Skip to main content
. 2020 Jul 2;5(4):963–979. doi: 10.1016/j.bioactmat.2020.06.023

Table 3.

Summary of assembly of short nanofibers into three-dimensional aerogel/scaffolds and 3D printing.

Polymer Fabrication method Biological evaluation Key findings Ref
PAN/SiO2 scaffolds Electrospinning Elastic resilience↑;
Energy absorption↑
[44]
KGM/SiO2 scaffold Electrospinning & freeze-drying Honeycomb-mimetic structure;
Shape memory↑;
Density, 0.14 mg/cm3
[45]
Alginate/SiO2 scaffolds Electrospinning & ionic crosslinking Water content, 99.8%;
Shape memory↑
[46]
Chitosan/SiO2–CaO scaffolds Electrospinning & sol-gel synthesis Calvarial defect model Honeycomb-like structure;
Self-deployment;
Shape-memory; Elasticity & biomineralization↑
[47]
PLLA or PLLA/PCL sponges 3D printed mold assisted electrospinning In vitro Shape memory↑;
Cell proliferation↑
[48]
Gelatin/PLLA scaffold Electrospinning In vitro Elasticity↑; Superabsorbent [49]
BMP2-ensconced PLLA/GEL/HAP scaffold Electrospinning In vitro & in vivo Osteogenesis↑; Biocompatibility↑ [50]
PLGA/Col/Gel scaffold Electrospinning Cranial defect Bone regeneration↑ [51]
PLGA/Gel/Hap scaffold Electrospinning & 3D printing Cartilage defect Shape memory↑;
Cartilage regeneration↑
[52]
PLGA/Gel/CDM scaffold Electrospinning & 3D printing Cartilage defect Cartilage regeneration↑ [53]
PLLA/PEO scaffold Stable jet electrospinning In vitro Cell proliferation & infiltration↑ [54]
Silk fibroin Stable jet electrospinning In vitro Cell adhesion & migration↑ [55]