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Abstract

Genomic analysis of individuals or organisms is predicated on the availability of high-quality reference and genotype
information. With the rapidly dropping costs of high-throughput DNA sequencing, this is becoming readily available for
diverse organisms and for increasingly large populations of individuals. Despite these advances, there are still aspects of
genome sequencing that remain challenging for existing sequencing methods. This includes the generation of long-range
contiguity during genome assembly, identification of structural variants in both germline and somatic tissues, the phasing
of haplotypes in diploid organisms and the resolution of genome sequence for organisms derived from complex samples.
These types of information are valuable for understanding the role of genome sequence and genetic variation on genome
function, and numerous approaches have been developed to address them. Recently, chromosome conformation capture
(3C) experiments, such as the Hi-C assay, have emerged as powerful tools to aid in these challenges for genome
reconstruction. We will review the current use of Hi-C as a tool for aiding in genome sequencing, addressing the
applications, strengths, limitations and potential future directions for the use of 3C data in genome analysis. We argue that
unique features of Hi-C experiments make this data type a powerful tool to address challenges in genome sequencing, and
that future integration of Hi-C data with alternative sequencing assays will facilitate the continuing revolution in genomic
analysis and genome sequencing.
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Introduction
DNA sequencing technologies have undergone a revolution
since the original draft sequence of the human genome was
published (1). This includes rapidly plunging costs of so-called
short-read sequencing, as well as dramatic improvements in
the length and sequence quality of long-read technologies (2,3).
In addition, novel methodological developments in sequencing
library construction are allowing existing sequencing platforms
to be repurposed to generate higher quality data (4–6). As a
result of these technological improvements, generating high-
quality sequence data for any individual or organism is now
no longer a rate-limiting step in genomic analysis. One of the
primary challenges now is to fully reconstruct accurate genome
sequence information from an individual or organism. This

problem manifests currently in several technical challenges
in genomic analysis. Namely, some of the primary limitations
in current genome sequencing methods involve scaffolding
during genome assembly, haplotype phasing of individuals or
reference genomes, identification of structural variants, and
deconvolution of genomes in complex samples. Numerous
methodological approaches have been developed to address
these problems (2,4–6), but one of particular interest has been the
use of methods originally designed for analyzing chromosome
folding (7), in particular the Hi-C assay (8) and other variants of
chromatin conformation capture experiments (9). In this review,
we will discuss the use of chromatin conformation capture-
based assays to address what we generally term ‘genome
reconstruction’. This includes both the underlying basis for why
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Figure 1. Features of Hi-C data that facilitate genome reconstruction. (A) A whole-genome Hi-C contact matrix for the GM12878 cell line (22) showing chromosome

territories (squares along diagonal are individual chromosomes). Intra-chromosomal contacts are higher than inter-chromosomal contacts. (B) Average Hi-C interaction

frequency as a function of genomic distance separating interacting bins at a bin size of 10 kb. The plot shows a typical distance-dependent decay curve.

3D genome structure can inform genome reconstruction and
the specific experimental and analytical approaches developed
by different groups. We will also discuss important limitations
and future applications of these methods.

Chromatin conformation captures critical
features for genome reconstruction
Although it is typical to represent genomes as linear sequences
of nucleic acids, DNA adopts higher order conformations in all
kingdoms of life. Most prokaryote genomes are known to be
folded through supercoiling (10) and can adopt additional, more
complex configurations (11–15). DNA in eukaryotes is wrapped
around histones to form nucleosomes (16) before being com-
pressed into chromatin (17), and can adopt even more com-
plex higher order structures (8,18–22). How 3D genome structure
varies across individuals and species and what role it plays
in gene regulation in development, disease and evolution have
been the major topics in biology. Classical methods for study-
ing chromatin organization in vivo have typically centered on
imaging-based methods. An alternative approach focuses on the
use of molecular methods, such as the chromosome conforma-
tion capture (3C) method (7) and subsequent variants of this
assay (23,24), to identify sequences in close 3D space through
proximity ligation. With the development of high-throughput
sequencing methods, these were generalized into genome-wide
assays, such as Hi-C (8) and TCC (25), or genome-wide vari-
ants that focused on regions of the genome bound by specific
factors, such as ChIA-PET (26), HiChIP (27) and PLAC-seq (28).
Hi-C has been a powerful tool to investigate the structure of
many genomes, such as human (22), mouse (19), Drosophila (21)
and bacteria (11,15), as well as generating data for structural
modeling of 3D architecture (29,30).

