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IgG antibodies cause inflammation and organ damage in autoim-
mune diseases such as systemic lupus erythematosus (SLE). We
investigated the metabolic profile of macrophages isolated from
inflamed tissues in immune complex (IC)-associated diseases, includ-
ing SLE and rheumatoid arthritis, and following IgG Fcγ receptor
cross-linking. We found that human and mouse macrophages
undergo a switch to glycolysis in response to IgG IC stimulation,
mirroring macrophage metabolic changes in inflamed tissue in vivo.
This metabolic reprogramming was required to generate a number
of proinflammatory mediators, including IL-1β, and was dependent
on mTOR and hypoxia-inducible factor (HIF)1α. Inhibition of glycol-
ysis, or genetic depletion of HIF1α, attenuated IgG IC-induced acti-
vation of macrophages in vitro, including primary human kidney
macrophages. In vivo, glycolysis inhibition led to a reduction in kid-
ney macrophage IL-1β and reduced neutrophil recruitment in a mu-
rine model of antibody-mediated nephritis. Together, our data
reveal the molecular mechanisms underpinning FcγR-mediated met-
abolic reprogramming in macrophages and suggest a therapeutic
strategy for autoantibody-induced inflammation, including lupus
nephritis.
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IgG antibodies play an important role in defense against infection,
but can cause inflammation and organ damage in autoimmune

diseases such as systemic lupus erythematosus (SLE) (1). Patients
with SLE have circulating antibodies that bind to a variety of self-
antigens, resulting in IgG immune complex (IC) deposition in skin,
joints, and kidneys, causing organ damage by activating complement
and local immune cells (2, 3). Current treatments for lupus and
other autoantibody-mediated diseases do not adequately control
disease activity and tissue damage, and are associated with signifi-
cant side effects (4); therefore, the identification of new therapeutic
targets is a major unmet clinical need. Fcγ receptors (FcγRs) bind
IgG IC and are expressed by many immune cells, including tissue-
resident macrophages (5, 6). Polymorphisms in FCGR genes are
associated with increased susceptibility to SLE and other autoim-
mune diseases (7–9), confirming their importance in disease path-
ogenesis. FcγRs may be activating (in humans, FcγRIIA, IIIA, IIIB)
or inhibitory (FcγRIIB), and the balance of these two inputs de-
termines the activation threshold and the magnitude of the in-
flammatory response to IgG IC (1, 10). Macrophages are tissue-
resident immune cells that can respond to local immune challenges
and, when stimulated by IgG IC, produce cytokines such as IL-6,
TNFα, and IL-1β, as well as inflammatory mediators including
prostaglandins and reactive oxygen species (ROS) (6, 7, 10–12).
Given their potent proinflammatory effects in tissues, macrophages
are an obvious therapeutic target in antibody-mediated autoim-
munity. Indeed, mice deficient in activating FcγRs (13) or with

macrophage-specific overexpression of the inhibitory FcγRIIB show
less severe autoantibody-induced nephritis (14). These data suggest
that inhibition of FcγR-dependent macrophage activation may be a
useful treatment strategy in lupus and in other autoimmune diseases
where antibodies play a pathogenic role.
There has been a recent appreciation that immune cells undergo

metabolic reprogramming in response to local pathogen-derived
signals and cytokines. Indeed, these changes in cellular metabo-
lism can profoundly influence the nature of the immune response
produced (15, 16). For example, macrophages activated by the toll-
like receptor (TLR)-4 ligand lipopolysaccharide (LPS), known as
M(LPS) or M1 macrophages (17), undergo an increase in glycolysis
but a reduction in Krebs cycle-associated oxidative phosphorylation
(OXPHOS) and have a proinflammatory phenotype (18, 19),
whereas macrophages generated by IL-4 stimulation [M(IL-4) or
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M2 macrophages (17)] retain high OXPHOS and have antiin-
flammatory properties (18, 19). To date, there has been little con-
sideration of how FcγR cross-linking by IgG IC affects metabolic
processes in macrophages, and this information is important for our
understanding of the pathogenesis of diseases characterized by
antibody-mediated inflammation. Of note, although immune com-
plex stimulation results in the production of proinflammatory cy-
tokines by macrophages (11, 12), the signaling cascade downstream
of FcγR is distinct from TLR signaling, involving SYK, PI3K, and
MAPK (1, 5). Indeed, the addition of IgG IC to LPS-stimulated
macrophages can even attenuate inflammation (20). This raises the
question of whether FcγR cross-linking on macrophages may have
distinct and specific effects on macrophage metabolism.
Here we show that tissue macrophages in IC-associated disease

exhibit a glycolytic transcriptional signature, which is shared with
macrophages following IgG IC stimulation in vitro. In response to
IgG IC stimulation, macrophages up-regulate glycolytic genes and
undergo a switch to aerobic glycolysis. This metabolic reprog-
ramming was required to generate a number of proinflammatory
mediators and cytokines, suggesting that this pathway could be
activated in antibody-mediated tissue inflammation in vivo, and
potentially represents a useful therapeutic target. In keeping with
this, inhibition of glycolysis attenuated IgG IC-induced IL-1β
production by kidney macrophages in mice and humans and re-
duced neutrophil recruitment and inflammation in nephrotoxic
nephritis. Together, our data reveal the cellular molecular mech-
anisms underpinning FcγR-mediated metabolic reprogramming in
macrophages and that this switch occurs in kidney macrophages
in vivo following IgG IC challenge. Inhibition of macrophage
glycolysis ameliorated autoantibody-induced inflammation, with
therapeutic implications for conditions such as lupus nephritis.

