raster plot, respectively, and spikes in the

stripes are represented by black solid circles. When the

post-synaptic fast spiking interneuron (I: Post) fires a spike,

eLTD (represented by dashed lines) occurs via E to I

eSTDP between the post-synaptic spike and the previous

nearest pre-synaptic spike of the regular spiking pyramidal

cell (E: Pre). On the other hand, when the pre-synaptic

regular spiking pyramidal cell (E: Pre) fires a spike, eLTP

(denoted by solid lines) occurs through E to I eSTDP

between the pre-synaptic spike and the previous nearest

post-synaptic spike of the fast spiking interneuron (I: Post).

In the case of fast sparse synchronization, nearest-neigh-

boring pre- and post-synaptic spikes may appear in any two

separate stripes due to stochastic spike skipping. Like the

case of I to E iSTDP, only the cases, corresponding to the

same, the nearest-neighboring, and the next-nearest-

neighboring stripes, are shown in Fig. 6d.

Figure 7a1, a2 show time-evolutions of population-av-

eraged I to E synaptic strengths hJðEIÞij i and E to I synaptic

strengths hJðIEÞij i for various values of D, respectively. We

first consider the case of hJðEIÞij i whose time evolutions are

governed by the time-delayed Hebbian time window. In

each case of intermediate values of D ¼ 110; 250, and 400

(shown in black color), hJðEIÞij i increases monotonically

above its initial value J
ðEIÞ
0 (= 800), and eventually it

approaches a saturated limit value hJðEIÞij

�
i nearly at

t ¼ 1500 s. After such a long time of adjustment

(� 1500 s), the distribution of synaptic strengths becomes

nearly stationary (i.e., equilibrated). Consequently, iLTP

occurs for these values of D. On the other hand, for small

and large values of D ¼ 95; 500, and 600 (shown in gray

color), hJðEIÞij i decreases monotonically below J
ðEIÞ
0 , and

approaches a saturated limit value hJðEIÞij

�
i. As a result,

iLTD occurs in the cases of D ¼ 95; 500 and 600.

Next, we consider the case of hJðIEÞij i. Due to the effect of

anti-Hebbian time window, its time evolutions are in

contrast to those of hJðEIÞij i. For intermediate values of D ¼
110; 250, and 400 (shown in black color), hJðIEÞij i decreases

monotonically below its initial value J
ðIEÞ
0 (=487.5), and

eventually it converges toward a saturated limit value

hJðIEÞij

�
i nearly at t ¼ 1500 s. As a result, eLTD occurs for

these values of D. In contrast, for small and large values of

D ¼ 95; 500, and 600 (shown in gray color), hJðIEÞij i
increases monotonically above J

ðIEÞ
0 , and converges toward

Fig. 7 Emergence of LTP and LTD in the presence of interpopulation

(I to E and E to I) STDPs. Time-evolutions of population-averaged

synaptic strengths a1 hJðEIÞij i and a2 hJðIEÞij i for various values of

D. Plots of population-averaged saturated limit values of synaptic

strengths b1 hhJðEIÞij

�
iir and b2 hhJðIEÞij

�
iir versus D
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a saturated limit value hJðIEÞij

�
i. Consequently, eLTP occurs

for D ¼ 95; 500 and 600.

Figure 7b1 shows a bell-shaped plot of population-av-

eraged saturated limit values hhJðEIÞij

�
iir (open circles) of I

to E synaptic strengths versus D in a range of D�2 ð’
91Þ\D\D�3;STDP ð’ 672Þ where (FSS, FSS) appears in

both the I- and the E-populations. Here, the horizontal

dotted line represents the initial average value J
ðEIÞ
0

ð¼ 800) of I to E synaptic strengths. In contrast, the plot for

population-averaged saturated limit values hhJðIEÞij

�
iir (open

circles) of E to I synaptic strengths versus D forms a well-

shaped graph, as shown in Fig. 7b2, where the horizontal

dotted line denotes the initial average value of E to I

synaptic strengths J
ðIEÞ
0 ð¼ 487:5). The lower and the

higher thresholds, eDl (’ 99) and eDh (’ 408), for LTP/

LTD [where hhJðEIÞij

�
iir and hhJðIEÞij

�
iir lie on their hori-

zontal lines (i.e., they are the same as their initial average

values, respectively)] are denoted by solid circles. Thus, in

the case of a bell-shaped graph for hhJðEIÞij

�
iir, iLTP occurs

in a broad region of intermediate D (eDl\D\eDh), while

iLTD takes place in the other two (separate) regions of

small and large D [D�2\D\eDl and eDh\D\D�3;STDP]. On

the other hand, in the case of a well-shaped graph for

hhJðIEÞij

�
iir, eLTD takes place in a broad region of inter-

mediate D (eDl\D\eDh), while eLTP occurs in the other

two (separate) regions of small and large D [D�2\D\eDl

and eDh\D\D�3;STDP].

A bar diagram for the population states (I, E) in the I-

and the E-populations is shown in Fig. 8a. We note that

(FSS, FSS) occurs in a broad range of

D [D�2 ð’ 91Þ\D\D�3;STDP ð’ 672Þ], in comparison with

the case without STDP where (FSS, FSS) appears for

D�2\D\D�3 ð’ 537Þ (see Fig. 3a). We note that desyn-

chronized states for D�3\D\D�3;STDP in the absence of

STDP are transformed into (FSS, FSS) in the presence of

combined interpopulation (both I to E and E to I) STDPs,

and thus the region of (FSS, FSS) is so much extended.

The effects of LTP and LTD at inhibitory and excitatory

synapses on population states after the saturation time

(t� ¼ 1500 s) may be well seen in the raster plot of spikes

and the corresponding instantaneous population spike rates

RIðtÞ and REðtÞ. Figure 8b1–b6, c1–c6, d1–d6 show raster

plots of spikes, the instantaneous population spike rates

RIðtÞ, and the instantaneous population spike rates REðtÞ
for various values of D, respectively.