The Hi-C assay is based on proximity ligation, and the
initial steps in the assay are similar to the original 3C method.
Cells are first cross-linked by formaldehyde and then digested
by a restriction endonuclease. In a 3C experiment, the DNA
ends are ligated together and are used as the template for
PCR. In current Hi-C-based methods, digested ends are filled
with nucleotides, one of which is linked to a biotin moiety,

and ends are then ligated, with ligation events occurring
preferentially between ends that are spatially adjacent. DNA
is then purified, sheared and prepared for paired-end DNA
sequencing. The biotin labeling in the end-filling step enables
the concentration of fragments that contain ligations using
streptavidin beads before library preparation, though sequenc-
ing can be performed on samples that have not been enriched
by biotin fill in and pull down (31). Paired sequencing reads
can then be aligned to the reference genome. The number of
distinct reads spanning from one locus to another indicates
the interaction frequency between those two loci in the 3D
space. The interaction frequencies between any two loci in the
genome can be visualized in a 2D genome-wide contact matrix
(Figure 1A).

Despite the fact that 3D genome organization is variable
between species, cell-types (8,19,22,32), cell-cycle stages (33,34)
and even within homogeneous populations (33,35), canonical
patterns emerge from the data (36). First, as a result of the fact
that chromosomes occupy distinct territories (37) and exhibit
distinct spatial preferences in the nucleus (38,39), Hi-C inter-
action frequency tends to be much higher within the same
chromosome. Interactions between different chromosomes, on
the contrary, tend to be relatively sparse (Figure 1A). Second,
based on the fact that in the in situ Hi-C protocol, genomic DNA is
fixed within an intact nucleus, and cross-linking between nuclei
is rare. As a result of this principle, single-cell Hi-C methods have
been developed by separating nuclei after proximity ligation
in bulk (33,40,41). Third, Hi-C interaction frequency displays a
distance-dependent decay (Figure 1B) because loci nearby in
linear sequence interact more frequently according to princi-
ples of polymer physics (42,43). These three principles under-
lie the utility of Hi-C for genome reconstruction. Specifically,
the feature of distance-dependent decay is critical for genome
assembly and structural variant analysis; the organization of
chromosomes into territories is essential for haplotype phasing
and structural variant identification, and the paucity of inter-
cellular contacts is critical for the use of Hi-C in metagenomics.
These features have thus far been observed to be fundamental
features of genome organization across cell types and species
and, therefore, allow Hi-C to be widely applied for genome
reconstruction.
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Figure 2. Application of Hi-C in genome reconstruction. (A) In genome assembly, sequence reads are assembled by overlapping unique sequences into contigs. Contigs

end when there is no sequence present or when repetitive regions create ambiguity in terms of the order of contigs. Using Hi-C data, contigs can be scaffolded to

chromosomal scale. Also shown are examples of Hi-C matrices before scaffolding (left) and after (right). (B) In metagenomics, contigs are first grouped into those

derived from the same species, either using Hi-C or alternative methods such as computational binning (represented by red versus green species and contigs). After

grouping by species, contigs can be scaffolded into genome scale assemblies. Also shown are Hi-C heat maps from two bacterial species with simulated, ungrouped

and unordered contigs (left) and the same sequences after binning and assembly (right). (C) An example of the effect of structural variation on Hi-C heat maps. The

heat map on the left is from K562 cells where the region has no Structural Variations (SVs), whereas the heat map on the right is from KBM7 cells where there is a

∼1 Mb inversion of the segments from ‘c’ to ‘d’. This leaves a ‘bowtie’ or ‘butterfly’ like pattern in the heat map at the location of the breakpoints. (D) A cartoon example

of how haplotypes can be phased according to Hi-C data connecting Single Nucleotide Polymorphisms (SNPs) within same allele. Unphased sequence variants can be

linked together by Hi-C reads into two parental haplotypes (colored red and blue).

Genome assembly
One of the fastest growing applications of Hi-C data is in de
novo genome assembly. One of the major current challenges in
genome assembly is resolving repetitive sequences to generate
chromosome scale assemblies. Although sequence read length
has increased dramatically in the last decade (2), when genomic
repeats are longer than the sequenced reads, the assembly will

remain fragmented in contigs due to the ambiguity introduced
by repetitive sequences (Figure 2A). The process of connecting
and ordering contigs, also called scaffolding, requires linked
sequences uniquely assigned to different contigs. Diverse
strategies to generate such information have been developed
(Table 1). In ranges less than 40 kb, traditional methods such as
Illumina mate-pair sequencing (44) and paired-end sequencing
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Table 1. Comparison of several methods used for scaffolding

Scaffolding methods Spanning distance Cost Throughput/Contacts per run

lllumina mate pair 2–30 kb Low High
Fosmid 40 kb Median Low
BAC 40–200 kb High Low
Optical mapping 20–500 kb High High
Genetic map Chromosomal Impractical Very low
Hi-C 1 kb – 20 Mb Low High

of fosmids (45) are being replaced by sequencing technologies
with longer reads (46–49), which can close most gaps of this
size. In ranges in intervals longer than 100 kb, solutions include
paired-end sequencing of bacteria artificial chromosomes (BAC)
(50,51), optical mapping (52) and traditional genetic mapping
(53). However, these applications have limitations. BAC libraries
are laborious to generate and not able to solve gaps longer than
200 kb. Optical maps work better for longer gaps, but currently,
they are expensive to generate sufficient data for large genomes.
Genetic maps are usually not available for genomes other than
human and model organisms.