Results
FcγR Cross-Linking Induces a Transcriptional Glycolytic Switch in
Macrophages. To address the question of whether inflammation
associated with autoantibody IC deposition in tissues results in
changes in macrophage metabolism, we assessed the transcrip-
tional profiles of macrophages obtained from inflamed tissues. In
human synovial macrophages isolated from patients with RA
(Fig. 1A), and in kidney F4/80+ macrophages from mice with
NZB/W lupus nephritis (Fig. 1B and SI Appendix, Fig. S1A), we
observed an enrichment of glycolysis pathway genes compared to
control macrophages. Kidney macrophages may arise from yolk-sac
precursors or may be monocyte-derived and are F4/80hiCD11bint

and F4/80intCD11bhi, respectively (21), and may differ in their
functional characteristics (22). To determine if the metabolic profile
of both macrophage subsets was altered in IC-mediated inflam-
mation, we performed single-cell RNA sequencing (scRNAseq) on
renal myeloid cells sorted from a second model of murine nephritis,
MRL-lpr mice, and from control MRL/MpJ mice. Several clusters
of cells could be distinguished, with two major groups evident:
mononuclear phagocyte (MNP) 1, with transcriptional similarity to
yolk sac-derived F4/80hi macrophages, and MNP2 that were tran-
scriptionally similar to monocyte-derived macrophages and included
a monocyte cluster (Fig. 1 C and D). In nondiseased MRL/MpJ
kidney monocytes and macrophages, fatty acid metabolism genes
were enriched (Fig. 1E). In contrast, in MRL-lprmice, glycolysis and
OXPHOS genes were increased in kidney MNPs, with glycolysis
genes particularly enriched in monocyte-derived macrophages
(Fig. 1E).
Although informative of potential metabolic changes induced by

IgG, macrophages isolated from inflamed tissues may be influ-
enced by a variety of tissue- and disease-specific factors, including
local cytokines and danger-associated molecular patterns, as well as
the exact nature of the IgG immune complexes. Furthermore,
transcriptional changes in metabolic pathway genes require vali-
dation to definitively confirm cellular metabolic adaptations. To
better characterize the specific effect of isolated FcγR cross-linking

by IgG IC on macrophage metabolism, we stimulated murine bone
marrow-derived macrophages (BMDMs) with a model IgG IC
[ovalbumin opsonized with IgG (Ova-IC)] (23, 24) and assessed
gene expression (SI Appendix, Fig. S1B). We observed a significant
enrichment of glycolysis-associated genes following FcγR cross-
linking (Fig. 1F and SI Appendix, Fig. S1B), including increased
transcripts of key enzymes and transporters required for glycolysis,
such asHk2, Ldha, and Slc2a1 (Fig. 1G), which we confirmed using
real-time quantitative (q) PCR (Fig. 1H). Similarly, in human
monocytes stimulated with plate-coated IgG (c-IgG), we also ob-
served an enrichment of glycolysis-associated genes (SI Appendix,
Fig. S1C). In addition to an increase in glycolysis genes, we also
observed reduced expression of genes associated with fatty acid
metabolism in IgG IC disease-associated macrophages and in
murine macrophages following FcγR cross-linking (Fig. 1 A, B,
and E), specifically fatty acid catabolism pathway genes (Fig. 1I).
In vivo, inflamed NZB/W renal and RA synovial macrophages
showed globally similar transcriptional changes to BMDMs
stimulated with IgG IC, with an increase in FcγR-inducible
genes and a reduction in FcγR-suppressed genes in BMDMs,
suggesting that FcγR signaling may underpin the macrophage
metabolic phenotype in vivo (SI Appendix, Fig. S1D). Further-
more, we observed a positive correlation between the induction
of glycolysis pathway genes and the expression of the in vitro
BMDM-derived FcγR-associated gene signature in NZB/W renal
macrophages (Fig. 1J), supporting the conclusion that these
pathways are causally linked.
Analysis of FcγR expression in renal macrophages from ne-

phritic NZB/W mice demonstrated an increase in activating FcγR
expression and reduction in FcγRIIB (SI Appendix, Fig. S1E),
resulting in an increase in FcγR A:I ratio compared to preneph-
ritic mice or mice in remission (SI Appendix, Fig. S1F). Therefore,
inflamed tissue macrophages are primed for IgG ligation and
exhibit an activated FcγR-associated transcriptional signature,
including a switch to glycolysis. To ensure that this was not due to
contamination of IgG IC with a Toll-like receptor (TLR) ligand
such as lipopolysaccharide (LPS), we assessed glycolysis-associated
genes in TLR2/4-deficient BMDMs and observed a similar in-
crease in HK2, Ldha, Aldoc, and Gapdh expression post-FcγR
cross-linking that was absent with LPS stimulation (SI Appendix,
Fig. S1G). Together these data suggest that FcγR cross-linking by
autoantibody-containing IgG IC initiates metabolic reprogram-
ming in tissue macrophages toward glycolysis, with the potential to
promote proinflammatory activity.

