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Abstract. Our system classifies audio from microphones worn by the teacher in
order to determine (1) whether the teacher is addressing the whole class or
talking to individuals or groups of students. In the latter case, it determines
(2) whether the teacher is giving formative feedback, giving corrective feedback,
chatting socially, or addressing administrative or workflow concerns. This paper
reports the initial accuracy of this system against human coding of middle
school math classroom behavior. We also compared audio collected through
professional hardware versus more accessible alternatives.
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1 Introduction

“Classroom orchestration” refers to the teacher’s management of the activities, students
and information in classes that integrate small group work, individual work, and whole-
class work [1]. Orchestration systems are intended to help teachers and students
achieve productive interactions and learning in such classrooms. A key problem
addressed by orchestration systems is increasing the teacher’s awareness of the state of
all the students and their interactions [2]. Awareness is particularly difficult to maintain
when students are working in small groups, because much of their interaction is spoken
and inaccessible to the teacher. Thus, we are focusing on analysing classroom speech
when the main class activity is working in small groups.

In order to focus the research while maintaining its generality, we are exploring just
two categorization schemes. Each has been investigated in prior research and seem
generally useful for helping teachers maintain awareness.

The first classification scheme divides the teachers’ activity into (1) addressing the
whole class, (2) talking with students, (3) talking with experimenters and (4) not
talking. This classification is useful for several purposes. First, an orchestration system
should supress all alerts when the teacher talking to the whole class because teachers
would not be able to attend to them. It might send only high priority alerts when the
teacher is talking to students, since those conversations are punctuated by times when
the teacher is waiting for the students to answer and thus has a limited capacity to
attend to alerts. Prior work [3, 4] has focused on similar categories, but included a
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category for lecturing and omitted the category for talking to experimenters. Lecturing
did not occur in our math classrooms.

The second classification scheme divides teacher’s conversation with students into
formative interaction, corrective interaction, and several non-instruction categories. The
distinction between formative and corrective instruction is traditional and goes by
many names. If the teacher points to incorrect work, gives strong hints about cor-
rectness or explains how to do correct work, then their instruction is called corrective,
didactic or teaching by telling. If teachers elicit explanations from students, encourage
them to think more or pose challenging questions without answering them, then their
instruction is called formative, teaching by eliciting or formative assessment [5–10]. In
the classes we observed, the teachers were all attempting to given formative instruction
exclusively. However, we often observed that their conversations with students were
corrective. An orchestration system could collect such episodes and present them to the
teacher as part of a post-class debriefing sessions. The system might even give teachers
feedback on their conversations in the middle of class whenever teacher had some spare
time and wanted to get such feedback.

Like many of our predecessors [3, 11, 12, 15], we analysed the speech with
acoustic features only. We did not attempt to convert the speech to text and use lexical
features, semantic features, or other natural language processing. On the one hand, this
probably reduces the accuracy of the classification, particularly for the distinction
between formative vs. corrective teacher feedback. On the other hand, this study take
place in a live classroom while preserving the privacy of students. It also increases the
chance that system is domain general. That is, after it has been trained on classes
engaged in one set of lessons and tasks, it can be used without change on a wider set of
lessons and tasks. However, testing the generality of our system remains as future
work. Here we report its accuracy against human coders.

2 Data Collection and Analysis

2.1 Raw Data Collection

The raw data for this paper was gathered during a class trial of FACT in spring of 2019.
This trial consisted of 6, 50-min periods of 8th grade students working on specific sets
of mathematics lessons, called Classroom Challenges [10] using our FACT web-based
platform [13, 14]. Each period consisted of 9 to 16 groups of mostly two students, but
we only had permission to collect multimodal data from 31 groups, out of which we
annotated 20 groups (64% of the data), due to reasons like low audio quality or class
being too short. 40.4% of all annotated students are male.

During this study, the teachers wore a lavalier microphone and carried a tablet to
access FACT and manage classroom lessons and students. While working in a group,
students each used their own tablet to access a shared group workspace, typically with
their heads down over the tablets while they talked with each other. Most students wore
an Audio-Technica PRO 8HEx headset microphone connected to a Tascam DR-40
digital audio interface. Students in 2 groups per classroom wore throat microphones.
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In each session 4 groups’ interactions were captured using a video camera with its
own shotgun mic and a second channel for a boundary mic laid on the group’s table.
A shoulder-mounted video camera followed the teacher and recorded the lavalier mic’s
output. Most tablets’ screens were also captured by screen recorders. All these
recordings were used by the human coders but not by the system. Thus, the human
coders had much more information than the system, as befits a gold standard.