In comparison with the case without STDP (see

Fig. 3b4–b6, c4–c6, d4–d6), the degrees of (FSS, FSS) for

intermediate values of D (D ¼ 110, 250, and 400) are

decreased (i.e., the amplitudes of RIðtÞ and REðtÞ are

decreased) due to increased I to E synaptic inhibition

(iLTP) and decreased E to I synaptic excitation (eLTD). In

contrast, for small and large values of D (D ¼ 95 and 500),

the degrees of (FSS, FSS) are increased (i.e., the ampli-

tudes of RIðtÞ and REðtÞ are increased) because of

decreased I to E synaptic inhibition (iLTD) and increased E

to I synaptic excitation (eLTP) (for comparison, see the

corresponding raster plots, RIðtÞ, and REðtÞ for D ¼ 95 and

500 in Fig. 3). We note that a desynchronized state for

D ¼ 600 in the absence of STDP (see Fig. 3b8, c8, d8) is

Fig. 8 Effects of interpopulation (I to E and E to I) STDPs on

population states. a Bar diagram for the population states (I, E) in the

I- and the E-populations. Raster plots of spikes in b1–b6 and

instantaneous population spike rates RIðtÞ in (c1–c6) and REðtÞ in

(d1–d6) for various values of D after the saturation time, where t ¼ t�

(saturation time = 1500 s) ? ~t
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transformed into (FSS, FSS) (see Fig. 8b6, c6, d6) via

iLTD and eLTP. The degree of (FSS, FSS) for D ¼ 600 is

also nearly the same as those for other smaller values of D,

because the value of D ¼ 600 is much far away from its

3rd threshold D�3;STDP (’ 672).

Here, we also note that the degree of FSS in the I-(E-)

population (i.e., the amplitude of RIðtÞ [REðtÞ]) tends to be

nearly the same in an extended wide range of

eDl\D\D�3;STDP, except for the narrow small-D region

(D�2\D\eDl). Hence, an equalization effect in the combined

interpopulation synaptic plasticity occurs in such an extended

wide range of D. Quantitative analysis for the degree of (FSS,

FSS) and the equalization effect in the case of combined

interpopulation (both I to E and E to I) STDPs will be done

intensively in Fig. 9.

In an extended wide region of (FSS, FSS) for

D�2 ð’ 91Þ\D\D�3;STDP ð’ 672Þ, we characterize

population and individual behaviors for (FSS, FSS) in both

the I- and the E-populations, and make comparison with

those in the case without STDP. Population behaviors for

fast sparse synchronization in each X-population (X ¼ E or

I) are characterized in terms of the average occupation

degree hhOðXÞi iir, the average pacing degree hhPðXÞi iir, and

the statistical-mechanical spiking measure hMðXÞs ir. As

explained in the ‘‘Emergence of fast sparse synchronization

and its properties in the absence of STDP’’ section,

hhOðXÞi iir represents average density of spikes in the stripes

in the raster plot, hhPðXÞi iir denotes average phase coher-

ence of spikes in the stripes, and hMðXÞs ir (given by a

product of occupation and pacing degrees) represents

overall degree of fast sparse synchronization.

We first consider the case of E-population which

receives I to E synaptic input. Figure 9a1–a3 show plots of

hhOðEÞi iir; hhP
ðEÞ
i iir; and hMðEÞs ir, respectively. In the gray

region of iLTP [eDl ð’ 99Þ\D\eDh ð’ 408Þ�, the average

occupation degrees hhOðEÞi iir and the average pacing

degrees hhPðEÞi iir (open circles) are lower than those (solid

circles) in the absence of STDP, due to increased I to E

synaptic inhibition. On the other hand, in most cases of

iLTD for large D (except for a narrow region near the

higher threshold eDh), hhOðEÞi iir and hhPðEÞi iir (open circles)

are higher than those (solid circles) in the absence of

STDP, because of decreased I to E synaptic inhibition.

We are concerned about a broad region of eDl ð’
99Þ\D\D�3;STDP ð’ 672Þ (including the regions of both

intermediate and large D). In this region, hhOðEÞi iir is a

relatively fast-increasing function of D (consisting of open

circles), and shows a non-equalization effect, because the

standard deviation in the distribution of hhOðEÞi iir is

increased in comparison to that in the absence of STDP. In

contrast, hhPðEÞi iir is a relatively slowly-decreasing func-

tion of D (consisting of open circles) and exhibits a weak

equalization effect, because the standard deviation in the

distribution of hhPðEÞi iir is decreased in comparison with

that in the case without STDP.

The statistical-mechanical spiking measure hMðEÞs ir is

given by a product of the occupation and the pacing

degrees which exhibit increasing and decreasing behaviors

with D, respectively. In the region of intermediate D, the

degrees of good synchronization (solid circles) in the

absence of STDP become decreased to lower ones (open

circles) due to iLTP, while in the region of large D the

degrees of bad synchronization (solid circles) in the

absence of STDP get increased to higher values (open

circles) because of iLTD. Via the effects of iLTD, even

Fig. 9 Characterization of fast sparse synchronization in the presence

of interpopulation (both I to E and E to I) STDPs. Plots of a1 the

average occupation degree hhOðEÞi iir (open circles), a2 the average

pacing degree hhPðEÞi iir (open circles), and a3 the statistical-mechan-

ical spiking measure hMðEÞs ir (open circles) versus D in the

E-population. Histograms for distribution of statistical-mechanical

spiking measures hMðEÞs ir in the E-population in the b1 absence and

the b2 presence of interpopulation (both I to E and E to I) STDPs.