FcγR Cross-Linking in Macrophages Results in a Switch to Aerobic
Glycolysis. To obtain a more detailed metabolic profile of mac-
rophages following FcγR cross-linking and to validate our tran-
scriptional analyses, we measured their extracellular acidification
rate (ECAR) and oxygen consumption rate (OCR). We found an
increase in ECAR and a decrease in OCR following IgG IC
stimulation in both murine BMDMs (Fig. 2 A and B) and human
monocyte-derived macrophages (Fig. 2C). Overall, the ECAR/
OCR ratio was significantly increased following FcγR cross-
linking (Fig. 2 B and C), demonstrating a switch to glycolysis.
We also observed a similar metabolic switch in human monocyte-
derived macrophages (MDMs) using an alternative model of IgG
IC stimulation: IgG–anti-IgG Fab immune complexes (SI Ap-
pendix, Fig. S2A). To determine whether these observations are
representative of tissue macrophages, we also performed ECAR
and OCR measurements in murine peritoneal macrophages (SI
Appendix, Fig. S2B). Following Ova-IC stimulation, we similarly
observed a switch to glycolytic metabolism, with an increase in
ECAR, a reduction in OCR, and elevated ECAR/OCR ratio
(Fig. 2 D and E).
We next performed global metabolomic profiling of IgG IC-

stimulated murine macrophages (using liquid chromatography–
mass spectrometry) and compared these profiles to control or
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Fig. 1. FcγR cross-linking induces a glycolytic transcriptional switch in macrophages. (A and B) Gene set enrichment analysis (GSEA) of selected Hallmarks
metabolic pathways in synovial macrophages from RA patients (A) and renal macrophages from NZB/W mice (B). Data derived from GEO: GSE10500 and
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0006633) gene enrichment in BMDMs in F. (J) Correlation analysis of single sample (ss) GSEA scores for Hallmarks glycolysis pathway versus top 200 IC-induced
BMDM genes in renal macrophages from B. Means ± SEM are shown for triplicate measurements and are representative of three independent experiments.
P values were calculated using the two-tailed Student’s t test (H), nonparametric Mann–Whitney U test (J), and Spearman’s correlation (J; *P < 0.05; **P < 0.01,
***P < 0.001; ****P < 0.0001).
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LPS-stimulated macrophages, the latter well-described to induce a
switch to aerobic glycolysis. IgG-stimulated macrophages exhibi-
ted a unique metabolic profile compared with LPS-stimulated
macrophages (Fig. 2F and SI Appendix, Fig. S2C), with specific
increases in fumarate, inosine monophosphate (IMP), carbamoyl-
aspartate (ureidosuccinic acid), and gamma-glutamylcysteine rel-
ative to control or LPS-stimulated macrophages (SI Appendix, Fig.
S2 C and D). Notably, fumarate, IMP, and carbamoyl-aspartate
are intermediates in aspartate metabolism. Indeed, metabolite set
enrichment analysis (MSEA) demonstrated an enrichment in as-
partate, and phenylalanine and tyrosine metabolism pathways, as
well as metabolites associated with the Warburg effect in IC-
stimulated macrophages (Fig. 2G), an MSEA profile that was
distinct from that observed in LPS-stimulated macrophages (SI
Appendix, Fig. S2E). In keeping with the MSEA and seahorse
analysis, we observed a reduction in glucose and an increase in
glycolysis intermediates, particularly glyceraldehyde 3 phosphate,
in IgG IC-stimulated macrophages (Fig. 2H and SI Appendix, Fig.
S2C). These data demonstrate that IgG ICs induce a change in
macrophage metabolism, including the induction of aerobic gly-
colysis, with a metabolic phenotype that is overlapping with, but
distinct from, that observed with LPS stimulation.

