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Drug development is a very costly and lengthy process, while repositioned or repurposed drugs could be
brought into clinical practice within a shorter time-frame and at a much reduced cost. Numerous com-
putational approaches to drug repositioning have been developed, but methods utilizing genome-wide
association studies (GWASs) data are less explored.
The past decade has observed a massive growth in the amount of data from GWAS; the rich information

contained in GWAS has great potential to guide drug repositioning or discovery. While multiple tools are
available for finding the most relevant genes from GWAS hits, searching for top susceptibility genes is
only one way to guide repositioning, which has its own limitations.
Here we provide a comprehensive review of different computational approaches that employ GWAS

data to guide drug repositioning. These methods include selecting top candidate genes from GWAS as
drug targets, deducing drug candidates based on drug-drug and disease-disease similarities, searching
for reversed expression profiles between drugs and diseases, pathway-based methods as well as
approaches based on analysis of biological networks. Each method is illustrated with examples, and their
respective strengths and limitations are discussed. We also discussed several areas for future research.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Drug development is a very costly and lengthy process, which
typically involves multiple processes from drug target validation,
clinical trials to final approval by the FDA and other government
agencies. The estimated cost of developing a new drug is around
USD 2.6 billion [1]. As a result, there has been increased interest
in repositioning existing drugs for new usage. Drug repositioning
refers to finding new indications of existing or investigational
drugs [2]. Repositioned drugs can be brought to clinical practice
in a much shorter time-frame and at a much lower cost, as these
drugs have gone through pharmacokinetic/pharmacodynamic
and safety profiling during development. Besides existing drugs
with known indications, drugs that are shelved due to failure in
clinical trials may also serve as repositioning candidates. In fact,
repurposing these drugs may serve to recover the high cost that
went into developing them (see Fig. 1).

In practice, many drugs in wide use today stem from reposition-
ing. Two classic examples are Sildenafil and thalidomide [3], which
are now commonly used to treat erectile dysfunction and multiple
myeloma, despite not originally designed for these indications.
However, these and many other drugs were discovered based on
serendipity alone. Computational repositioning approaches offer
a more systematic and cost-effective way of discovering such
unexpected relationships between drugs and diseases when com-
pared to experimental approaches.

The past few years have witnessed a massive rise in the amount
of ‘omics’ and other forms of biomedical data such as electronic
health records, which makes computational approaches an attrac-
tive option to prioritize repositioning candidates. One of the fastest
growing types of data comes from genome-wide association stud-
ies (GWASs), a high-throughput technique that interrogates the
whole genome for common genetic variations that contribute to
diseases or traits. GWAS has been highly successful in unraveling
the genetic basis of many complex traits or diseases, and study
scales have increased rapidly [4].

Many statistical/computational methodologies have been
developed to improve the power in detecting susceptibility vari-
ants in GWAS. These include, for example, entropy-based methods
for genetic association [5,6], integrating the trend test and Pear-
son’s test for association [7], and a variety of approaches to select
from or integrate different models of inheritance [8–11]. However,
from a clinical point of view, one of the most important questions
would be: could GWAS findings be translated into opportunities for
drug discoveries or repositioning? This question calls for more inno-
vative approaches to analyzing GWAS data with a translational
focus. In this article, we shall review several categories of methods
for prioritizing drug repositioning candidates, highlighting their
applications as well as their respective strengths and limitations.
2. Overview of GWAS and its potential in guiding drug
discoveries and repositioning

GWAS aims to decipher associations between common genetic
variants and disease or disease-related traits. Typically the genetic
variants studied are SNPs, and current GWAS arrays allow millions
of SNPs across the entire genome to be interrogated at the same
time. Variants that are not genotyped can also be imputed with
appropriate reference panels [12]. The most common design for
GWAS is a population-based case-control study, in which we
recruit subjects with and without the disease, and search for SNPs
with significant differences in allele frequencies between the two
groups. However, GWAS can also be used to study continuous or
time-to-event outcomes. A full GWAS workflow tutorial can be
found in Ref. [13].

A number of GWAS resources are available online, and one of

the largest is the GWAS catalog (https://www.ebi.ac.uk/gwas/). It
is a structured repository of summary statistics for a large variety
of traits. As of writing, the GWAS Catalog contains 4554 publica-
tions and 185,864 associations, showing the popularity of GWAS
and the vast amount of data available for mining. Other useful

resources include the LD-hub (http://ldsc.broadinstitute.org/ld-

hub/), GWAS summary statistics from the UK Biobank (http://

www.nealelab.is/uk-biobank) and dbGaP (https://www.ncbi.nlm.

nih.gov/gap/) which allows access to individual genomic data to
authorized users.

In order to treat a disease, it is critical to understand the causal
risk factors, which is one of the main goals of GWAS - to under-
stand the underlying biological mechanisms [14]. Unlike Men-
delian diseases where typically only less than a few genes cause
the condition, complex diseases arise as combinations of a multi-
tude of genetic and environmental causes [15]. GWAS have a niche
for identifying risk loci for a disease without a priori hypotheses
[16]; hence it is useful in identifying novel genetic loci that are
beyond our current understanding of the disease. At the same time,
the development of drugs with new mechanisms of action has
become increasingly difficult; GWAS data therefore holds great
potential in guiding drug discovery. Another important advantage
is that for many diseases (e.g. psychiatric disorders [17] and can-
cers [18]), current cell-based or animal models are unable to fully
mimic the human condition, limiting the success rate of translating
preclinical findings into clinical practice. However, GWASs are
based on clinical samples of patients with actual phenotype data,
and may more realistically reflect the genetic basis of the condition
under study.