With the ability to profile long-range interactions across
whole genomes in high-throughput, Hi-C can inform key aspects
of genome assembly. Seminal papers from Kaplan et al. and
Burton et al. showed that Hi-C data can be used to perform
scaffolding of contigs during genome assembly. Since the pub-
lication of these pioneering studies, Hi-C has been used to aid in
genome assemblies of goat (48), alligator (54), frog (55), mosquito
(56,57), Schmidtea mediterranea (58), barley (59), lettuce (60), durian
(61), quinoa (62), wombat (63), opossum (63), raccoon (63), band-
tailed pigeon (63) and subterranean clover (64). Unlike mate-
pair sequencing and clone-based paired-end sequencing, which
have relatively fixed insert sizes, the distance between two ends
in Hi-C can vary from 1 kb to many megabases within the
same chromosome (8,65,66). This endows Hi-C with the power
to theoretically cover any gap that is shorter than a human
chromosome. Given the universal properties of Hi-C discussed
in the previous section, contigs from the same chromosome can
be easily grouped and sorted according to their Hi-C interaction
frequency with each other (Figure 2A) (67,68). The cost of Hi-
C experiments is generally low, and it has been suggested that
de novo assembly of large genomes can cost as little as $1000
(63). In addition, Hi-C requires no specialized equipment and is
capable of being performed in any molecular biology laboratory
(8,22). Hi-C is also not restricted to model organisms as long
as proximity ligation can be carried out in nuclei. In summary,
Hi-C is a widely applicable, powerful tool for genome assembly
with low cost. As a result, Hi-C is being used as a key assay for
genome scaffolding by several large genome assembly consortia,
including the Genome 10 k project and the DNA zoo (56,69).

As a general strategy for genome assembly, initial sequencing
is usually performed using at least one conventional sequencing
method to generate contigs assembled from massive parallel
sequencing (Figure 2A). This can be in the form of short-read
Illumina sequencing or long-read sequencing. Once this initial
assembly is generated, Hi-C data, generated in parallel, can be
aligned to the contigs and used to determine the order and
orientation of contigs, so-called ‘scaffolding’. According to exam-
ples from recent genome projects and simulations, Hi-C requires
an input assembly with contig N50 sizes in the range of 36–
200 kb to reach a proper genome assembly with chromosomal
scale scaffolding, something that is readily achievable with both

short-read- and long-read-based contigs (56,57,63,67,68,70). Var-
ious computational tools have been developed for Hi-C-based
genome assembly. In this review, we will only summarize the
major approaches taken by different Hi-C-based assembly algo-
rithms without going in depth into the details of each method.
In our view, there are two general approaches that are taken
for Hi-C-based genome scaffolding. First are the graph-based
approaches. Graph-based methods consider contigs as nodes
and Hi-C interactions between contigs as edges in a graph. LACH-
ESIS (67), 3D DNA (56) and SALSA/SALSA2 (70,71) are graph-based
approaches. These methods largely differ in how the graphs
are constructed and how the final ‘path’ through the graph,
representing the order and orientation of contigs, is determined.
Graph-based methods are a logical extension of the original
assembly, as most modern assemblers use de Bruijn graphs to
construct contigs during assembly (72–74). The second general
strategy in Hi-C-based assembly is to use probabilistic models.
This includes graph-free methods, such as DNA Triangulation
(68) and GRAAL (75), and hybrid approaches such as HiRise (76)
that constructs and orients a contig–contig linking graph based
on a likelihood model. Methods such as SALSA/SALSA2 and 3D-
DNA are routinely capable of generating chromosome scale scaf-
folds from input short- or long-read assemblies (56,57,64,70,71).
The primary remaining challenges appear to be scaffolding of
short contigs, resolving highly repetitive regions and ensur-
ing proper contig orientation (56,63,70). The recently proposed
SALSA2 method actually attempts to merge graph-based Hi-C
scaffolding and de Bruijn graph-based assembly by performing
Hi-C scaffolding in a manner that is aware of edges in the de
Bruijn graph, which in theory should greatly aid in ordering and
orienting contigs during assembly (70).