IgG Immune Complex-Induced Glycolysis Is Required for Macrophage
Production of IL-1β, PGE2, and ROS. FcγR cross-linking in BMDMs
in vitro and tissue macrophages ex vivo induces the expression of
several inflammatory cytokines and chemokines, including IL-1β,
IL-6, and TNFα (Fig. 3A and SI Appendix, Fig. S3A). To determine
whether the observed glycolytic switch impacted macrophage
function and their capacity to induce inflammation, we stimulated
BMDMs with IgG IC in the presence of 2-deoxy-D-glucose (2DG),
an inhibitor of glycolysis. 2DG significantly attenuated IgG IC-
induced IL-1β expression (Fig. 3B and SI Appendix, Fig. S3B) and
PGE2 production (Fig. 3C), but had little impact on IL-6 and TNFα
(Fig. 3D). IgG IC-induced ROS production was also inhibited by
2DG (Fig. 3E), while 2DG had no impact on FcγR-mediated
phagocytosis of fluorescent Ova-IC (SI Appendix, Fig. S3C).
A single nucleotide polymorphism (SNP) in human FCGR2B

(rs1050501) results in profound receptor dysfunction and is associ-
ated with increased susceptibility to lupus (7, 25). Similarly,
Fcgr2b−/− mice are prone to inducible and spontaneous antibody-
mediated autoimmune disease and have exaggerated cellular re-
sponses to IgG IC (1, 10). We therefore assessed whether inhibition
of glycolysis with 2DG might negate the heightened inflammatory
response associated with FcγRIIB deficiency. We found that IL-1β
induction by Fcgr2b−/− BMDMs stimulated with IgG IC was re-
stored to WT levels by the addition of 2DG (Fig. 3F and SI Ap-
pendix, Fig. S3D), suggesting that it may potentially ameliorate
macrophage-induced inflammation in lupus. Indeed, to confirm
the relevance of these observations to SLE in humans, we stimu-
lated human monocyte-derived macrophages with autoantibody-
containing IC generated from the serum of patients with SLE
(26). This caused a significant increase in IL1B and PTGS2 ex-
pression in macrophages that was attenuated by 2DG (Fig. 3G).
Given the alterations in aspartate metabolism (Fig. 2G), we

also performed BMDM IgG IC stimulation in the presence of
aminooxyacetate (AOAA), a broad-spectrum inhibitor of pyri-
doxal phosphate-dependent enzymes, including aspartate ami-
notransferase. Consistent with an important role of aspartate
metabolism in FcγR-mediated inflammatory responses, we ob-
served a reduction in Ova-IC–dependent inflammatory cytokine
production, including Il1b, Tnf, and Il6, in the presence of
AOAA (Fig. 3H).

FcγR-Associated Glycolytic Switch Dependent on mTOR and HIF1α.
Next, we sought to elucidate the molecular pathways underpinning
IgG IC-induced metabolic reprogramming in macrophages.
HIF1α is a transcription factor that can regulate the switch to

glycolysis in macrophages stimulated with LPS, and is essential for
some aspects of the inflammatory response (27–29). We found
that exposure of BMDMs to IgG IC resulted in an increase in
Hif1a transcripts and in the expression of several known HIF1α-
target genes (Fig. 4A), as well as HIF1α protein (in both normoxic
and hypoxic conditions; Fig. 4B and SI Appendix, Fig. S4A) and in
VEGFA (SI Appendix, Fig. S4 B and C), an HIF1α-dependent
gene that we have previously shown to be induced by IgG-FcγR
signaling in subcapsular sinus macrophages in vivo (23). Further-
more, the increase in ECAR observed following FcγR cross-
linking was significantly attenuated in HIF1α-deficient macro-
phages (Fig. 4C), demonstrating HIF1α-dependence.
To determine the molecular pathway involved in HIF1α activa-

tion in this context, we targeted known kinases downstream of ac-
tivating FcγRs (SI Appendix, Fig. S4D). Following cross-linking by
immune complexes, tyrosine phosphorylation of intracellular
ITAMs leads to the activation of SYK-family kinases and down-
stream targets, including PI3K and ERK (5, 30–32). Small-molecule
inhibitors of SYK, PI3K, and ERK attenuated IgG IC-mediated
HIF1α activation (as evidenced by VEGFA secretion; SI Appen-
dix, Fig. S4E) and the increase in ECAR in both murine (SI Ap-
pendix, Fig. S4F) and human macrophages (Fig. 4D), with ERK
inhibition primarily impacting ECAR in human macrophages
(Fig. 4D and SI Appendix, Fig. S4F). Since both PI3K and ERK can
increase mammalian target of rapamycin (mTOR) activity by
inhibiting TSC1/2 (SI Appendix, Fig. S4D), and mTOR mediates
HIF1α induction in β-glycan–treated macrophages (33), we hy-
pothesized that FcγR-mediated HIF1α activation might require
mTOR. Consistent with this, mTOR inhibitors attenuated the in-
crease in VEGFA and ECAR observed following the addition of
IgG IC to murine (Fig. 4E) and human macrophages (SI Appendix,
Fig. S4G). Together these data indicate that FcγR-induced glycol-
ysis proceeds via an mTOR-HIF1α–dependent pathway.
To confirm the involvement of HIF1α in macrophage pro-

duction of glycolysis-dependent inflammatory mediators following
FcγR cross-linking, we stimulated HIF1α-deficient macrophages
with IgG IC and observed a reduction in IL-1β expression and
PGE2 and ROS production compared with control macrophages
(Fig. 4 F and G and SI Appendix, Fig. S4H). However, in contrast
to 2DG treatment, there was also an attenuation of IL-6 and
TNFα in Hif1a−/− macrophages (Fig. 4H), suggesting that the
HIF1α-mediated increase in these cytokines is independent of its
effects on glycolysis.