2.2 Human Segmentation and Coding

We used ELAN [16] to synchronize all the media files and code them. Although
several Elan tiers were used, only two are relevant here.

The Teacher View tier was for classifying the teacher’s behaviour into ‘Whole
Class’, ‘Admin’ and ‘Group Interaction’. The ‘Whole class’ label indicated that the
teacher is giving a whole class announcement. This was usually done to explain the
activity or the user interface to the students before starting the activity. The Admin
category indicated that the teacher was talking to the one the FACT system admins.
The Group Interaction label indicated that the teacher was talking to a group or student.
Most of the class activity was group work, but this label was used even when students
were working individually. In this experiment, teachers never lectured and were rarely
silent. This coding created segments of arbitrary length.

We then divided up the ‘Group Interaction’ segments, which tended to be many
minutes long. Using a Teacher Group Interaction tier, we created 30 s segments,
because prior work showed that varying the length of segments did not greatly impact
accuracy [3, 16]. Human annotators labelled the segments as ‘Formative’, ‘Corrective’,
‘Overhead’, ‘Workflow’ or ‘Chat’ coding. A segment was labelled ‘Formative’ or
teaching by eliciting, if for example the teachers instead of giving explanations and
feedback, keep students engaged in solving problems, which requires the teachers to
analyze the students’ work, detect the line of reasoning being followed and then ask
questions that push the students further along that line [15]. A segment was labelled
‘Corrective’ or teaching by telling, if the teacher’s instruction is more direct. The
‘Overhead’ label indicates that the teacher is talking to the individual group about any
issues with FACT. The ‘Workflow’ label indicates that the teacher was discussing the
class or tasks (e.g., moving from one task to another) but not giving instruction.

Two human coders labeled 15% of the all the 30-s segments. Inter- rater agreement
was considered acceptable with Cohen’s kappa K = 0.75. For the segments that two
coders disagreed with each other, that segment was discussed until both coders agreed
on one label, if the agreement was not achieved that segment was not considered for the
next step.

2.3 Audio Processing

To process the audio, we initially removed noise using audacity [17]. We extracted
acoustic features using openSmile [18]. We created time series features using the tfresh
[19] Python package. Since the number of extracted features was quite large, we also
used different feature selection algorithms like PCA and Pairwise correlations to reduce
the redundancy of the feature set.

Toward an Automatic Speech Classifier for the Teacher 281



3 Result

This section reports the accuracy of our system against the human annotations. Clas-
sifiers were machine-learned using random forest, deep learning (forward only, not
RNN), KNN, decision tree, additive logistic regression and SVM. Accuracy was
measured with 10-fold classification. Random forest yielded the best result for all
analyses.

• Teacher’s View tier: Categorization into ‘Whole Class’, ‘Group Interaction’ and
‘Admin’.
– Teacher’s audio captured via tablet: Accuracy 0.88, Kappa 0.84
– Teacher’s audio captured via lavalier microphone: Accuracy 0.91, Kappa 0.88.

• Teacher Group Interaction tier: Categorization into ‘Formative’, ‘Corrective’,
‘Overhead’, ‘Workflow’ or ‘Chat’
– Teacher’s audio captured via tablet: Accuracy 0.77, Kappa 0.65
– Teacher’s audio captured via lavalier microphone: Accuracy 0.74, Kappa 0.61.

For recording devices, it appears that the tablet’s audio was nearly as good as
wearing a lavalier mic.

4 Discussion and Comparison to Prior Work

To the best of our knowledge this is one the first studies working on automatic speech
classifier for math teachers in middle school classrooms. To evaluate the absolution (as
opposed to relative) accuracy, it helps to compare our results to prior work, here we
focused on studies analyzing teachers’ speech in live classrooms. We must mention
that, due to difference in experiment settings, features type, approach, purpose and data
annotation, direct comparison of the result is not possible.

Wang et al. [4] trained a classifier to automatically label 30 s segments of teacher’s
speech, recorded via LENA system, into ‘teacher lecturing’, ‘whole-class’ discussion
and ‘student group work’. Their overall classification accuracy of 84.37% is compa-
rable with our overall classification accuracy of 83.34%.

D’Mello et al. [3, 20–23] also found comparable accuracies to ours. They used
linguistic as well as acoustic features of the teacher’s speech, and they studied language
arts classrooms instead of math.

A challenge for this and similar projects is protecting the privacy of students’
speech. Although we only extracted non-lexical features from audio, the database has
the full speech audio. Perhaps we can extract the features and discard the audio
recording before the end of class to better preserve the students’ privacy.

To increase the performance of our classes, other than adding lexical features, we
are also planning to extract more features from other multi modal inputs such as our
ITS logs, teacher’s position, etc.
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