Plots of c1 the average occupation degree hhOðIÞi iir (open circles), c2

the average pacing degree hhPðIÞi iir (open circles), and c3 the

statistical-mechanical spiking measure hMðIÞs ir (open circles) versus

D in the I-population. For comparison, hhOðXÞi iir , hhP
ðXÞ
i iir , and

hMðXÞs ir (X ¼ E or I) in the absence of STDP are also denoted by solid

circles. Histograms for distribution of statistical-mechanical spiking

measures hMðIÞs ir in the I-population in the d1 absence and the d2
presence of interpopulation (both I to E and E to I) STDPs
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desynchronized states in the absence of STDP are trans-

formed into sparsely synchronized states in the range of

D�3 ð’ 537Þ\D\D�3;STDP ð’ 672Þ, and hence the region of

fast sparse synchronization is so much extended in the

presence of both I to E and E to I STDPs. In this way,

through cooperative interplay between the weak equaliza-

tion effect in (decreasing) hhPðEÞi iir and the non-equaliza-

tion effect in (increasing) hhOðEÞi iir, strong equalization

effect in the spiking measure hMðEÞs ir with much smaller

standard deviation is found to occur (i.e., the values of

hMðEÞs ir in Fig. 9a3 are nearly the same). Thus, a bell-

shaped curve (consisting of solid circles) for hMðEÞs ir in the

absence of STDP is transformed into a nearly flat curve

(composed of open circles) in the presence of combined I

to E and E to I STDPs.

This equalization effect may be well seen in the his-

tograms for the distribution of hMðEÞs ir. The gray histogram

in the absence of STDP is shown in Fig. 9b1 and the hat-

ched histogram in the presence of combined I to E and E to

I STDPs is given in Fig. 9b2. The standard deviation

(’ 0:007) in the hatched histogram is much smaller than

that (’ 0:028) in the gray histogram. Hence, strong

equalization effect occurs in an extended broad region of

eDl ð’ 99Þ\D\D�3;STDP ð’ 672Þ. We note that this kind of

equalization effect is markedly in contrast to the Matthew

(bipolarization) effect in the intrapopulation (I to I and E to

E) STDPs where good (bad) synchronization gets better

(worse) (Kim and Lim 2018a, c) Furthermore, a dumbing-

down effect also occurs because the mean value (’ 0:029)

in the hatched histogram is smaller than that (’ 0:056) in

the gray histogram.

We now consider the case of I-population which

receives E to I synaptic input. Figure 9c1–c3 show plots of

hhOðIÞi iir; hhP
ðIÞ
i iir; and hMðIÞs ir in the I-population,

respectively. In the gray region of eLTD

[eDl ð’ 99Þ\D\eDh ð’ 408Þ], the average occupation

degrees hhOðIÞi iir and the average pacing degrees hhPðIÞi iir
(open circles) are lower than those (solid circles) in the

absence of STDP, because of decreased E to I synaptic

excitation. In contrast, in most cases of eLTP for large

D (except for a narrow region near the higher threshold

eDh), the values of hhOðIÞi iir and hhPðIÞi iir (open circles) are

higher than those (solid circles) in the absence of STDP,

due to increased E to I synaptic excitation. In this region of

large D, hhOðIÞi iir (hhPðIÞi iir) increases (decreases) with D in

a relatively fast (slow) way, in contrast to the case without

STDP. Thus, in a wide region of eDl ð’
99Þ\D\D�3;STDP ð’ 672Þ (including the regions of both

intermediate and large D), the standard deviation in the

distribution of hhOðIÞi iir is increased in comparison to that

in the absence of STDP, and thus hhOðIÞi iir exhibits a non-

equalization effect. On the other hand, hhPðIÞi iir shows a

weak equalization effect, because the standard deviation in

the distribution of hhPðIÞi iir is decreased in comparison with

that without STDP

The statistical-mechanical spiking measure hMðIÞs ir in

the I-population is given by a product of the occupation and

the pacing degrees which exhibit increasing and decreasing

behaviors with D, respectively. In the region of interme-

diate D, the degrees of good synchronization (solid circles)

in the absence of STDP get decreased to lower ones (open

circles) due to eLTD, while in the region of large D the

degrees of bad synchronization (solid circles) in the

absence of STDP become increased to higher values (open

circles) because of eLTP. Through the effects of eLTP,

even desynchronized states in the absence of STDP

become transformed into sparsely synchronized states in

the range of D�3 ð’ 537Þ\D\D�3;STDP ð’ 672Þ, and hence

the region of fast sparse synchronization is so much

extended in the presence of combined I to E and E to I

STDP. As in the case of hMðEÞs ir, via cooperative interplay

between the weak equalization effect in (decreasing)

hhPðIÞi iir and the non-equalization effect in (increasing)

hhOðIÞi iir, strong equalization effect in the spiking measure

hMðIÞs ir with much smaller standard deviation is found to

occur (i.e., the values of hMðIÞs ir in Fig. 9c3 are nearly the

same). This equalization effect in interpopulation synaptic

plasticity is distinctly in contrast to the Matthew (bipolar-

ization) effect in the intrapopulation (I to I and E to E)

STDPs where good (bad) synchronization gets better

(worse) (Kim and Lim 2018a, c).

This kind of equalization effect may also be well seen in

the histograms for the distribution of hMðIÞs ir. The gray

histogram in the absence of STDP is shown in Fig. 9d1 and

the hatched histogram in the presence of combined I to E

and E to I STDP is given in Fig. 9d2. The standard devi-

ation (’ 0:056) in the hatched histogram is much smaller

than that (’ 0:112) in the gray histogram. Thus, strong

equalization effect also occurs in the I-population in an

extended broad region of eDl ð’ 99Þ\D\D�3;STDP ð’ 672Þ,
as in the case of E-population. Moreover, a dumbing-down

effect also occurs because the mean value (’ 0:111) in the

hatched histogram is smaller than that (’ 0:162) in the

gray histogram.

From now on, we characterize individual spiking

behaviors of fast spiking interneurons and regular spiking

pyramidal cells, and compare them with those in the case

without STDP. Figure 10a1–a6 (Fig. 10b1–b6) show ISI
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histograms for various values of D in the I-(E-)population.