In an important study, Nelson et al. [19] showed that the pro-
portion of drugs with direct genetic support increased along the
development pipeline, increasing from 2.0% at the preclinical stage

https://www.ebi.ac.uk/gwas/
http://ldsc.broadinstitute.org/ldhub/
http://ldsc.broadinstitute.org/ldhub/
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/


Fig. 1. A schematic diagram showing thefivedrug repositioning approaches reviewed in this paper. (1) Candidate gene approach: the risk loci fromGWASdata can bemapped to
the most likely relevant genes with functional annotations and eQTL data. If the identified candidate gene is druggable and the drug is not already indicated for the disease, the
drug may serve as a repositioning candidate. (2) Pathway or gene-set analysis approach: the identified candidate gene(s) are placed in the context of its pathways; drugs that
targetmembers of the same pathway are potential drug candidates. Alternatively, the entire set of GWAS datamay be used to derive gene-based statistics, and enrichment tests
performed to look for drugs whose targets/effector genes achieve higher significance (lower p-values) than expected as a whole. (3) Comparing similarities between drugs and
diseases (dx): drugs may be repositioned to the indications of another one if the two shared sufficient similarity. For example, one could compare the similarities between the
transcriptome of two drugs using cell-line expression data from the Connectivity Map (CMap). In a similar vein, if two diseases are similar, then the drugs used for treating one
disease may be repurposed for the other. (4) Looking for reversed expression patterns between drugs and diseases: The core hypothesis is that if a drug produces an expression
profile that is opposite to that of a disease, then the drug may be considered a repositioning candidate (due to its potential to ‘reverse’ disease-related expression profiles). (5)
Network-based analysis: Integration ofmultiple sources of data such as drugs, proteins, genes and diseases relationships to construct biological networks. Further analysis with
computational methods such as randomwalkmay reveal novel drug-disease connections. The principle of this method is close to ’similarity-based’ methods (seemain text) for
drug repositioning, but network-based methods usually integrate a greater variety of information. PPI; protein–protein interactions.
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Table 1
General in silico approaches for drug repositioning and relevant reviews.

Category Examples of approaches/aspects of drug repositioning covered Relevant
reviews

Cheminformatics Molecular docking; Quantitative structure–activity relationship (QSAR) modeling; repositioning based on shared mechanism of
action (MOA) between drugs, target binding pocket similarities and similarities of drug candidates in the chemical space; off-
target effects modeling

[31–35]

Network-based Network analysis of drugs, proteins/genes and diseases [31,33–36]
Omics data Modeling drug expression/gene perturbation data based on CMap; assessing links between diseases and drugs based on omics

data
[31–35]

Clinical data and text
mining

Mining of electronic health records; prediction of drug indications and side effects via text mining and semantic analysis of the
literature or other relevant databases

[31,32,35]

Some reviews cover more than one category; the above is just a rough overview of some of the aspects of drug repositioning covered in the reviews. For details please refer to
the corresponding references.
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to 8.2% among the approved drugs. In a more updated analysis by
King et al. [20], they reported similar findings that genetically sup-
ported targets were more likely to be successful in Phases II and III
clinical trials, especially when the genes implicated are likely
causal.

However, GWAS has been criticized for theinterpretability of its
findings and small effect sizes of most risk variants. Approximately
90% of the SNPs found by GWAS are located in non-coding regions,
suggesting that they may alter transcription of one or more target
genes through modification of splice sites, non-codingRNAs, pro-
moter or transcription factor (TF) binding sites [15,21,22]. Also,
due to linkage disequilibrium (LD), the association of a disease
with a genetic locus does not reveal which variant is the ‘causal’
variant or which gene is the ‘causal’ one inside the locus. Another
concern is that most susceptibility variants discovered so far only
confer small effects on diseases or traits. However, small effect
Table 2
Summary and comparison of drug repositioning approaches using GWAS data.

Approach Brief description Pros

1. (i) Using functional
annotation for
identifying top
candidate genes
(then link to drugs)

Map GWAS SNPs to corresponding
functionally related genes with
functional annotation tools

Relatively clear biolog
straightforward comp
computational cost; m
available for annotati

1. (ii) Using eQTL data
for identifying top
candidate genes
(then link to drugs)

Map GWAS SNPs to corresponding
gene using eQTL information

Directionality indicate
affects multiple genes
easy to implement

2. Pathway/gene-set
analysis

Repositioning drug based on
pathway or gene-set analysis of
GWAS results

Consideration of drug
wide scale; multi-targ
inclusion of risk loci w
individually but good
when combined as a

3. Similarity-based:
Drug-drug or
disease-disease
similarity

Evaluating similarities between
drugs and diseases effect may
reveal novel drug-disease
relationships

Intuitive in concept; s
less detailed understa
mechanism required

4. Reversed expression
pattern between
drugs and diseases

A drug with expression profile
opposite to that of a disease are
candidate therapeutic agents

Considers data across
of the most significan
expression readily ava
tissues and from large
less susceptible to con
causality; understand
mechanism not requi
at uncovering drugs o