One specific hurdle for Hi-C-based genome assembly, com-
pared with other methods, is that despite the universal existence
of distance-dependent decay in Hi-C contact maps, long-range
Hi-C interactions also contain signals that result from biological
aspects of chromatin organization. For instance, two distant
loci in the same topologically associated domain (TAD) (19–21)
may have higher interaction frequencies than two loci in adja-
cent TADs that lie closer in linear proximity along the genome.
This appears as fluctuations and rebounds in the distance-
dependent decay curve (41,65), which can potentially cause mis-
estimation of the distance between them during assembly. In
order to address this issue, the Chicago method was developed
(76), in which high-molecular-weight (>500 kb) genomic DNA is
extracted and reconstituted in vitro with purified histones and
chromatin assembly factors before fixation by formaldehyde.
This in vitro sample is then processed through the regular Hi-
C protocol. The in vitro assembly of chromatin largely excludes
confounding signals from complicated high-order structures of
the genome in vivo. However, very-long range and chromosome
length contact information is lost, as the procedure for isolating
genomic DNA inevitably breaks the longest DNA fragments, and
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therefore, chromosome length scaffolds remain a challenge. In
summary, the development of Hi-C-based experimental proce-
dures and bioinformatic tools has demonstrated that Hi-C is one
of the major techniques for genome assembly. Future efforts
will likely continue to integrate long-read sequencing, Hi-C and
optical maps. Further improvements in sequencing technology
and the development of new long-range linkage assays and
physical mapping technologies will continue the revolution in
this area.

Metagenomics
Microbial communities are essential components of diverse
ecosystems. There is growing appreciation for the role that
microbial communities play in environments including ‘micro-
biomes’ that impact human health (77), environmental ecology
(78), and biomass degradation and fuel production (79). There-
fore, there is a great desire to study the species within microbial
communities to better understand how they function both as
individuals and as a system. The problem is that relatively few
strains of bacteria can be successfully cultured in the laboratory,
and specific micro-organisms may be difficult to isolate from
large heterogeneous populations of thousands of species (80,81).
This has led to efforts to study microbial communities en masse
without isolation by examining DNA content from samples
containing mixtures of species. Studying microbial genomes
in bulk, so-called metagenomics, has provided an attractive way
to study microbial communities while avoiding issues related to
sample isolation or cultivation.

A classical method for studying microbial identity is by
sequencing of the 16S ribosomal RNA genes (82). When
coupled with high-throughput sequencing methods, this can
facilitate the determination of the types and the abundance of
species within a microbial community (83). However, 16S rRNA
sequencing has limitations in the complete characterization
of microbes. Specifically, 16S rRNA sequencing requires a
taxonomic database for species identification, and strain-level
differences will not be readily determined. Furthermore, non-
chromosomal DNA sources, such as phages or plasmids, will not
be resolved. To address these limitations, shotgun sequencing-
based methods have been applied to metagenomic samples to
fully characterize DNA sequences within a population (84–86).
These samples can then be subject to de novo genome assembly.
The challenge is that the regions of the genome conserved across
species would be considered as ‘repetitive’, causing fragmented
assemblies. As a result, it can be unclear what contigs within the
assembly correspond to which species. Assigning sequences to
individual species is difficult and sometimes requires assistance
from comparative genomic analysis using known genome and
protein sequences (87–89). However, with little knowledge of
karyotypes and species composition of samples, the ability
to deconvolute genomic samples from a mixture of genomes
largely depends on the quality of initial assembly (87). Therefore,
there is a need for methods that can help to group contigs
together within species so that the nature of microbes within a
community can be better understood.

Given the fact that genomes are fixed, digested and ligated
within individual cells in Hi-C experiments, it is intuitive to
apply this technology to metagenomic studies for the deconvo-
lution of individual genomes. After initial studies demonstrat-
ing the ability to perform genome-wide chromatin conforma-
tion capture experiments in bacteria (11,90), Burton et al., Beitel
et al. and Mourbouty et al. showed that proximity ligation can
aid in clustering scaffolds into species in artificial microbial

communities (31,91,92) as well as on environmental samples
such as river sediment (31). Subsequent studies have applied this
approach to metagenomics samples from a variety of sources,
including cow rumen (93,94), mouse (12) and human (95) fecal
samples and Belgian lambic style beer (96). The most common
approach in these studies is to generate genome assemblies
from short-read whole genome sequencing experiments, though
some studies have also used long-read (PacBio) sequencing (94).
The contigs assembled from these species are then clustered
by species using contact frequencies from the Hi-C data. Once
contigs are grouped by species, scaffolding can be performed
to generate complete genome assemblies (Figure 2B) (31,92). Of
note, Marbouty et al. have also shown that the parallel generation
of whole genome sequencing libraries may not be necessary
and that the Hi-C libraries themselves may be used for initial
assembly. This may in part be affected by the specific experi-
mental strategy applied, as the Marbouty study did not enrich
for chimeric fragments as in a typical Hi-C experiment (thus
the name, meta3C), and therefore, most of the sequenced reads
represent typical shotgun sequencing and not chimeric reads.
One potential concern for such an approach is the generation of
chimeric contigs as a result of ligation events in the sample, but
the frequency of such chimeras appears to be low (31).