Because of stochastic spike skippings, multiple peaks

appear at integer multiples of the global period T
ðXÞ
G of

RXðtÞ (X ¼ I or E), as in the case without STDP (see

Fig. 5b1–b6, c1–c6). For intermediate values of D (= 110,

250, and 400), ISI histograms are shaded in gray color. In

this case of intermediate D, iLTP and eLTD occur, and

they tend to make single cells fire in a more stochastic and

sparse way. Thus, in these gray-shaded histograms, the 1st-

order main peaks become lowered and broadened, higher-

order peaks also become wider, and thus mergings between

multiple peaks are more developed, when compared with

those in the absence of STDP. Hence, in comparison with

those in the case without STDP, the average ISIs hhISIðXÞiri
(X ¼ I or E) become increased, because of the developed

tail part. Consequently, population-averaged mean firing

rates hhf ðXÞi iir (corresponding to the reciprocals of

hhISIðXÞiri) are decreased. These individual spiking

behaviors make some effects on population behaviors. Due

to decrease in hhf ðXÞi iir, spikes become more sparse, and

hence the average occupation degree hhOðXÞi iir in the

spiking stripes in the raster plots becomes decreased (see

Fig. 9a1, c1). Also, because of the enhanced merging

between peaks (i.e., due to increase in the irregularity

degree of individual spikings), spiking stripes in the raster

plots in Fig. 8b2–b4 become more smeared, and hence the

average pacing degrees hhPðXÞi iir of spikes in the stripes get

decreased (see Fig. 9a2, c2).

In contrast, for small and large D (= 95, 500, and 600)

iLTD and eLTP occur, and they tend to make individual

neurons fire in a less stochastic and sparse way. Due to the

effects of iLTD and eLTP, ISI histograms have much more

clear peaks in comparison with those in the absence of

STDP. Particularly, for D ¼ 600 single-peaked broad ISI

histograms in the absence of STDP are transformed into

multi-peaked ISI histograms in the presence of combined I

to E and E to I STDPs, because desynchronization in the

case without STDP is transformed into fast sparse syn-

chronization in the combined case of both I to E and E to I

STDPs. When compared with those in the absence of

STDP, the average ISIs hhISIðXÞiri (X ¼ I or E) are

decreased due to enhanced lower-order peaks. As a result,

population-averaged mean firing rates hhf ðXÞi iir are

increased. Because of increase in hhf ðXÞi iir, the degrees of

stochastic spike skipping get decreased, and hence the

average occupation degrees hhOðXÞi iir become increased

(see Fig. 9a1, c1). Also, due to appearance of clear peaks,

spiking stripes in the raster plots in Fig. 8b1, b5, b6

become less smeared, and thus the average pacing degrees

hhPðXÞi iir become increased, as shown in Fig. 9a2, c2.

We also study the effects of combined I to E and E to I

STDPs on the coefficients of variation (characterizing

irregularity degree of individual single-cell firings) in the

region of (FSS, FSS) for D�2 ð’ 91Þ\D\D�3;STDP ð’ 672Þ,
and compare them with those in the case without STDP

(see Fig. 5d, e). Figure 10c, d show plots of the coefficients

of variations (open circles), CVI and CVE, for the I- and the

E-populations versus D, respectively; for comparison, the

coefficients of variations (solid circles) in the absence of

STDP are also given. Here, the intermediate regions of

eDl ð’ 99Þ\D\eDh ð’ 408Þ are shaded in gray color. In

the gray-shaded region of intermediate D, iLTP and eLTD

occur. Then, due to the effects of iLTP and eLTD (tending

to increase irregularity degree of single-cell firings), the

Fig. 10 Characterization of individual spiking behaviors in the

presence of interpopulation (both I to E and E to I) STDPs. ISI

histograms for various values of D in the I-population (a1–a6) and the

E-population (b1–b6). Vertical dotted lines in a1–a6 and b1–b6

represent multiples of the global period T
ðXÞ
G of the instantaneous

population spike rate RXðtÞ (X ¼ I or E). Plots of the coefficient of

variation CVX (open circles) versus D; X ¼ c I and d E. For

comparison, the coefficients of variation in the absence of STDP are

represented by solid circles
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values of coefficients (open circles) become higher than

those (solid circles) in the absence of STDP. On the other

hand, in the other two separate regions of small and large

D, iLTD and eLTP occur which tend to decrease irregu-

larity degree of single-cell spike discharges. Hence, the

values of coefficients (open circles) become lower than

those (solid circles) in the absence of STDP, in contrast to

the case of intermediate D.

As in the case without STDP, we also examine the

correlations between the reciprocals of coefficients of

variation (denoting the regularity degree of single-cell

spike discharges) and the spiking measures hMðXÞs ir (rep-

resenting the overall synchronization degree of fast sparse

synchronization) in both the I- and the E-populations (X ¼
I and E). Some positive correlations are thus found in the I-

and the E-populations with the Pearson’s correlation

coefficient r ’ 0:858 and 0.226, respectively. However,

these correlations in the presence of combined STDPs are

reduced, in comparison with those in the absence of STDP,

mainly due to appearance of strong equalization effects in

hMðXÞs ir. In the presence of both I to E and E to I STDPs,

standard deviations in the distributions of coefficients of

variation are a little decreased, and hence weak equaliza-

tion effects occur in both the I- and the E-populations, in

contrast to strong equalization effects in hMðXÞs ir.
Finally, we make an intensive investigation on emer-

gences of LTP and LTD (leading to occurrence of equal-

ization effect in interpopulation synaptic plasticity) in the

case of combined I to E and E to I STDPs through a

microscopic method based on the distributions of time

delays fDtðXYÞij g (¼ t
ðpost;XÞ
i � t

ðpre;YÞ
j ) between the nearest

spike times of the post-synaptic neuron i in the X-popula-

tion and the pre-synaptic neuron j in the Y-population. We

first consider the case of I to E iSTDP. Figure 11a1–a5,

b1–b5 show time-evolutions of normalized histograms

HðDtðEIÞij Þ for the distributions of time delays fDtðEIÞij g for

D ¼ 110 and 500, respectively; the bin size in each his-

togram is 0.5 ms. Here, we consider 5 stages, represented

by I (starting from 0 s), II (starting from 100 s), III (starting

from 400 s), IV (starting from 800 s), and V (starting from

1300 s). At each stage, we obtain the distribution of

fDtðEIÞij g for all synaptic pairs during 0.2 s and get the

normalized histogram by dividing the distribution with the

total average number of synapses (= 96000).