5. Network-based
methods

Integration of multiple sources of
data regarding drugs, proteins,
genes and diseases relationships to
reveal novel drug-disease
connections

Flexible; ability to int
sources of data; well
analysis methods from
sizes of individual SNPs do not necessarily dictate low drug efficacy
when we target the corresponding protein(s). For instance, one of
the most successful lipid lowering drugs is statins, which targets
HMG Co-A reductase (HMGCR). This target is also suggested by
genetic evidence, since GWAS of LDL-cholesterol (LDL-C) also
implicated SNPs in this locus. However, the effect size of SNP(s)
at HMGCR is relatively modest [23,24] (e.g. G allele of
rs17238484 was associated with ~0.06 mmol/L reduction in LDL-
C), but the effect size of statins is much larger [25]. Therefore, mod-
est effect sizes of genetic variations do not exclude therapeutic
potential of the corresponding targets.

3. Approaches to computational drug repositioning using GWAS

Comprehensive reviews of various computational drug reposi-
tioning approaches are already available (Table 1), which covers
Cons Selected
references

ical interpretation;
utation and low
ultiple databases

on

Usually only single or a few genes are
examined; may potentially miss multi-
target drugs; directionality of effect may
not be clear; functional annotation
information for some SNPs may be missing;
not all genes are directly druggable

[15,26,29]

d; covers SNPs that
at the same time;

GTEx data still limited in sample size, and
bias towards European population; not all
SNPs may affect gene expression

[74–76]

effect on a genome-
et drugs included;
ith small effect size
therapeutic potential
pathway

Definition of pathways can be complicated;
incomplete characterization of pathways
for all drugs; directionality of effect may
not be clear

[67,77]

imple computation;
nding of drug

‘Similarity’ may not be easy to define;
difficulty in integrating different sources of
similarity measures; relatively hard to
uncover drugs with novel mechanisms of
actions

[78,79]

many genes instead
t ones; imputed
ilable for many
GWAS samples, and
founding and reverse
ing of drug
red; relatively better
f novel mechanism

Expression reversal may not be the only
drug mechanism; limitation of cell lines
(cannot fully model human conditions);
imputation accuracy of some genes may be
poor

[80,81]

egrate multiple
established network
other fields

Integrating data with different nature and
potentially different kinds of bias is
difficult; complicated parameter
optimization; difficulty in determining
edge strength; relatively less capable of
revealing unexpected repositioning
candidates

[82–86]
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different aspects and approaches of repositioning. However, the
current review is distinct in that we particularly focus on the use
of human genomic data, especially GWAS, in guiding drug reposi-
tioning. Given the wealth of GWAS data available, we believe that
many novel drug-disease relationships are yet to be discovered.
We note that multiple methods or tools are available for finding
relevant genes from GWAS hits [15,26–30]; however searching
for top susceptibility genes is only one way to guide repositioning,
which has its own limitations (see discussions in later sections).

In this review, we provide (i) a survey of various drug reposi-
tioning approaches using GWAS data; (ii) highlights of studies with
real disease applications of the above approaches; and (iii) discus-
sions on the limitations of these methods (Table 2). For simplicity,
we have categorized GWAS-based repositioning approaches into
five main groups, namely (1) candidate gene approaches; (2)
pathway-based mapping; (3) investigation of drug-drug and
disease-disease similarities; (4) methods based on reversed
expression pattern between drugs and diseases; and (5) network-
based approaches Fig. 1. However, multiple methods are often used
together in studies, therefore the distinction is not always clear.

3.1. Selecting top candidate genes from GWAS as targets for drug
repositioning

Perhaps the most intuitive approach to drug repositioning with
GWAS is to focus on the top candidate genes identified in the
study. We may first map the SNPs onto corresponding genes,
preferably with knowledge of the functional roles of the SNP (e.g.
whether it affects expression or regulation of a gene). In the next
step, we may query these target genes in drug databases where
information about drug-gene and drug-disease indications can be
retrieved. Finally, drug repositioning opportunities present itself
as a ‘mismatch’ between the drug indication and the disease of
interest. For example, we may find a drug that targets the GWAS
top gene but it has not been used for treating the disease of interest
yet. The target genes retrieved from GWAS serve as a connection
between the disease and drugs.

Mapping susceptibility SNPs from GWAS to the corresponding
functionally important gene is a fundamental step for this
approach of repositioning, and is a topic of active research. How-
ever, this can be a challenging process since many SNPs are located
in non-coding regions where the functional roles of variants are
not fully understood. There are several comprehensive reviews
on computational approaches or tools for identifying the most rel-
evant genes from GWAS hits [15,26–30]. We shall highlight a few
approaches below in the context of drug repositioning and discuss
the limitations of this repositioning methodology.

3.1.1. An overview of SNP-to-gene mapping
Following Edwards et al. [26], mapping GWAS variants to the

‘target’ (i.e. functionally relevant) genes can be broken down into
several steps. The first step involves fine mapping of the SNPs asso-
ciated with traits of interest. Briefly, fine mapping is a process of
identifying the most probable causal candidate SNPs within the
identified genetic loci [15,37,38]. Note that GWAS chips are not
designed to necessarily sequence the functional SNPs; rather SNPs
that are the most representative (i.e. ‘tag’ SNPs) are usually chosen
[26]. Tools for fine-mapping include, for example, FINEMAP [39],
PAINTOR [40], CAVIAR [41], CAVIAR Bayes factor [42] and more
recently CAUSALdb [43]. The second step involves in silicomethods
for annotation and characterization of the functional impact of
identified SNPs. Functional significance of the fine-mapped loci
can be investigated with information such as chromatin accessibil-
ity, TF binding, DNA protein interactions, histone modification and
DNA methylation and chromatin interactions. Another common
approach is to look for overlap of the identified variants with
expression- or other types of quantitative trait loci (QTL). Finally,
if resources allow, one may perform further experiments in cell
lines or animal models to ascertain the roles of the target variants
or genes.