While Hi-C can be used to group contigs by species in metage-
nomic sequencing studies, it is not the only method for doing
so. A purely bioinformatic approach named metagenomic bin-
ning can also be applied to assign contigs to species (97–99).
Binning works by clustering contigs according to metrics such
as tetranucleotide frequency (100), gene covariance across pop-
ulations (101), identified 16S rRNA sequence (98) or differen-
tial protein alignment results against reference databases (102).
Metagenomic binning is particularly attractive as it requires no
additional experimentation beyond the initial sequencing and
assembly. Several studies have performed the direct compar-
isons of Hi-C and metagenomic binning for contig clustering
that have yielded mixed results in terms of performance (93–
95,103). In a head-to-head comparison on a sample from cow
rumen, metagenomic binning using the MetaBAT2 tool resulted
in more complete assemblies in comparison with Hi-C-based
contig clustering based on the ProxiMeta algorithm (93). In a
different cow rumen study using both short-read (Illumina) and
long-read (PacBio) derived contigs, Hi-C-based clustering using
ProxiMeta resulted in a similar number of genomes clusters
compared with metagenomic binning from MetaBat using short-
read-based assemblies, but Hi-C generated substantially more
genome clusters than metagenomic binning when using long-
read-based contigs (94). In contrast, two studies of metagenomic
assembly on a human fecal sample (using the same underlying
data) both demonstrated that Hi-C-based clustering using either
ProxiMeta or the bin3C algorithm resulted in more genome clus-
ters and more complete genomes than metagenomic binning
using MaxBin, with evidence that bin3C outperforms ProxiMeta
in terms of Hi-C-based clustering (95,103). Notably, these studies
both showed that Hi-C-based clustering resulted in substantially
lower levels of contamination that binning from MaxBin.

When considered in comparison with purely computational
methods such as metagenomic binning, it is important to ask
what are the potential advantages of using Hi-C for metage-
nomic analysis. There are likely several key aspects where Hi-
C can still provide critical information beyond that provided
by metagenomic binning. First, all of the direct comparisons
of Hi-C and metagenomic binning demonstrate that Hi-C
derived clusters show considerably the greater representation of
mobile genomic elements, such as phages and plasmids (12,94).
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Second, Hi-C defined clusters and metagenomic binning-
defined clusters were not redundant, indicating that different
species in the population may be preferentially targeted by
each approach (93,94). In this regard, combining binning and
Hi-C-based clustering may prove to be an attractive approach
in the future. Third, metagenomic binning only groups contigs
by species, whereas Hi-C can aid in scaffolding of contigs into
complete genome sequences (12,31,92). This can be particularly
important in bacteria, as functionally related genes can be
grouped in regions of the genome, and understanding long-
range gene order and organization can potentially provide
insights into function. Finally, metagenomic binning relies on
conserved features that differ between species, and as a result, it
will struggle with strain-level identification, or any other aspect
that causes a divergence from conservation. A particularly
notable example of this came from a study using Hi-C for
metagenomic analysis of a beer sample (96). This study actually
identified a novel yeast hybrid. Identifying such hybrid species
through metagenomic binning would be highly unlikely as
binning uses features shared within species for contig clustering.

In the future, it will be critical to continually re-examine
the use of Hi-C data for metagenomic analysis with the further
development of long-read sequencing. Long-read sequencing
(104) can provide additional assistance in metagenomic analysis
by generating longer contigs and scaffolds. The weakness of
long-read-based assembly lies in its cost and that it requires high
coverage (20–30×) to correct and assemble reads with each other;
therefore, covering thousands of species in a metagenomic sam-
ple with variable species abundance is extremely expensive.
However, the cost of long-read sequencing continues to drop
while the read lengths continues to increase, with reports of
nanopore sequencing reads now exceeding 1 million base pairs
(105). In this sense, long-reads will likely someday approach the
length of many bacterial chromosomes. We still believe that Hi-
C can provide critical information in this context in metage-
nomic analysis, in particular with regards to associating extra-
chromosomal elements or delineating novel species with mul-
tiple chromosomes. Our belief is the approaches that combine
complementary methods will ultimately be the most fruitful for
future metagenomic analysis.