In a case of iLTP for D ¼ 110, multiple peaks appear in

each histogram, which is similar to the case of multi-

peaked ISI histogram. As explained in Fig. 6b, due to

stochastic spike skippings, nearest-neighboring pre- and

post-synaptic spikes appear in any two separate stripes

(e.g., nearest-neighboring, next-nearest-neighboring or

farther-separated stripes), as well as in the same stripe. In

the stage I, in addition to the sharp main central (1st-order)

peak, higher kth-order (k ¼ 2; . . .; 5) left and right minor

peaks also are well seen. Here, iLTP and iLTD occur in the

black (DtðEIÞ[ 0) and the gray (DtðEIÞ\0) parts, respec-

tively. As the time t is increased (i.e., with increase in the

level of stage), the 1st-order main peak becomes lowered

and widened, higher-order peaks also become broadened,

and thus mergings between multiple peaks occur. Thus, at

the final stage V, the histogram is composed of lowered and

broadened 1st-order peak and merged higher-order minor

peaks. In the stage I, the effect in the right black part

(iLTP) is dominant, in comparison with the effect in the

left gray part (iLTD), and hence the overall net iLTP

begins to emerge. As the level of stage is increased, the

effect of iLTP in the black part tends to nearly cancel out

the effect of iLTD in the gray part at the stage V.

In a case of iLTD for D ¼ 500, in the initial stage I, the

histogram consists of much lowered and widened 1st-order

main peak and higher-order merged peaks, in contrast to

the case of D ¼ 110. For this initial stage, the effect in the

left gray part (iLTD) is dominant, in comparison with the

effect in the right black part (iLTP), and hence the overall

net iLTD begins to occur. Hence, with increasing the level

of stage, the heights of peaks become increased, their

widths tend to be narrowed, and thus peaks (particularly,

main peak) become more clear, which is in contrast to the

progress in the case of D ¼ 110. Moreover, the effect of

iLTD in the gray part tends to nearly cancel out the effect

of iLTP in the black part at the stage V. We also note that

the two initially-different histograms for both D ¼ 110

(iLTP) and 500 (iLTD) are evolved into similar ones at the

final stage V (see Fig. 10a5, b5), which shows the equal-

ization effect occurring in the I to E synaptic plasticity.

We consider successive time intervals Ik 	 ðtk; tkþ1Þ,
where tk ¼ 0:2 � ðk � 1Þ s (k ¼ 1; 2; 3; . . .). With increasing

the time t, in each kth time interval Ik, we get the kth

normalized histogram HkðDtðEIÞij Þ (k ¼ 1; 2; 3; . . .) via the

distribution of fDtðEIÞij g for all synaptic pairs during 0.2 s.

Then, from Eq. (12), we get the population-averaged

synaptic strength hJðXYÞij ik recursively:

hJðXYÞij ik ¼ hJ
ðXYÞ
ij ik�1 þ d � h g

DJðXYÞij ðDtðXYÞij Þik: ð25Þ

Here, X ¼ E (post-synaptic population), Y ¼ I (pre-sy-

naptic population), hJðEIÞij i0 ¼ J
ðEIÞ
0 (=800: initial mean

value), h� � �ik in the 2nd term means the average over the

distribution of time delays fDtðXYÞij g for all synaptic pairs in

the kth time interval, and the multiplicative synaptic

modification
g

DJðXYÞij ðDtðXYÞij Þ is given by the product of the

multiplicative factor (J� � J
ðXYÞ
ij ) [J

ðXYÞ
ij : synaptic coupling
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Fig. 11 Microscopic investigations on emergences of LTP and LTD

in the presence of interpopulation (both I to E and E to I) STDPs. I to

E iSTDP: time-evolutions of the normalized histogram HðDtðEIÞij Þ for

the distributions of time delays fDtðEIÞij g between the pre- and the

post-synaptic spike times for D ¼ 110 (iLTP) in (a1–a5) and for

D ¼ 500 (iLTD) in (b1–b5); 5 stages are shown in I (starting from

0 s), II (starting from 100 s), III (starting from 400 s), IV (starting

from 800 s), and V (starting from 1300 s). c Time-evolutions of

multiplicative synaptic modification h g
DJðEIÞij i for D ¼ 110 (black line)

and D ¼ 500 (gray line). d Time-evolutions of population-averaged

synaptic strength hJðEIÞij i (obtained by an approximate method) for

D ¼ 110 (solid circle) and D ¼ 500 (open circle). E to I eSTDP: time-

evolutions of the normalized histogram HðDtðIEÞij Þ for the distributions

of time delays fDtðIEÞij g between the pre- and the post-synaptic spike

times for D ¼ 110 (eLTD) in (e1–e5) and for D ¼ 500 (eLTP) in (f1–

f5); 5 stages are shown, as in the above case of I to E iSTDP. g Time-

evolutions of multiplicative synaptic modification h g
DJðIEÞij i for D ¼

110 (gray line) and D ¼ 500 (black line). h Time-evolutions of

population-averaged synaptic strength hJðIEÞij i (obtained by an approx-

imate method) for D ¼ 110 (open circle) and D ¼ 500 (solid circle)
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strength at the ðk � 1Þth stage] and the absolute value of

synaptic modification jDJðXYÞij ðDt
ðXYÞ
ij Þj:

g
DJðXYÞij ðDtðXYÞij Þ ¼ ðJ� � J

ðXYÞ
ij Þ jDJ

ðXYÞ
ij ðDt

ðXYÞ
ij Þj: ð26Þ

Here, we obtain the population-averaged multiplicative

synaptic modification h g
DJðXYÞij ðDtðXYÞij Þik for the kth stage

through a population-average approximation where J
ðXYÞ
ij is

replaced by its population average hJðXYÞij ik�1 at the

ðk � 1Þth stage:

g
DJðXYÞij DtðXYÞij

� �
ik ’ ðJ� � hJ

ðXYÞ
ij ik�1Þ hjDJ

ðXYÞ
ij DtðXYÞij

� �
j

� �

k

:

ð27Þ

Here, hjDJðXYÞij ðDt
ðXYÞ
ij Þjik may be easily got from the kth

normalized histogram HkðDtðXYÞij Þ:

jDJðXYÞij DtðXYÞij

� �
j

D E
k
’

X
bins

HkðDtðXYÞij Þ � jDJ
ðXYÞ
ij DtðXYÞij

� �
j:

ð28Þ

Using Eqs. (25), (27), and (28), we get approximate values

of h g
DJðXYÞij ik and hJðXYÞij ik in a recursive way.