3.1.2. Using functional annotations to map associated SNPs to genes
Given that most associated SNPs are located in non-coding

regions, it is logical to hypothesize that these SNPs may regulate
gene expression in certain ways to affect disease risks. The Ency-
clopedia of DNA elements (ENCODE) is one of the earliest initia-
tives to systematically characterize functional elements in the
human genome. ENCODE aims to extensively characterize multiple
genetic elements, examples of which include TF binding regions,
chromatin and DNA accessibility, histone modification, epigenetics
and 3D chromatin interactions. The project employs a variety of
techniques including RNA-seq, DNase-seq, FAIRE-seq and ChIP-
seq etc., which provide very rich data for functional annotation.
Other useful resources or tools for functional annotation include
modENCODE (modencode.org), the NIH Roadmap Epigenomics
Project, GWAS3D [44] and its successor GWAS4D [45], HaploReg
[46], Mutation Enrichment Gene set Analysis of Variants (MEGA-
V) [47], SNPinfo [48], FUMA [49] and CAUSALdb [43]. One point
to note is that the genes closest to the associated SNP may not nec-
essarily be the most functionally relevant gene; a recent study sug-
gested that the likely causative genes are often >2Mbp from the
index SNP [50]. To improve the reliability of gene mapping, it is
advisable to employ a variety of annotation methods to prioritize
the best genes as drug target candidates.

3.1.3. Using expression-QTL (eQTL) to map associated SNPs to genes
Besides prioritizing the corresponding ‘target’ gene(s) for the

associated SNPs, it is preferable to also determine the directionality
of such relationships to facilitate drug repositioning. One impor-
tant question is whether the SNPs cause changes in gene expres-
sions, and if so, what is the direction of change and which tissues
are involved. For example, if the identified SNP causes an upregu-
lation of gene X leading to increased risk of a disease, then an inhi-
bitor of its protein product may be considered a repositioning
candidate. One of the largest eQTL resources is the Genotype-
Tissue Expression (GTEx) project (gtexportal.org), which includes
eQTL data from 49 tissues of over 800 subjects. However, most of
the subjects are Europeans with male predominance (~67%), and
the sample size may still be insufficient to detect eQTL with mod-
est effects. Another related approach is to use tools such as PrediX-
can [51] to impute the expression changes based on raw genotype
or GWAS summary data.

3.1.4. Querying drug databases for repositioning candidates
After identifying the most relevant genes from associated SNPs,

finding candidate drugs that target the selected genes is relatively
straightforward. For instance, in a recent attempt to repurpose
drugs for inflammatory bowel disease (IBD), Grenier et al. [52] first
selected the most likely causal SNPs by Bayes factor within each
locus, then these SNPs were mapped to relevant genes by func-
tional annotations. Finally, drugs that may be repositioned for
IBD were derived from these genes using a web-based tool Gene2-
Drug [53] (see descriptions below). In another study, Okada et al.
[40] performed a GWAS for rheumatoid arthritis (RA) and discov-
ered 42 additional significant loci. They found that drug targets
from approved RA drugs showed significant overlap with RA risk
genes or their interacting partners. Tragante et al. [54] made use
of data from 49 coronary artery disease (CAD) and myocardial
infarction (MI) GWAS to prioritize 153 risk loci. Leveraging drug-
gene information from DGIdb, they identified three repositioning
candidates and re-discovered several existing treatments [55].
Grover et al. [56] suggested 981 novel therapeutic agents for CAD

http://www.modencode.org/
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based on 647 candidate genes they identified from the Wellcome
Trust Case Control Consortium (WTCCC) GWAS. They also identi-
fied additional candidate genes with Gentrepid [57], which
expanded the list of genes using pathway, protein–protein interac-
tion (PPI) and protein domain homology information. Other reports
pulled drug data from multiple databases including TTD, Pandrugs,
PharmGKB and DrugBank to derive drug-target relationships
[56,58–63].

3.1.5. PheWAS
Phenome-wide association studies (PheWAS) is another way to

reveal drug repositioning opportunities. Unlike GWAS, PheWAS
evaluates the ‘opposite’ direction of association, examining what
diseases or traits are associated with specific genetic variants. For
example, variants in drug target genes may be subject to PheWAS,
hence enabling the discovery of additional drug-disease links.

In one of the earliest large-scale PheWAS, Denny et al. made use
of electronic medical records (EMRs) to examine phenotype associ-
ations of ~3000 SNPs previously implicated in GWAS. They found
that PheWAS successfully replicated 66% of previous GWAS associ-
ations and revealed new pleiotropic associations that were subse-
quently replicated. These findings provided support to the validity
of the PheWAS approach. In a subsequent study, Rastegar-Mojarad
et al. [58] proposed that PheWAS may be further utilized to reveal
drug repositioning candidates. The authors discovered 52,966
drug-disease pairs via PheWAS, amongwhich ~28%were supported
by the literature or tested in clinical trials. It was proposed that the
rest of the drug-disease pairsmay provide new repositioning oppor-
tunities. For a further discussion of the complementary nature
betweenGWASandPheWAS,please also refer toRobinsonet al. [64].