Structural variation
One of the more striking features in Hi-C contact maps is the
impact of structural variants, including translocations, inver-
sions, deletions and insertions. This phenomenon was noted
by multiple groups in early 4C or Hi-C studies (67,106–108).
Recent efforts have sought to leverage these features to identify
structural variants de novo from Hi-C data in an unbiased manner
(109–112).

Structural variation has a notable effect on Hi-C contact
maps due to some of the basic features that define chromatin
organization (Figure 2C). First, as the distance-dependent-decay
of Hi-C contact frequency follows an exponential or power law
distribution, the existence of a structural variant will generate
contacts with orders of magnitude higher frequency relative to
the genome-wide expectation in the vicinity of the breakpoint
site. When this occurs between the regions of the genome that
would be expected to have low contact frequency, such as long-
range interactions in cis or trans contacts between different
chromosomes, this leaves a signature of dramatically elevated
contact frequency in the vicinity of the SV breakpoint. Second,
as chromosomes are generally organized into territories, the
elevated interaction frequencies typically extend long distances

from the breakpoint site, including extending the entire length
of the rearranged chromosome.

Several tools have been developed to identify these signa-
tures (110–113). The common feature they share is that they
search for dramatically elevated contact frequencies relative to
what would be expected from the genome-wide background. We
have previously developed an approach that first uses proba-
bilistic models of Hi-C interaction frequencies to assign a prob-
ability of observing a given interaction based on genome-wide
background interaction frequencies, and then uses a 2D peak
finding algorithm to identify regions showing elevated interac-
tion frequencies (112). Another approach scans the data using a
local sub-matrix and models’ interaction frequencies as Z-scores
to find elevated interactions (111). An alternative approach uses
binary segmentation algorithms to identify significant changes
in interaction frequency indicative of translocation breakpoints
(110). Finally, the recently described HiNT method can also use
chimeric read information to detect the precise breakpoint sites
at base pair resolution (113). It is currently unclear how these
methods perform relative to each other. Additionally, several
tools have been developed to identify copy number changes in
Hi-C data (109,110,113–115). As Hi-C is based on high throughput
sequencing, regions of the genome with elevated copy number
tend to show elevated raw coverage similar to Whole Genome
Sequencing (WGS) data. These methods take advantage of this
feature to identify gains or losses in copy. Hi-C data has an
additional challenge compared with conventional WGS data that
experimental biases are introduced due to the use of restriction
enzymes (116). The biases introduced by restriction enzyme
digestion lead to more variable patterns of coverage in Hi-C
data relative to WGS data and, therefore, must be corrected
(109,110,113–115). Once the corrected coverage profiles are gen-
erated, the Hi-C data can then be segmented into regions of
distinct copy number using methods similar to what have been
used previously for copy number estimation from array or WGS
data (109,110,113–115). In our view, if used in isolation, WGS is
still likely better than Hi-C at identifying copy number changes.
However, these tools can allow researchers to extract copy num-
ber changes from existing Hi-C data sets.

Hi-C has certain advantages and disadvantages with regards
to identifying SVs compared with alternative methods. In terms
of advantages, as SVs leave elevated contact frequencies sur-
rounding the breakpoint site for up to megabases away from the
break, Hi-C can identify SVs that occur in repetitive or unmap-
pable regions of the genome (112). Our previous work identi-
fied some SVs where the breakpoints appear to map to cen-
tromeric regions of the genome (112), something that would be
nearly undetectable with existing short-read sequencing meth-
ods. Likewise, the fact that the elevated contact frequencies
can extend great distances from SV breakpoints also provides
insights into complex SVs. We had shown that in the case of
certain complex SVs, Hi-C shows elevated contact frequencies
between the regions that are not directly joined by the SVs but
are instead indirectly linked by additional sequences (112). As a
result, this can provide insights into which SVs may be shared
on a single allele, and has the potential in the future to be useful
for the SV phasing or reconstruction of complex chromosomal
rearrangements. Hi-C does have certain clear disadvantages in
terms of identifying SVs as well. Namely, as the feature identified
by these methods is elevated contact frequency relative to back-
ground, this becomes harder to identify when the background
expected interaction frequency goes up. As a result, we have
seen that Hi-C struggles to identify SVs smaller than 1 Mb in the
genome (112). Likewise, Hi-C has the potential to identify false
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positive events where long-range interactions may be dramati-
cally elevated due to specific properties of chromosome organi-
zation. Recent studies in olfactory neurons have demonstrated
that these form hubs of trans interactions that may be identified
as SVs if such methods are applied (117). In our experience,
however, these kinds of events are not frequent in Hi-C data, but
researchers should be aware of the potential for false positives
due to such uniquely strong chromatin contacts.