Inhibiting Macrophage Glycolysis Reduces Immune Complex-Associated
Neutrophil Recruitment In Vivo. IL-1β is a proinflammatory cytokine
with multiple functions in innate and adaptive immunity. One of
its key effects is to augment inflammation by promoting neutrophil
recruitment (34). We therefore investigated the effect of the IgG
IC-mediated glycolytic switch in macrophages on IL-1β production
and neutrophil recruitment in vivo. First, we used the peritoneal
cavity as a model system, as described previously (35, 36) (SI
Appendix, Fig. S5A). IgG-IC administered intraperitoneally was
phagocytosed by peritoneal macrophages (SI Appendix, Fig. S5B).
Although 2DG administration had no effect on peritoneal
macrophage phagocytosis of IgG-IC (SI Appendix, Fig. S5B),
it significantly decreased the magnitude of IgG IC-associated
neutrophil recruitment (SI Appendix, Fig. S5C). To extend these
observations to a tissue context more relevant to SLE, we assessed
whether a glycolytic switch might occur in kidney-resident mac-
rophages in response to circulating IgG IC (Fig. 5A). To do this,
we treated mice with 2DG prior to i.v. injection of Ova–IgG im-
mune complexes or free Ova. In mice treated with 2DG, we ob-
served a reduction in IgG-IC–induced expression of Il1b and
Ptgs2, as well as Tnf and Il6, in kidney tissue (Fig. 5B), demon-
strating that 2DG is effective in suppressing IgG-induced in-
flammatory gene expression within the kidney. To investigate
immune cell responses to circulating IgG-IC, we profiled kidney
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leukocytes by flow cytometry (SI Appendix, Fig. S5D). As noted
previously, kidney macrophages can be broadly subdivided into two
major populations: F4/80hi yolk sac-derived macrophages [mono-
nuclear phagocyte 1 (MNP1)] and CD11bhi F4/80int monocyte-
derived macrophages (MNP2; SI Appendix, Fig. S5D). Following
i.v. administration of IgG IC, there was an increase in monocyte-
derived MNP2 in the kidney that was independent of glycolysis
(Fig. 5C). Immune complex uptake was observed in both kidney
macrophage populations, particularly MNP2 (SI Appendix, Fig.
S5E), and 2DG treatment had no effect on immune complex
phagocytosis (SI Appendix, Fig. S5E). Despite the variation in IgG-
IC phagocytosis between kidney MNP populations, potentially due
to differences in accessibility to i.v. IC or subsequent processing of
internalized cargo (37), analysis of intracellular pro–IL-1β expres-
sion in kidney macrophage subsets demonstrated an increase in
pro–IL-1β in response to circulating IgG-IC, which was inhibited by
pretreatment with 2DG (Fig. 5 D and E). Consistent with the de-
crease in macrophage IL-1β, 2DG also attenuated IgG-IC induced
neutrophil recruitment to the kidney (Fig. 5F and SI Appendix, Fig.
S5F). In summary, targeting glycolysis is effective in suppressing
pro–IL-1β expression by kidney macrophages and neutrophil

recruitment in vivo, demonstrating the potential utility of this
strategy to reduce antibody-mediated inflammation.

Macrophage Glycolytic Switch as a Therapeutic Target in Immune
Complex-Mediated Nephritis. Renal involvement occurs in more
than half of patients with SLE and is one of the most serious clinical
manifestations of disease (3). In murine lupus nephritis, there was
an increase in Ighg1 expression within NZB/W kidney tissue, con-
sistent with previous reports of local autoantibody production (38)
(Fig. 6A), and a positive correlation between Ighg1 transcripts and
the expression of a number of nephritis-associated inflammatory
mediators (SI Appendix, Fig. S6 A and B), including IL-1β (Fig. 6B),
emphasizing the potential importance of glycolysis-associated IL-1β
production in mediating autoantibody-associated inflammation in
the kidney. To explore this further, we administered i.v. IgG IC to
MRL/MpJ control mice. This increased renal Hif1a and Il1b tran-
scripts to levels observed in diseased MRL-lpr kidneys (Fig. 6C).
There was a significant positive correlation between Hk2 and Hif1a
and Il1b transcripts in MRL-lpr kidneys with lupus nephritis
(Fig. 6D), implicating HIF1α-induced glycolysis in the induction of
autoantibody-mediated inflammation in vivo. Of note, IL-1β has
previously been identified in glomerular macrophages in diseased
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MRL-lpr mice (39), and our data reveal a potential molecular
mechanism underpinning this observation.
To test whether inhibition of the macrophage glycolytic switch

might represent a useful strategy to reduce kidney macrophage
activation in nephritis, we treated mice with 2DG and then
challenged them with nephrotoxic serum. Inhibition of glycolysis
reduced serum urea levels (Fig. 6E) as well as leukocyte and
neutrophil recruitment (Fig. 6 F and G). Finally, we sought to
confirm our findings in primary human kidney macrophages
using fresh kidney samples obtained from organ donors that had
consented for research (22). As observed in monocyte-derived
macrophages, treatment with 2DG decreased IL1B production
following IC challenge (Fig. 6H), confirming the potential effi-
cacy of this approach as a therapeutic strategy to reduce
autoantibody-mediated inflammation in human kidneys.