3.1.6. Limitations
There are several limitations of using the top candidate genes

for direct drug repositioning. Firstly, the top genes identified from
GWAS may not be easily druggable. Finan et al. performed a com-
prehensive analysis on the druggability of genes [65]. They esti-
mated that only 4479 (22%) of the 20,300 protein coding genes
are druggable (or already targeted by a drug). Secondly, focusing
on the effect of the top SNPs may miss biologically meaningful tar-
get genes with small effect sizes [66–68]. Third, focusing on a sin-
gle candidate gene may miss multi-target drugs, which could be
more effective than single-target ones for some conditions [69].
Recently increasing attention has been placed on development of
multi-target drugs [70,71]. Fourth, as discussed earlier, due to
the complexity of the human genome, there is no perfect way to
proper annotation. As a result, different studies may have
employed different (sometimes incomplete) annotation proce-
dures, and integrating various annotation approaches is not
straightforward. As for the limitations of PheWAS, it is still not as
well-developed as GWAS, given that systematically curating EMR
and establishing standardized nomenclature are not straightfor-
ward and require a huge concerted effort. Also, it remains an open
question on how to model high dependence between phenotypes
derived from EMR. A more detailed discussion on the strengths
and limitations of PheWAS can be found in [72,73].

3.2. Drug repositioning based on pathway or gene-set analysis

Pathway or gene-set analysis (as opposed to single gene or SNP-
based studies) offers a more macroscopic view of the biological
processes underlying diseases and drug effects. The key idea
behind pathway analysis is to organize various functionally or bio-
logically relevant genes together and consider their overall effect.
As mentioned earlier, approaches that consider only individual
SNPs or genes may miss biologically meaningful associations of
modest effect sizes [87]. On the other hand, ‘gene-sets’ can be
any set of functionally related genes or a set based on arbitrary cri-
teria set by the researcher (in this context, drug targets or ‘effector
genes’). For the purpose of this review, we refer to both of these
grouping methods as ‘pathways’. Several examples of applications
are discussed below.

De Jong et al. [79] studied repositioning candidates for
schizophrenia by a pathway analysis based on GWAS summary
statistics, where each drug pathway is defined by pharmacological
profiles and chemical binding affinities. The analysis highlighted
several candidates reaching a suggestive level of significance,
including two dopamine receptor antagonists and a tyrosine kinase
inhibitor. In another recentwork, So et al. [88] investigatedwhether
findings from GWAS may be used to guide drug repositioning for
depression and anxiety disorders. Drug-effector gene-sets were
extracted with DSigDB and gene-based significance from GWAS
was computed by FASTBAT [89]. Then pathway analyses (following
the principle of MAGMA [90]) were conducted to look for enrich-
ment of GWAS results for specific drugs. Interestingly, the reposi-
tioning hits were largely enriched for known psychiatric drugs or
those included in clinical trials. Enrichmentwas seen for antidepres-
sants and anxiolytics but also for antipsychotics. The study also
revealed other repositioning candidates with literature support.
Note that the above two studies did not only focus on the top genes
but also considered the actual significance level of each gene.

Another approach was presented by Jhamb et al. [91]. The
authors first obtained GWAS data from STOPGAP [92]. After SNPs
with p < 5e�8 are mapped to genes, these genes were mapped to
their respective pathways with MetaBase, a manually curated soft-
ware suite that contains interaction data. The main novelty is that
the authors considered an expanded set of GWAS ‘hits’ by including
genes in related pathways as well. Finally a 2 by 2 table is con-
structed for each disease to look for over-representation of the (ex-
panded) GWAS hits among drug targets indicated for each disease.

Yet another work by Gaspar et al. investigated drug reposition-
ing opportunities for schizophrenia using GWAS data [93]. They
also proposed a new visualization approach and studied how
increased sample size of the original GWAS may improve the yield
of drug repositioning. Pathway analysis can also be combined with
other methods. Mӓkinen et al. [66] first mapped cardiovascular dis-
ease (CVD) associated-SNPs to genes with eQTL, then investigated
the enrichment of these ‘e-SNPs’ among known biological path-
ways. After obtaining the CVD pathway gene-set, the pathways
were augmented with co-expression analysis and subsequently
placed in a Bayesian network model of gene-gene interactions.
By integrating a larger variety of sources of omics data, the identi-
fied genes may serve as better targets for repositioning.

Another tool combining pathway analysis and perturbation
library is Gene2Drug [53], which is used by Grenier et al. [52]
(see discussion above). Gene2Drug takes a single gene as input,
and aims to discover drugs linked to the input gene. The program
extracts drug-related pathways based on perturbation data from
CMap (see section below), then generates the subset of pathways
that include the input gene.