One additional advantage of Hi-C data for SV calling that
we believe represents an exciting area for future exploration is
the use of Hi-C to identify SVs in formaldehyde fixed paraffin
embedded (FFPE) samples (111). FFPE is the standard method
for archival of clinical specimens for histological analysis. There
is great interest in using such archived samples for a number
of molecular and biochemical assays. One challenge in apply-
ing sequencing-based assays to such samples is that FFPE can
degrade DNA, rendering it no longer suitable for long-read-
based sequencing. As Hi-C normally starts with a formaldehyde
fixation step, it would appear that this storage method may be
amenable for Hi-C experiments. A recent report has demon-
strated the first use of Hi-C on FFPE samples and was able to
identify numerous known translocations in such samples (111).
This would represent an exciting opportunity to profile SVs in
rare or hard to obtain samples or in cases where the annotation
of samples in FFPE blocks using traditional histological methods
may have already been applied. This represents a potential
unique space for Hi-C to excel as an SV finding method, as using
FFPE for many genomic assays has proved challenging.

Haplotype phasing
Another application for Hi-C in genome reconstruction is for
haplotype phasing, either on a chromosome wide scale (66)
or over focal regions of the genome (118,119). Humans like all
diploid organisms inherit half of their genetic material from
each parent. As a result, we also inherit half of our genetic
variation from each parent. The problem of haplotype phas-
ing is to resolve which sets of variants along a chromosome
were inherited from each parent for a given individual. The
ability to genotype variants has become cost effective with the
development of SNP microarrays and whole genome sequencing.
The challenge of haplotype phasing is to then determine which
genotypes were co-inherited from each parent. Phasing haplo-
types in the genome remains a strong need in genetic research.
Studying haplotypes of human individuals provides insights
into population structure and evolutionary history (5,120,121).
Haplotype-solved cancer genomes can reveal the mechanisms
of haplotype-specific activation of oncogenes (122).

Haplotype phasing is typically accomplished using one of
two approaches: statistical phasing or experimental phasing.
Statistical phasing relies on determining which local haplotypes
occur frequently in the population due to linkage disequilibrium.
Statistical phasing, therefore, does not require any additional
experiments beyond genotype information, but it does require
large sets of population genetic information. Statistical phasing
is highly accurate locally, but the classical limitation of statistical
phasing is that it will inevitably contain numerous errors
(‘switch errors’) often at recombination hotspots due to the
fact that linkage disequilibrium will only account for co-
inheritance of alleles that are proximal along the chromosome.
Despite this, improving methods for statistical phasing is
generating longer and longer haplotypes, in particular when
phasing large numbers of individuals from closely related
populations (123).

The alternative general approach for phasing is experimental
phasing. This relies on the presence of multiple variants within
single or paired/linked sequence reads. The reason why this
problem is non-trivial is that the average density of heterozygous
polymorphisms ranges from 1 variant per 1000–1500 base pairs
depending on the population (124), while the typical fragment
sequenced in short-read Illumina sequencing is around 500 bp.
As a result, using short-read data, few variants can be linked
together. One solution to this problem has involved using
long fragment sequencing, including the use of mate-pair
sequencing, long-read sequencing (PacBio) or linked reads (5,6).
These methods can begin to achieve longer local haplotypes
but inevitably fail to extend to generate haplotype N50 s
longer than several megabases in length or to phase across
centromeres (125). Hi-C has the potential to overcome some of
these limitations, as read pairs captured in Hi-C experiments can
in theory span the entire length of a chromosome. Importantly,
as was demonstrated in our initial description of Hi-C-based
phasing, read pairs that align to the same homologous chromo-
some are more likely to also arise from the same haplotype
(Figure 2D) (66). This effect is dependent on the distance
between the pairs of reads, such that as reads are further
separated along a chromosome, the likelihood of the reads
occurring on the same haplotype approaches the likelihood
of reads aligning to separate homologous chromosomes in
trans.

Several computational algorithms have thus far been
described for using Hi-C data to phase haplotypes. Our original
description relied on the use of HapCUT (126), an algorithm that
uses max-cuts in a graph-based representation of haplotypes
and sequence reads to identify an optimal pair of haplotypes.
This has been recently modified as HapCUT2 (127), a maximum
likelihood-based approach for improved performance and
explicit handling of Hi-C specific errors. Alternative methods
also include the SpectralPhasing algorithm, which uses Hi-C
data to extend partial haplotypes from short-read sequencing
by embedding Hi-C data in 3D Euclidean space (128). In addition,
a recent method using a 1D spin model to perform two-tiered
phasing using linked-read and Hi-C data has been recently
described (129).