Discussion
It has been recently appreciated that macrophage stimulation
with pathogen-derived danger signals and cytokines can lead to
changes in metabolism that profoundly impact function (15),
with LPS-stimulated M1 macrophages undergoing an increase in
glycolysis and a reduction in Krebs cycle-associated OXPHOS
and IL-4–stimulated M2 macrophages retaining high OXPHOS
(18, 19). To date, the question of whether and how FcγR cross-
linking by IgG IC might impact macrophage metabolism has
been explored to only a limited extent (40). Our study confirmed
a previous description that the metabolomics changes in IgG IC-
stimulated macrophages are distinct from those observed in LPS-
treated macrophages (40). However, we have gone on to show
that, like TLR4 stimulation, IgG immune complexes trigger a
switch away from OXPHOS toward glycolysis, with important
functional effects. Notably, our transcriptomic analyses of mac-
rophages isolated from IgG IC disease-associated tissues con-
sistently showed an increase in glycolysis genes, but variable
effects on OXPHOS genes, with a reduction in synovial macro-
phages in RA but an increase in kidney macrophages in lupus
nephritis. Such differences are likely to reflect variability in
organ-specific and disease-specific local stimuli, including cyto-
kines, DAMPs, and nature of IgG (isotype and glycosylation). By
studying macrophages in isolation following stimulation with
only IgG IC, we confirmed the specific effects of FcγR cross-
linking on macrophage metabolism, resulting in an increase in
glycolysis and aspartate metabolism and a decrease in OXPHOS
and fatty acid catabolism (Fig. 6I).
Our experiments demonstrated that IgG IC-induced IL-1β

production was HIF1α- and glycolysis-dependent. IL-1β is a po-
tent proinflammatory cytokine that has previously been identified
in glomerular macrophages in diseased MRL-lpr mice (39) as well
as Fcgr2b−/− mice (41), while elevated renal IL-1 family cytokine
responses are common to several models of nephritis (SI Appen-
dix, Fig. S6A). Indeed, IL-1R1– or IL-1β–deficient mice are pro-
tected from anti-GBM IgG-mediated nephritis (42). Furthermore,
it is noteworthy that Fcgr2b−/− mice develop fatal glomerulone-
phritis that is dependent on IL-17 signaling (43), while renal Th17
cells are also observed in ANCA-associated glomerulonephritis in
humans (44). Therefore, strategies aimed at suppressing IL-1β
induction and downstream type 17 immune cell responses may
show therapeutic potential in autoantibody-mediated renal in-
flammation.
Our data reveal the molecular mechanisms underpinning these

observations and identify a pathway amenable to therapeutic in-
tervention (Fig. 6I). Tissue macrophages differentiate in vivo and
have significant transcriptional, phenotypic, and functional differ-
ences from monocyte- or bone marrow-derived macrophages and
MNPs generated in vitro (45, 46). In our study, we utilized
monocyte- and bone marrow-derived macrophages, but confirmed
our findings in peritoneal macrophages and kidney-resident mac-
rophages. Indeed, our use of primary human kidney macrophages,

assayed ex vivo, provides evidence that the antiinflammatory effects
of inhibiting macrophage glycolytic switch will be translatable to
human nephritis.
Of note, a number of HIF1α inhibitors have been developed

for clinical applications, mainly for the treatment of cancers, as
malignant cells frequently up-regulate HIF1α (47). These drugs
target HIF1α gene expression, protein stability, protein degra-
dation, and DNA binding (48), and could be repurposed for the
treatment of autoimmune inflammation. One caveat when con-
sidering this strategy is that many cells express HIF1α, leading to
an unfavorable side-effect profile. However, protocols to target
HIF1α inhibitors to tissue macrophages, for example, by conju-
gating to IgG so that they are taken up by phagocytic cells
expressing FcγRs or by placing them in nanoparticles that localize
to the kidneys (49), may overcome this limitation. Here we focused
on acute models of nephritis, but future studies will be required to
investigate the effect of longer-term HIF1α or glycolysis inhibition
in chronic models of nephritis, such as in NZB/W mice, to de-
termine the potential of these therapies for treating patients with
lupus nephritis.
IgG antibodies are thought to drive inflammation in a number

of autoimmune diseases beyond SLE, including rheumatoid ar-
thritis, small vessel vasculitis, Sjogren’s syndrome, and systemic
sclerosis (50–55). Our study raises the possibility that tissue-
resident macrophages in joints, salivary glands, and skin may
also be amenable to metabolic manipulation, as we have iden-
tified in kidney macrophages.
In conclusion, our data reveal that IgG stimulation of mac-

rophages can profoundly alter cell metabolism via HIF1α and
glycolysis induction. This metabolic switch occurred in kidney
macrophages during antibody-mediated nephritis, and glycolysis
inhibition attenuated tissue inflammation, highlighting its po-
tential as a therapeutic strategy in lupus nephritis.