Pathway-based analysis is a flexible approach and several
extensions are possible. For example, in clinical practice, comorbid
diseases are very common, and it will be preferable to find drugs
that target both diseases at the same time. A recent study proposed
a pathway-based approach to address this problem. Wong et al.
[94] first employed a false discovery rate (FDR)-based approach
to uncover genetic loci shared between depression/anxiety and car-
diometabolic diseases from GWAS summary data. The shared loci
were then subject to pathway analysis to uncover repositioning
candidates, many of which are supported by the literature. Also,
while the focus of this review is on repositioning using GWAS,
the pathway-based approach can be readily extended to handle
other types of human genomic data. For example, a recent study
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showed by pathway analysis that de novo mutations may be used
to guide drug discoveries for neuro-psychiatric disorders [95].
Readers may also refer to Ref. [96] for further discussions on the
potential of GWAS data in drug discovery for neuro-psychiatric
disorders.

3.2.1. Limitations
First, defining a pathway is complicated because feedback inhi-

bition and compensatory mechanisms are almost ubiquitous in
biology [67]. Also, there is an emphasis on the known pathways
in pathway-based approaches [91], therefore the applicability of
this approach may be limited by our current knowledge of biology.
The mechanisms of many drugs are not entirely clear so their
‘pathways’ or gene-sets may be incompletely characterized.
Finally, the directionality of effect may not be clear. However, there
are tools that aid the estimating of directionalities in pathway
analyses [97–99], and commercially available tools such as QIA-

GEN’s Ingenuity Pathway Analysis (IPA) (digitalinsights.qia-

gen.com) and MetaCore (portal.genego.com/).

3.3. Similarity-based drug repositioning

Similarity between drug-drug and disease-disease pairs may be
leveraged for drug repositioning. One of the characteristics of such
similarity-based approaches is that they generally do not require
detailed understanding of drug or disease mechanisms, and are
able to consider high-throughput omics data across many genes
without restricting to the most significant ones. Note that
similarity-based approaches are closely related to network-based
approaches, however some algorithms have been specifically
designed for the former and network-based methods usually
involve modeling a larger variety of information (apart from simi-
larity between drugs and diseases).

3.3.1. Drug-drug similarity match
Drug-drug similarity analysis begins with the comparison

between the chemical and/or biological profiles of different drugs,
after which drugs can be repositioned to the indications of another
one if the two shared sufficient similarity. An example to illustrate
this idea is the work by Napolitano et al. [100]. The authors first
generated a drug similarity matrix by integrating multiple sources
of information, such as similarity in transcriptomic changes after
drug administration (from CMap), as well as similarity in drug tar-
get proteins and chemical structures. The authors then integrated
this information via a machine learning (ML) framework and pro-
posed candidates for repositioning based on similarity to the
known drugs. Ferrero and Agarwal [80] proposed another approach
to repositioning based on the overlap between the mechanisms of
actions (MOA) of different drugs. The main idea is to compare the
downstream genes that are perturbed by the drugs, which may
reflect the underlying MOA.

3.3.2. Disease-disease similarity match
It is reasonable to hypothesize that if two diseases are similar

enough, then the drugs that are indicated for one disease may be
repositioned to treat the other. This concept has been used in a
number of studies in drug repositioning. For instance, Gottlieb
et al. [101] proposed an algorithm (PREDICT) to combine multiple
measures of drug-drug similarity and disease-disease similarity for
repositioning. Later, Wang et al. [102] combined the approach in
PREDICT with drug and disease data from DrugBank, CMap, OFF-
SIDE (a side effect database from PharmGKB) and literature text
mining to create a recommendation system for novel drug candi-
dates. While the aforementioned studies did not directly utilize
GWAS data, GWAS data may be used to measure disease-disease
similarity as well. For example, as a proof of concept, Li et al.
[78] examined pairs of genetic variants shared between diseases
while considering eQTL information at the same time. They found
that pairs of diseases that were genetically similar were also more
likely to be comorbid in clinical samples. The study suggests that
genetic data from GWAS may also be used to assess ‘similarity’,
which might have implications in drug repositioning.

3.3.3. Limitations
Similarities between drugs and diseases may not be easy to

define. For example, some studies used CMap to ascertain drug-
drug similarity, but there are limitations of the CMap database
(please also refer to discussions in the next section), such as lack
of appropriate tissue-specific cell lines in some occasions. How to
integrate different sources of data to define similarity remains an
open question. By its nature, this approach may tend to uncover
candidates that are similar to the known drugs, and is less capable
of revealing drugs with novel mechanisms of actions. It is possible
that the drug candidates are already suggested by clinical experi-
ence (or prescribed off-label) due to their similarity with the
known ones. Network-based approaches may also share similar
shortcomings, due to similarity in their principles.

3.4. Searching for reversed expression profiles between drugs and
diseases

A more distinct approach to repositioning is to compare the
expression profiles of drugs against those of specific diseases. The
core hypothesis is that if a drug produces an expression profile that
is opposite to that of a disease, then the drug may be considered a
repositioning candidate (due to its potential to ‘reverse’ disease-
related expression profiles). This approach does not require knowl-
edge of the drug mechanisms or even drug targets; it can be
applied as long as drug-induced expression profiles are available.
In addition, it utilizes GWAS data across multiple genes instead
of focusing on only the top significant ones. As described later,
the method is also readily available to any complex diseases or
traits with GWAS summary statistics available. Compared to simi-
larity or network-based methods, this approach may have a greater
chance of uncovering drugs with new MOA.

To perform this kind of analysis, one would need the following
components: (1) Drug-induced (differential) expression profile; (2)
Disease-induced (differential) expression profile; and (3) algo-
rithms to determine the correlations between (1) and (2).