Figure 11c shows time-evolutions of h g
DJðEIÞij i for D ¼

110 (black curve) and D ¼ 500 (gray curve). h g
DJðEIÞij i for

D ¼ 110 is positive, while h g
DJðEIÞij i for D ¼ 500 is nega-

tive. For both cases they converge toward nearly zero at the

stage V (starting from 1300 s) because the effects of iLTP

and iLTD in the normalized histograms are nearly can-

celled out. The time-evolutions of hJðEIÞij i for D ¼ 110

(solid circles) and D ¼ 500 (open circles) are also shown in

Fig. 11d. We note that the approximately-obtained values

for hJðEIÞij i agree well with directly-obtained ones [denoted

by the gray solid (dashed) line for D ¼ 110 (500)] in

Fig. 7a1. As a result, iLTP (iLTD) emerges for D ¼ 110

(500).

As in the case of I to E iSTDP, we now study emer-

gences of eLTD and eLTP in E to I eSTDP via a micro-

scopic method based on the distributions of time delays

fDtðIEÞij g (¼ t
ðpost;IÞ
i � t

ðpre;EÞ
j ) between the nearest spike

times of the post-synaptic fast spiking interneuron i and the

pre-synaptic regular spiking pyramidal cell j. Figure 11e1–

e5, f1–f5 show time-evolutions of normalized histograms

HðDtðIEÞij Þ for the distributions of time delays fDtðIEÞij g for

D ¼ 110 and 500, respectively; the bin size in each his-

togram is 0.5 ms. Here, we also consider 5 stages, as in the

case of the above I to E iSTDP. At each stage, we get the

distribution of fDtðIEÞij g for all synaptic pairs during 0.2 s

and obtain the normalized histogram by dividing the dis-

tribution with the total average number of synapses

(= 96,000).

As an example of eLTD in the region of intermediate D,

we consider the case of D ¼ 110. Due to stochastic spike

skippings for fast spike skippings, multiple peaks appear in

each histogram, as in the multi-peaked ISI histograms. In

the stage I, along with the sharp main central (1st-order)

peak, higher kth-order (k ¼ 2; . . .; 5) left and right minor

peaks also are well seen. Because of the anti-Hebbian time

window for the E to I eSTDP, eLTD and eLTP occur in the

gray (DtðIEÞ[ 0) and the black (DtðIEÞ\0) parts, respec-

tively, which is in contrast to the case of I to E iSTDP with

a time-delayed Hebbian time window where iLTP and

iLTD occur in the black (DtðIEÞ[ 0) and the gray

(DtðIEÞ\0) parts, respectively (see Fig. 6a, c). With

increasing the level of stage, the 1st-order main peak

becomes lowered and broadened, higher-order peaks also

become widened, and thus mergings between multiple

peaks occur. Thus, at the final stage V, the histogram

consists of lowered and widened 1st-order peak and

merged higher-order minor peaks. In the stage I, the effect

in the right gray part (eLTD) is dominant, in comparison to

the effect in the left black part (eLTP), and hence the

overall net eLTD begins to appear. As the level of stage is

increased, the effect of eLTD in the gray part tends to

nearly cancel out the effect of eLTP in the black part at the

stage V.

We consider another case of D ¼ 500 where eLTP

occurs. In the initial stage I, the histogram is composed of

much lowered and broadened 1st-order main peak and

higher-order merged peaks, in contrast to the case of

D ¼ 110. For this initial stage, the effect in the left black

part (eLTP) is dominant, when compared with the effect in

the right gray part (eLTD), and hence the overall net eLTP

begins to occur. Hence, as the level of stage is increased,

the heights of peaks become increased, their widths tend to

be narrowed, and thus peaks become more clear, in contrast

to the progress in the case of D ¼ 110. Furthermore, the

effect of eLTP in the black part tends to nearly cancel out

the effect of eLTD in the gray part at the stage V. We also

note that the two initially-different histograms in the cases

of D ¼ 110 and 500 are developed into similar ones at the

final stage V (see Fig. 11e5, f5), which shows the equal-

ization effect occurring in the case of E to I eSTDP.

As in the case of I to E iSTDP, we consider successive

time intervals Ik 	 ðtk; tkþ1Þ, where tk ¼ 0:2 � ðk � 1Þ sec

(k ¼ 1; 2; 3; . . .). As the time t is increased, in each kth time

interval Ik, we obtain the kth normalized histogram

HkðDtðIEÞij Þ (k ¼ 1; 2; 3; . . .) through the distribution of
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fDtðIEÞij g for all synaptic pairs during 0.2 s. Then, using

Eqs. (25), (27), and (28), we obtain approximate values of

multiplicative synaptic modification h g
DJðIEÞij ik and popu-

lation-averaged synaptic strength hJðIEÞij ik in a recursive

way. Figure 11g shows time-evolutions of h g
DJðIEÞij i for D ¼

110 (gray curve) and D ¼ 500 (black curve). h g
DJðIEÞij i for

D ¼ 110 is negative, while h g
DJðIEÞij i for D ¼ 500 is posi-

tive. For both cases they converge toward nearly zero at the

stage V (starting from 1300 s) because the effects of eLTP

and eLTD in the normalized histograms are nearly can-

celled out. The time-evolutions of hJðIEÞij i for D ¼ 110

(open circles) and D ¼ 500 (solid circles) are also shown in

Fig. 11h. We note that the approximately-obtained values

for hJðIEÞij i agree well with directly-obtained ones [repre-

sented by the gray dashed (solid) line for D ¼ 110 (500)] in

Fig. 7a2. Consequently, eLTD (eLTP) emerges for D ¼
110 (500), in contrast to the case of I to E iSTDP where

iLTP (iLTD) occurs for D ¼ 110 (500).