Methods
Mice. Wild-type C57BL/6 mice were obtained from the Jackson Laboratories.
Hif1afl/fl and Lyz2Cre mice on a C57BL/6 background were obtained from the
Jackson Laboratories and crossed to generate Hif1αfl/flLyz2Cre mice. Fcgr2b−/−

mice on a C57BL/6 background were provided by J. Ravetch (Rockefeller
University, New York, NY) and S. Bolland (National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Bethesda, MD). Tlr2/4−/−

mice were a gift from P. Tourlomousis (University of Cambridge, Cambridge,
UK). MRL/MpJ (no. 00486) and MRL-lpr (no. 00485) mice were obtained from
the Jackson Laboratories. In all experiments, both male and female mice
were used. For all in vivo experiments, 6- to 12-wk-old mice were used. In the
United Kingdom, mice were maintained in specific pathogen-free conditions
at a Home Office-approved facility. All procedures were conducted in ac-
cordance with the United Kingdom Animals (Scientific Procedures) Act of
1986. In the United States, all animal study protocols were approved by the
animal care and use committee (ACUC) of the National Institute of Arthritis
and Musculoskeletal and Skin Diseases, listed on animal study protocol
AO14-01–01, and in agreement with ARAC guidelines (3.18.1).

Immune Complexes. For ovalbumin immune complexes, endotoxin-free ov-
albumin (no. 321000; Hyglos) was opsonized with a polyclonal rabbit anti-
ovalbumin antibody (C6534, Sigma; 1:140, wt/wt) at 37 °C for 1 h. For in vitro
phagocytosis assays, Alexa Fluor 647-conjugated ovalbumin was used
(O34784; Thermo Fisher). For IgG immune complexes, human IgG (5172-
9017; AbD Serotec)/mouse IgG (ab36355; Abcam) was opsonized with
monoclonal human anti-human IgG antibody (HCA059; AbD Serotec)/goat
F(ab′)2 anti-mouse IgG-(Fab′)2 antibody (ab98754; Abcam; 1:200, wt/wt) at
37 °C for 1 h. For in vivo experiments, 0.33 g/kg Alexa Fluor 647-conjugated
ovalbumin (O34784; Thermo Fisher) was opsonized with 3.2 g/kg polyclonal
rabbit anti-ovalbumin antibody (Sigma-Aldrich) at 37 °C for 1 h before in-
jection. Details of systemic lupus erythematosus immune complexes are
provided in the SI Appendix.

Macrophage In Vitro Stimulation. Details of the generation/isolation and
culture of human MDMs, murine BMDMs, and murine peritoneal macro-
phages are provided in the SI Appendix. For extracellular flux analysis,
macrophages were pretreated with ERK inhibitor (U0126; Sigma, 10 μM),
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PI3K inhibitor (wortmannin, no. 9951; Cell Signaling Technology, 1 μM), SYK
inhibitor (Syk inhibitor IV; BAY61-3606, 1796–1,5; BioVision, 2 μM), mTOR
inhibitor (rapamycin; Cell Signaling Technology, 10 nM; Torin1, no. 14379;
Cell Signaling Technology, 1 μM), and AMPK activator (metformin, no.
13118; Cayman Chemical, 3 mM) for 1 h before the addition of IC. Cell cul-
ture supernatants were removed, and cells were washed using PBS before
analysis. For cytokine production assay, BMDMs were treated with either
antigens or corresponding IC (60 μg/mL) for 6 h. Cell culture supernatants
were harvested and frozen at −20 °C until use. For glycolysis inhibition,
macrophages were pretreated with 2-deoxy-D-glycose (5 mM, D8375; Sigma)
for 45 min before adding the antigens or IC for 15 min to 6 h. For aspartate
aminotransferase inhibition, BMDMs were treated with 5 mM amino-
oxyacetate (C13408; Sigma) prior to stimulation with Ova/Ova-IC for 6 h. For
microarray, 2 × 106 cells per well BMDMs were stimulated with either Ova
(1 μg/mL) or Ova-IC (60 μg/mL) for 4 h or 14 h, supernatant removed, and
cells lysed in the plate for RNA extraction.

Extracellular Flux Analysis. Macrophages were seeded in an XF96 microplate
(Seahorse; Agilent Technology) at 75,000 cells per well. Cells were stimulated
as described earlier for 20 h and washed/incubated with the Assay Medium
[XF Base Medium (no. 102353; Seahorse; Agilent Technology), sodium py-
ruvate (Gibco, 2 mM), and L-glutamine (Gibco, 2 mM)] in a non-CO2 incubator
at 37 °C for 1 h. Oxygen consumption rate and extracellular acidification rate
were assessed with an XF96 Extracellular Flux Analyzer (Seahorse; Agilent).
Glucose (Fisher Chemical, 10 mM), oligomycin (Sigma, 1 μM), and 2DG
(Sigma, 100 mM) were injected to the plate sequentially. Data were ana-
lyzed using XF Wave software (version 2.3).