Publicly available data are available for drug-induced expres-
sion profiles. Popular choices include the Connectivity Map (CMap)
[103] and its successor Library of Integrated Network-based Cellu-
lar Signatures (LINCS) L1000 data [104]. CMap is a collection of
expression profiles by applying ~1300 compounds on 5 human
cancer cell lines, with expression profiles for ~7000 genes as of
Build 2. LINCS (L1000) is a database of a much larger scale that con-
tains about 1,328,098 gene expression profiles as a result from the
applications of ~42,553 perturbagens. A set of 1000 ‘landmark’
transcripts was directly measured while the expression levels of
other genes were mainly computed by imputation. A comprehen-
sive review about these resources is given by Musa et al. [105].

For the purpose of this review, we shall mainly discuss GWAS-
derived data for component (2). While one may use RNA-seq or
microarray data in patients to directly estimate component (2),
as argued in Ref. [81], there are several advantages of using
imputed expression profiles from GWAS. For example, patients
are often medicated before their samples are collected, which
may affect their expression profiles. GWAS-imputed transcriptome
is much less susceptible to confounding by medication or other
environmental factors. In addition, expression can be imputed for
a large variety of tissues, even for those (e.g. brain) which are dif-
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ficult to access. The sample size of GWAS is also often much larger
than standard RNA-seq or microarray studies on clinical samples.
This approach of comparing GWAS-imputed expression against
drug transcriptomes was proposed and adopted by So et al. [81]
to prioritize repositioning candidates for psychiatric disorders.
The method revealed numerous candidates supported by previous
preclinical or clinical studies, and the approach was able to ‘re-
discover’ known psychiatric medications for the respective disor-
ders, despite having no prior knowledge of the drug indications.

Imputation of gene expression profiles can be performed by var-
ious tools, the most popular being PrediXcan [51] or its successor S-
PrediXcan [106]. The latter is able to impute expression changes by
GWAS summary statistics alone,whichenhances the applicability of
the above repositioningmethodology as summary statistics are now
widely available. Briefly, these tools first learnhowSNPsmaydictate
gene expression levels from training data extracted from datasets
such as GTEx, GEUVADIS and DGN. Based on the prediction model
built, the tools can then predict or impute expression levels when
presented with genotypes from new samples.

Finally, for component (3) of the analysis, we need to assess the
(anti-)correlation between the expression profiles from drugs and
diseases. For example, So et al. [81] adopted Spearman and Pearson
correlation as well as Kolmogorov–Smirnov (KS) test to evaluate
patterns of reversed expression.

3.4.1. Limitations
There are several limitations of this approach,many of which are

also discussed in Ref. [81]. First, perturbation libraries such as CMap
and L1000 are usually based on cell line data, meaning that all the
limitations of cell line-based experiments may also apply. For
instance, cell lines cannot model complex cell-cell or cell-ECM (ex-
tracellular matrix) interactions, and pharmacokinetic properties
and dosage control are often dependent on experiment protocols
[107]. Second,many of the cell lines are cancer cell lines; using them
for expression profiling may not be optimal when the aim is to pri-
oritize drugs for other diseases, such as psychiatric disorders or
CVD. Third, not all therapeutically important drugs may work by
reversing gene expression profiles [108], although the approach
appears to work reasonably well at least in psychiatric disorders.
Finally, imputation of expression profiles from GWAS data may
not be as accurate as directly measuring the actual tissue-specific
expressionprofiles frompatient samples, although the latter is often
difficult to collect. Some genes may be poorly imputed due to large
environmental influence on gene expression [109], or that the orig-
inal sample is not powerful enough to detect the eQTLs. Limitations
of the GTEx sample discussed earlier also apply here.

3.5. Network-based approaches

3.5.1. Overview
Network-based drug repositioning approaches aim to uncover

novel drug-disease relationships by integrating a wide variety of
biological information. A typical network consists of nodes (genes,
proteins, diseases/traits, compounds) and edges (often weighted in
biological settings) connecting the nodes. This approach is a popu-
lar and well-established drug repositioning technique, which offers
high flexibility, as it allows for consideration of multiple dimen-
sions of data sources. The types of biological networks that are use-
ful for drug repositioning include, for example, gene regulatory,
gene-gene interaction, metabolic, drug-target interaction (DTI)
and protein–protein interaction (PPI) [84] networks. It is preferable
to integrate multiple biological networks in order to reduce noise
and improve biological relevance [83,85]. After preparing a curated
network of information, analyzing the graphs usually involves
tools developed from graph theory. For drug repositioning, two
types of network analysis approaches might be useful: clustering
and propagation [36]. Briefly, clustering is a way of discovering
subnetworks by the similarity of its elements, since biologically
related entities should intuitively share a handful of underlying
connections [110,111]. Clustering may reveal subnetworks and
new relationships between drugs and diseases, fostering the dis-
covery of drug candidates. Propagation approaches, as the name
suggests, models the propagation of information from a source
node to its surroundings [112]. Approaches such as random walk
[113] may be used to assess the distance between a drug and a dis-
ease, thereby prioritizing drug candidates. For the purpose of this
reivew, we shall not focus on the general approaches of network-
based drug repositioning which has already been extensively
reviewed [82–86,114–117]. Instead, we shall focus on the role
and contribution of GWAS data towards this type of repositioning.
3.5.2. Using GWAS data in network-based drug repositioning
GWAS can reveal associations between a genetic variant and

multiple diseases, hence providing new repositioning candidates
or drug targets. In a recent work, Gaspar et al. built bipartite
drug-target networks by leveraging gene-based statistics from
MAGMA and S-PrediXcan, accounting for both SNP-level associa-
tions and imputed transcriptomic changes. They also built an

online tool Drug Targetor (drugtargetor.com), which visualizes
the resulting drug-target network. The authors built a network
from GWAS of major depressive disorder, and suggested potential
new drug candidates and their modes of actions [118].