Summary and discussion

We are interested in fast sparsely synchronized brain

rhythms, related to diverse cognitive functions such as

feature integration, selective attention, and memory for-

mation (Wang 2010). In most cases of previous works,

emergence of fast sparsely synchronized rhythms and their

properties have been studied for static synaptic strengths

(i.e., without considering synaptic plasticity) in single-

population networks of purely inhibitory interneurons and

in two-population networks composed of inhibitory

interneurons and excitatory pyramidal cells (Brunel and

Hakim 1999; Brunel 2000; Brunel and Wang 2003; Geisler

et al. 2005; Brunel and Hansel 2006; Brunel and Hakim

2008). Only in one case (Kim and Lim 2018c), intrapop-

ulation I to I iSTDP was considered in an inhibitory small-

world network of fast spiking interneurons. In contrast to

these previous works, in the present work, we took into

consideration adaptive dynamics of interpopulation (both I

to E and E to I) synaptic strengths, governed by the I to E

iSTDP and the E to I eSTDP, respectively. We also note

that fast sparsely synchronized rhythms appear, indepen-

dently of network structure. Here, we considered clustered

small-world networks with both I- and E-populations. The

inhibitory small-world network is composed of fast spiking

interneurons, and the excitatory small-world network

consists of regular spiking pyramidal cells. A time-delayed

Hebbian time window has been used for the I to E iSTDP

update rule, while an anti-Hebbian time window has been

employed for the E to I eSTDP update rule.

By varying the noise intensity D, we have investigated

the effects of interpopulation STDPs on diverse population

and individual properties of fast sparsely synchronized

rhythms that emerge in both the I- and the E-populations in

the combined case of both I to E and E to I STDPs. In the

presence of interpopulation STDPs, the distribution of

interpopulation synaptic strengths fJðXYÞij g is evolved into a

saturated one after a sufficiently long time of adjustment.

Depending on D, the mean hhJðXYÞij

�
iir for saturated limit

interpopulation synaptic strengths has been found to

increase or decrease [i.e., emergence of LTP or LTD].

These LTP and LTD make effects on the degree of fast

sparse synchronization.

In the case of I to E iSTDP, increase (decrease) in the

mean hhJðEIÞij

�
iir of the I to E synaptic inhibition has been

found to disfavor (favor) fast sparse synchronization [i.e.

iLTP (iLTD) tends to decrease (increase) the degree of fast

sparse synchronization]. In contrast, the roles of LTP and

LTD are reversed in the case of E to I eSTDP. In this case,

eLTP (eLTD) in the E to I synaptic excitation has been

found to favor (disfavor) fast sparse synchronization [i.e.,

increase (decrease) in the mean hhJðIEÞij

�
iir tends to increase

(decrease) the degree of fast sparse synchronization]. Par-

ticularly, desynchronized states for D�3 ð’
537Þ\D\D�3;STDP ð’ 672Þ in the absence of STDP

become transformed into fast sparsely synchronized ones

via iLTD and eLTP in the presence of interpopulation

STDPs, and hence the region of fast sparse synchronization

is so much extended.

An equalization effect in interpopulation (both I to E

and E to I) synaptic plasticity has been found to occur in

such an extended wide range of D. In a broad region of

intermediate D, the degree of good synchronization (with

higher synchronization degree) gets decreased due to iLTP

(in the case of I to E iSTDP) and eLTD (in the case of E to

I eSTDP). On the other hand, in a region of large D, the

degree of bad synchronization (with lower synchronization

degree) becomes increased because of iLTD (in the case of

I to E iSTDP) and eLTP (in the case of E to I eSTDP). As a

result, the degree of fast sparse synchronization in each E-

or I-population becomes nearly the same in a wide range of

D. Due to the equalization effect in interpopulation STDPs,

fast sparsely synchronized rhythms seem to be evolved into

stable and robust ones (i.e., less sensitive ones) against

external noise in an extended wide region (including both

the intermediate and the large D).

This kind of equalization effect in interpopulation

synaptic plasticity is markedly in contrast to the Matthew

(bipolarization) effect in intrapopulation (I to I and E to E)
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synaptic plasticity where good (bad) synchronization

becomes better (worse) (Kim and Lim 2018a, c). In this

case of Matthew effect, in a broad region of intermediate

D, fast sparsely synchronized rhythms are so much

enhanced due to a constructive effect of intrapopulation

STDPs to increase their synchronization degrees, while in a

region of large D they are so much depressed or they are

transformed into desynchronized states due to a destructive

effect of intrapopulation STDPs to decrease their syn-

chronization degrees. Thus, in the presence of intrapopu-

lation STDPs, the better good synchronization (with higher

synchronization degree) becomes, the worse bad synchro-

nization (with lower synchronization degree) gets [e.g., see

Fig. 6 in Kim and Lim (2018a) and Fig. 7 in Kim and Lim

(2018c)]. This type of Matthew (bipolarization) effect may

be observed in diverse aspects in many fields (Merton

1968; Bol et al. 2018), and it is sometimes summarized by

an adage, ‘‘the rich get richer and the poor get poorer’’

(representing bipolarization).

We note that the spiking measure hMðXÞs ir (denoting the

synchronization degree) is given by the product of the

occupation (representing density of spiking stripes) and the

pacing (denoting phase coherence between spikes) degrees

of spikes in the raster plot. Due to interpopulation STDPs,

the average pacing degree hhPðXÞi iir has been found to

exhibit a kind of weak equalization effect (i.e., hhPðXÞi iir is

a relatively slowly-decreasing function of D with a smaller

standard deviation, in comparison with hhPðXÞi iir in the

absence of STDP). On the other hand, the average occu-

pation degree hhOðXÞi iir has been found to show a type of

non-equalization effect (i.e., hhOðXÞi iir is an increasing

function of D with a larger standard deviation, when

compared with hhOðXÞi iir in the absence of STDP). Through

cooperative interplay between the weak equalization effect

in (decreasing) hhPðXÞi iir and the non-equalization effect in

(increasing) hhOðXÞi iir, strong equalization effect in hMðXÞs ir
with much smaller standard deviation has been found to

emerge (i.e., the curve for hMðXÞs ir becomes nearly flat in a

wide range of D).