In Vivo Kidney Macrophage Stimulation. Wild-type C57BL/6 mice were first
injected with 2DG (0.25 g/kg) or PBS (control) intraperitoneally. After 1 h,
Alexa Fluor 647-conjugated immune complexes were injected via tail vein at
a dose of 500 ng/g. FITC-conjugated anti-mouse CD45 monoclonal antibody
(clone 30-F11; eBioscience; 75 μg/kg) was injected into mice i.v. after 2 h,
immediately before mice were euthanized. Kidneys were collected and the
visceral fat and kidney capsule removed. Kidneys were finely minced and
digested in RPMI-1640 medium containing 10 mM Hepes, 32.5 μg/mL Lib-
erase TM (Roche), and 0.1 mg/mL DNase I (Roche) for 25 min at room tem-
perature. Tissue pieces were mechanically dissociated through a 70-μm cell
strainer and washed with PBS containing 2% FBS, and red blood cell lysis was
performed using distilled H2O containing 0.83% (wt/vol) NH4Cl, 0.1% (wt/vol)
NaHCO3, 100mM EDTA. Single-cell suspensions were subjected to a 44% (vol/vol)
Percoll gradient (Sigma Aldrich) and washed thoroughly in ice-cold PBS prior
to downstream analysis. A piece of tissue from each sample was also collected
and stored in RNAlater stabilization solution (AM7020; Thermo Fisher) for the
qPCR. Details of in vivo peritoneal macrophage stimulation are provided in the
SI Appendix.

Induction of Lupus Nephritis. The anti-glomerular basement membrane
(GBM) model (35, 36) was used to induce lupus nephritis in vivo. A total of
50 μL of sheep anti-rat GBM serum (PTX-001S; Probetex) was injected i.v. to
wild-type C57BL/6 mice via the tail vein. The proteinuria level was monitored
using Multistix 10 SG Reagent Strips (no. 03536597; Siemens). Mice were
euthanized after 24 h, and kidneys were collected, processed, and analyzed
by qPCR and flow cytometry as described earlier. For glycolysis inhibition,
mice were pretreated with 2DG (0.25 g/kg), as described earlier, three times
(−6 h, −3 h, −1 h) before the administration of anti-GBM.

Human Kidney Derived Macrophages In Vitro Stimulation. Cortex samples from
human kidney were sliced into ∼30-mm3 pieces and digested for 30 min at
37 °C with agitation in a digestion solution containing 25 μg/mL Liberase TM
(Roche) and 50 μg/mL DNase (Sigma) in RPMI-1640. Following incubation,
samples were transferred to a gentle MACS C Tube (Miltenyi Biotec) and
processed using a gentleMACS dissociator (Miltenyi Biotec) on program
spleen 4 and subsequently lung 2. The resulting suspension was passed
through a 70-μm cell strainer (Falcon) and washed with PBS before leukocyte
enrichment using a Percoll density gradient (Sigma). Cells were counted
using a hemocytometer with trypan blue. A total of 5 × 105 cells per well
were stimulated with Ova or Ova-IC with or without the presence of 2DG
(5 mM/mL) for 12 h. Cells were then lysed and processed for RNA extraction
and qPCR.

Flow Cytometry. Single-cell kidney and peritoneal suspensions were blocked
with 0.5% heat-inactivated mouse serum, followed by extracellular staining
for 1 h at 4 °C with a combination of antibodies listed in the SI Appendix.
Viability staining was performed with Zombie UV Fixable Viability Kit
(BioLegend) for 20 min at room temperature. For intracellular cytokine
staining, cells were fixed and permeabilized using the Cytofix/Cytoperm kit
(BD Bioscience) as per the manufacturer’s instruction. Staining was carried
out for 1 h at room temperature using pro-IL-1β (NJTEN3; eBioscience) at a
1:200 dilution. Cell counting was performed using 123count eBeads (eBio-
science). Flow cytometry data collection was performed on an LSR Fortessa
flow cytometer (BD Biosciences), and data were analyzed using FlowJo
software (Treestar, v10.2).

Human Study Approval. Human kidneys donated for transplantation but
deemed unsuitable for implantation were used for in vitro stimulation ex-
periments. All analysis of human material was performed in the United
Kingdom. Ethical approval was granted by the local ethics committee (REC12/
EE/0446), and the study was also approved by NHS Blood and Transplant.
Serum from lupus patients was collected in the United States. Written in-
formed consent was obtained from the healthy volunteers and from SLE
patients. The enrollment of patients was approved by the National Institutes
of Health Institutional Review Board (94-AR-0066).

Data Availability. The microarray data reported in this paper have been
deposited in the Gene Expression Omnibus (GEO) database under the
accession code GSE112081.

Extended Methods. Additional methodological details are provided in the
SI Appendix.
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