Our original description of Hi-C-based haplotype phasing
was able to generate chromosome length haplotypes for all
somatic chromosomes. The limitation was that these were
sparse haplotypes, containing only ∼20% of heterozygous
variants along a given chromosome. Many of the missing
variants could be ‘imputed’ based on the seed with high-
accuracy, but this is only able to rescue a subset of variants
and is biased towards common variants. Current experimental
efforts to move beyond these initial sparse haplotypes have
focused on combining alternative data types with Hi-C-based
haplotypes. For example, recent reports integrating Hi-C data
with linked-read sequencing-based approaches can improve
the fraction of phased variants to upwards of 98.9% (127,129).
An alternative approach to integrating Hi-C with alternative
sequencing methods is to use Hi-C data to construct a phased,
diploid genome assembly (130). Such an approach has recently
been described by integrating Hi-C and PacBio sequencing data
using the ‘FALCON-phase’ method. PacBio long-reads are first
used to generate a de novo assembly. PacBio-based assembly can
generate phased contigs (termed ‘haplotigs’) that are interrupted
by unphased contigs due to the regions of low heterozygosity.
By integrating Hi-C data, a phased diploid assembly can be
resolved by stitching haplotigs together into complete phased
genomes.
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Hi-C is one of relatively few experimental methods which
allows for chromosome length haplotype phasing. As statistical
phasing and phasing based on alternative methods such
as linked-reads, long-reads or fosmid-based sequencing can
all achieve high local accuracy, one important question is
what is the utility of obtaining the long haplotypes generate
by Hi-C compared with alternative approaches? There are
likely several intriguing potential applications. One potential
application is with regards to non-invasive prenatal genome
sequencing. The initial reports of using cell-free DNA to
sequence the genome of a fetus in utero relied on phased
haplotypes of the parents in order to accurately genotype
which variants were inherited by the fetus (131–133). The
authors note that longer haplotypes yield greater accuracy
of fetal genotypes (132). Indeed, one report that generated
chromosome length haplotypes using trio-based phasing-by-
transmission indicated that with chromosome length phasing
in the parents, highly accurate fetal genotypes can be inferred
using only shallow sequencing of cfDNA (134). Trio-based
approaches required the whole genome sequencing of both
parents and all four grandparents of the fetus. Therefore,
an Hi-C-based chromosome length haplotype may obviate
the need to sequencing an entire pedigree. This application
is practically limited by the fact that genome-wide Hi-C
likely fails to phase many rare variants due to the sparsity
of the experimentally derived haplotypes, so sequencing to
identify rare Mendelian disease associated variants may have
limited power. This limitation has been solved, however, using
targeted approaches (135), indicating that 3C-based methods
may be most readily applied when targeting specific rare
variants.

Another potential application of Hi-C-based haplotype
phasing is in allele-resolved epigenomic analysis. Studying
the differential epigenetic and transcriptomic states between
alleles can yield important insights into phenomena such
as genetic imprinting (136), X-chromosome inactivation (137)
and the effects of regulatory variants acting in cis. This
has historically been accomplished using crosses between
inbred mouse strains or by the use of samples with known
haplotypes from trio-based phasing. However, the ability to
generate chromosome length haplotype phasing can allow
this type of analysis to be performed in any setting. For
example, this approach has been applied to phase human
ES cell lines and their differentiated progeny to study allele
specific gene regulation as well as phasing haplotypes from
healthy patient samples to study such effects in tissue samples
(32,138). One challenge of such approaches is that Hi-C-based
haplotype phasing typically requires high sequencing coverage
in order to obtain complete haplotype phasing. Therefore, in
the future to make more widespread use of these approaches,
there is a need to develop methods that can generate chro-
mosome length haplotype phasing using limited or shallow
sequencing.

Conclusions
The development and application of Hi-C and its derivative
methods has provided insights into aspects of genome biology
even beyond its original purpose for studying 3D genome
architecture. Hi-C has been applied to study the order of
linear sequences, genome rearrangements, and heterogeneous
composition of genomes in different (metagenomics) or the
same (haplotype phasing) nucleus. Future improvements of
Hi-C for this purpose may include developments that bring

higher resolution and less background, higher efficiency of
ligation and also new computational tools that better integrate
data from Hi-C with other genomic assays. Due to the largely
invariant basic features that define Hi-C data, we believe that
this is an assay that is likely here to stay as a tool for genome
reconstruction.

Key points
• 3C assays can aid in genome sequencing, including con-

tributing to genome scaffolding, metagenomic assem-
bly, haplotype phasing and structural variant identifi-
cation.

• These methods have been applied to a wide variety or
organisms and individuals, and have the potential to be
applied to unique sample types, such as clinical FFPE
samples.

• Some limitations to Hi-C as a tool for genome recon-
struction are apparent, including orientation errors in
scaffolding and the lack of sensitivity for detecting
small rearrangements in structural variant identifica-
tion.

• Integrating Hi-C data with alternative data types, such
as long-read or linked-read sequencing, are likely to
increase the power of this approach in the future.
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