This kind of equalization effect can be well visualized in

the histograms for the spiking measures hMðXÞs ir in the

presence and in the absence of interpopulation STDPs. In

each E- or I-population, the standard deviation from the

mean in the histogram in the case of interpopulation STDPs

has been found to be much smaller than that in the case

without STDP, which clearly shows emergence of the

equalization effect in both the I- and the E-populations.

Moreover, a dumbing-down effect in interpopulation

synaptic plasticity has also been found to occur in both the

E- and the I-populations, because the mean in the

histogram in the case of interpopulation STDPs is smaller

than that in the absence of STDP. Thus, in each E- or

I-population, equalization effect occurs together with

dumbing-down effect.

In addition to the above population behaviors, effects of

combined I to E and E to I STDPs on individual spiking

behaviors have also been investigated. In the case of I to E

iSTDP, iLTP (iLTD) has been found to increase (decrease)

irregularity degree of individual single-cell spike dis-

charges [i.e., due to iLTP (iLTD), single cells tend to fire

more (less) irregularly and sparsely]. On the other hand, in

the case of E to I eSTDP, the roles of LTP and LTD are

reversed. Hence, irregularity degree of individual single-

cell firings has been found to decrease (increase) due to

eLTP (eLTD) [i.e., because of eLTP (eLTD), single cells

tend to make firings less (more) irregularly and sparsely.

LTP and LTD in both I to E and E to I STDPs make

effects on distributions of ISIs. In the case of fast sparse

synchronization, multi-peaked ISI histograms appear due

to stochastic spike skippings, in contrast to the case of full

synchronization with a single-peaked ISI histogram. In the

region of intermediate D, due to the effects of iLTP and

eLTD, the 1st-order main peaks become lowered and

widened, higher-order peaks also become broader, and thus

mergings between multiple peaks are more developed, in

comparison with those in the absence of STDP. Thus, the

average ISIs hhISIðXÞiri (X ¼ I or E) become increased,

because of the developed tail part. As a result, population-

averaged mean firing rates hhf ðXÞi iir (corresponding to the

reciprocals of hhISIðXÞiri) get decreased. On the other hand,

in the region of small and large D, because of the effects of

iLTD and eLTP, ISI histograms have much more clear

peaks when compared with those in the absence of STDP.

As a result, the average ISIs hhISIðXÞiri (X ¼ I or E)

become decreased due to enhanced lower-order peaks.

Consequently, population-averaged mean firing rates

hhf ðXÞi iir get increased.

Furthermore, effects of both I to E and E to I STDPs on

the coefficients of variation (characterizing the irregularity

degree of individual single-cell spike discharge) have also

been studied in both the I- and the E-populations. In the

intermediate region where iLTP and eLTD occurs, irreg-

ularity degrees of individual single-cell firings increase,

and hence the coefficients of variation become increased.

In contrast, in the other two separate regions of small and

large D where iLTD and eLTP occur, the degrees of

irregularity of individual spikings decrease, and hence the

coefficients of variation get decreased. Reciprocals of

coefficients of variation (representing the regularity degree

of individual single-cell firings) have also been found to

have positive correlations with the spiking measures
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(denoting the overall synchronization degree of fast sparse

synchronization).

Particularly, emergences of LTP and LTD of interpop-

ulation synaptic strengths (leading to occurrence of

equalization effect in interpopulation synaptic plasticity)

were investigated via a microscopic method, based on the

distributions of time delays fDtðXYÞij g between the nearest

spiking times of the post-synaptic neuron i in the (target) X-

population and the pre-synaptic neuron j in the (source) Y-

population. Time evolutions of normalized histograms

HðDtðXYÞij Þ were followed in both cases of LTP and LTD.

We note that, due to the equalization effects, the normal-

ized histograms (in both cases of LTP and LTD) at the final

(evolution) stage are nearly the same, which is in contrast

to the cases of intrapopulation (I to I and E to E) STDPs

where the two normalized histograms at the final stage are

distinctly different because of the Matthew (bipolarization)

effect [e.g., see Fig. 8 in Kim and Lim (2018a) and Fig. 8

in Kim and Lim (2018c)]. Employing a recurrence relation,

we recursively obtained population-averaged interpopula-

tion synaptic strength hJðXYÞij i at successive stages via an

approximate calculation of population-averaged multi-

plicative synaptic modification h g
DJðXYÞij i of Eq. (27), based

on the normalized histogram at each stage. These approx-

imate values of hJðXYÞij i have been found to agree well with

directly-calculated ones. Consequently, one can understand

clearly how microscopic distributions of fDtðXYÞij g con-

tribute to hJðXYÞij i.
Finally, we discuss limitations of our present work and

future works. In the present work, we have restricted out

attention just to interpopulation (I to E and E to I) STDPs

and found emergence of equalization effects. In previous

works, intrapopulation (I to I and E to E) STDPs were

studied and the Matthew (bipolarization) effects were

found to appear (Kim and Lim 2018a, c). Hence, in future

work, it would be interesting to study competitive interplay

between the equalization effect in interpopulation synaptic

plasticity and the Matthew (bipolarization) effect in

intrapopulation synaptic plasticity in networks consisting

of both E- and I-populations with both intrapopulation and

interpopulation STDPs. In addition to fast sparsely syn-

chronized rhythms (main concern in the present study),

asynchronous irregular states (which show stationary glo-

bal activity and stochastic sparse spike discharges of single

cells) also appear in the hippocampal and the neocortical

networks. Therefore, as another future work, it would be

interesting to study mechanisms (provided by the STDPs in

networks with both E- and I-populations) for emergence of

asynchronous irregular states which are known to play an

important role of information processing (Song et al. 2000;

Vogels et al. 2011). Fast sparsely synchronized rhythms

appear, independently of network structure. Here, we

considered clustered small-world networks. It is expected

that the effects of interpopulation STDPs would also be

independent of network architecture, which will be exam-

ined in a future work.
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Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations.

Annu Rev Neurosci 35:203–225
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