In another application, a network-based approach was used to
analyze GWAS results of CVD [119]. The study began with pathway
analysis of the significant SNPs from 16 GWAS datasets. The iden-
tified pathways were then mapped to the PPI network InWeb and
analyzed using randomwalk. Next, the authors examined the topo-
logical properties of the identified clusters and prioritized CVD-
associated genes that displayed high centrality and betweenness,
which may be prioritized as potential drug targets. In another
report, Shu et al. [120] studied shared genetic networks and key
‘driver genes’ for both CVD and T2D using a systematic approach.
They first considered co-expression modules for CVD and type 2
diabetes (T2D), and incorporated gene regulatory networks from
GIANT [121] and Bayesian networks constructed from CVD and
T2D related tissues to prioritize key drivers. The potential driver
genes or key regulators were then further validated by cell culture
and animal models. These genes might serve as useful targets for
drug discovery or repositioning. While the above two examples
were not solely aimed at drug repositioning, they demonstrated
how network-based methods may shed light on biological pro-
cesses and help prioritize drug target genes. The application of
GWAS data in network-based repositioning has also been reviewed
by Nabirotchkin et al. [122] recently.
3.5.3. Limitations
First, integrating different sources of networks can be tedious

and challenging in terms of data cleaning, and this might require
a certain degree of understanding of the data and their biological
meanings. Second, network analysis heavily relies on the similarity
or closeness between different entities [86], therefore the reposi-
tioning results may be concentrated around the ‘nearby pharmaco-
logical space’; it may be relatively difficult to uncover drugs with
novel mechanisms. Also, the strengths of similarity between nodes
(i.e. edge strengths) are often hard to define. In addition, limita-
tions in data sources could affect the performance of network-
based analysis methods, for example the reliability and complete-
ness of interactome data [123] and the difficulty in constructing
accurate PPI networks [124]. Finally, the complicated nature of
network structures makes parameter optimization a key issue
when analyzing the data with network-based algorithms [125].

http://drugtargetor.com
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4. Conclusion and future directions

Despite the fact that more than 4000 GWAS have been con-
ducted thus far, comparatively few studies have systematically
analyzed the potential of GWAS in drug discovery or repositioning.
With growing resources from biobanks (e.g. the UK Biobank) and
increasing availability of GWAS data, such data should provide a
very rich resource for guiding drug discovery/repositioning.
Indeed, as discussed above, a number of studies have provided
early evidence that human genomics data from GWAS might
improve the success of drug development, or repositioning strate-
gies based on GWAS are able to ‘re-discover’ known drugs for dis-
eases and/or suggest reasonable new candidates.

We focused on computational approaches to prioritize drug can-
didates in this review, but we should emphasize that further
experimental and clinical studies are necessary to confirm the find-
ings. Computational or bioinformatics approaches help to narrow
down the search space and improve the success rate of drug devel-
opment by prioritizing the best candidates, but they are not
designed to provide confirmatory evidence. Nevertheless, given
the huge cost and long time involved in developing a new drug,
even a tiny improvement in success rate would translate to very
substantial savings in absolute terms.

We hereby make a few comments to highlight several general
limitations and directions for further research. First, to improve
the accuracy of GWAS-based drug-repositioning studies, there is
a need for more high-quality data, including GWAS with large
cohort sizes and richer phenotypes, GTEx or other eQTL projects
on more tissues and larger sample sizes, perturbation libraries that
involve more comprehensive drug testing models etc. Second, new
statistical methods have emerged to ascertain not only associa-
tions but also causal relationships between exposure (or risk fac-
tors) and outcomes; one of the most prominent methods is
Mendelian Randomization (MR) [126]. A few studies have sug-
gested that MR may be used to model the effects or side-effects
of drugs with known targets. This may have implications for drug
discovery or repositioning, although further development in
methodology may be required [127–129]. Third, machine learning
(ML) and artificial intelligence are among the fastest growing areas
in recent years. ML approaches such as deep learning and other
methods hold great promise for accelerating drug discovery/repo-
sitioning, as they may be able to discover and predict with higher
accuracy the complex patterns and relationships between genes,
drugs and diseases [130–133]. For example, ML methods may be
used to capture complex relationships between drug transcrip-
tome and the drug’s treatment potential for specific diseases
[134]. For diseases with high heterogeneity, a drug may only be
useful for a subgroup of patients [135]. Unsupervised learning
methods may help to subtype diseases more accurately, enhancing
the success rate of drug development [136]. Finally, GWAS is a very
rich source of data, but integration with other forms of human
omics data, such as exome sequencing, transcriptomics and epige-
nomics studies will further improve the reliability of repositioning.
In the same vein, another important direction is the integration of
large-scale EMR with multi-omics data in drug development
[58,64]. As emphasized in this review, each repositioning method
has its own strengths and limitations; an important future direc-
tion is to integrate different methodologies for optimal prediction
of drug candidates.
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