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Abstract

With advances in connectomics, transcriptome and neurophysiological technologies, the 

neuroscience of brain-wide neural circuits is poised to take off. A major challenge is to understand 

how a vast diversity of functions is subserved by parcellated areas of mammalian neocortex 

composed of repetitions of a canonical local circuit. Areas of the cerebral cortex differ from each 

other in not only their input-output patterns but also their biological properties. Recent 

experimental and theoretical work has revealed that such variations are not random 

heterogeneities; rather, synaptic excitation and inhibition display systematic macroscopic gradients 

across the entire cortex, and they are abnormal in mental illness. Quantitative differences along 

these gradients can lead to qualitatively novel behaviours in nonlinear neural dynamical systems, 

by virtue of a phenomenon mathematically described as bifurcation. The combination of 

macroscopic gradients and bifurcations, in tandem with biological evolution, development and 

plasticity, provides a generative mechanism for functional diversity among cortical areas, as a 

general principle of large-scale cortical organization.

Introduction

The idea of a canonical microcircuit in the mammalian cortex is a cornerstone of 

neuroscience ever since the discovery of columns in the 1950s and 1960s. According to this 

view1 the basic unit of cortical organization is a minicolumn, with about 100 neurons 

confined vertically across the cortical depth, except for the primary visual cortex (V1) where 

the number of neurons in a minicolumn is ~2-fold greater. Each minicolumn is dedicated to 

a particular neural computation, such as coding a particular orientation of visual stimuli in 

V1. A column consists of a number of minicolumns, and its horizontal spatial extent varies 

little (ranging 300–600μm in diameter) even between species whose brain volumes vary by a 

factor of 1,000. This expansion of cortical volumes corresponds to an increased number of 

columns across species2.

For decades, in vitro neurophysiological studies of neocortical circuits have been largely 

done using slices of primary sensory areas, often with the implicit assumption that results 
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thus obtained remain valid for all neocortical areas. By contrast, a limited number of studies 

have revealed marked differences between V1 and association areas such as the prefrontal 

cortex (PFC)3–5 as well as between rodent and primate species6–7, but these differences have 

not been systematically documented and tend to be underappreciated. As it was put some 

years ago: “Our view is that the rapid evolutionary expansion of neocortex has been made 

possible by building an ‘isocortex’ — a structure that uses repeats of the same basic local 

circuits throughout a single [cortical] sheet”8.

Of course, it is well known from neuroanatomy that spatial heterogeneity is a salient 

characteristic of mammalian cerebral cortex. Neuron density, pyramidal cell size, myelin 

content in the grey matter, cortical thickness, laminar differentiation and local circuit wiring 

properties all vary across the cerebral cortex9–14. Starting with the work of Korbinian 

Brodmann, Constantin von Economo, Cécile Vogt-Mugnier and Oskar Vogt at the dawn of 

the twentieth century, these variations in cytoarchitecture and myeloarchitecture have been 

measured and utilized as an anatomical basis of parcellating the cortex into discrete areas 

and defining cortical hierarchy (see refs 13–14 for recent reviews).

Modern brain connectomics has enabled researchers to quantify cortical connectivity15–16 . 

In the framework of graph theory, cortical areas are ‘nodes’ connected by ‘links’ in a 

structured graph. Nodes are mathematically identical even though areas are biologically 

heterogeneous; thus, microscale cellular variations was assessed not so much in terms of 

their dynamical implications as correlates of macroscale interareal long-range connections 

of different areas17. Similarly, in studies of functional connectivity, such as those using 

functional MRI (fMRI), areas are typically assumed to be identical. Functional connectivity 

measured by covariance matrices of the activities of pairs of areas is interpreted in terms of 

interareal structural connections, but the correlation between the structural and functional 

connections is modest18–20. Areal differences are by and large ignored in current graph-

theoretical analysis of the brain connectome, partly explaining our limited understanding of 

functional connectivity data, as discussed below.

From this perspective, how can one explain the different functional capabilities of such 

disparate areas as V1 and PFC? Differential functions of various cortical areas could emerge 

from their proximity to sensory peripheries, their input and output connections and synaptic 

plasticity. Take, for instance, the primate visual system, which is organized in a hierarchy: 

visual information arrives in the retina, its output is sent to the thalamus en route to V1, the 

output of which propagates to visual area V2 that in turn connects to V3, MT and V4, and so 

on21–23. The connection patterns are determined during development and sculpted by 

plasticity. Along the resulting hierarchy, step-by-step there is a gradual enlargement of 

neuronal receptive-field sizes and selectivity for increasingly abstract stimulus features, 

ultimately to size- and position-invariant object recognition.

In purely feedforward architectures implemented in mathematical models of deep networks, 

there is no connection in the opposite direction from a higher to a lower area of a hierarchy, 

nor between units within each area. Such feedforward architectures have been spectacularly 

successful in performance of a number of tasks, and lie at the heart of the recent artificial 

intelligence revolution24. However, the biological cortex, including early sensory areas, is 
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endowed with an abundance of recurrent synaptic connections25–27. Recurrent connections, 

sometimes also called re-entry connections, denote bidirectional interactions between 

neurons either within a local circuit or across different brain regions. For instance, in V1, a 

neuron sends signal to another neuron that in turn projects back to the first neuron. Such 

back-and-forth reverberation between many excitatory and inhibitory neurons is absent in 

networks devoid of loop connections. Most interareal connections (for example, between V1 

and V2) are reciprocal, in contrast to the feedforward architecture that dominates today’s 

deep networks.

Moreover, brain areas differ from each other not only in inputs and outputs, but also their 

biological properties. For instance, consider the more than 2,400 brain-specific genes in 

humans: are the area-to-area variations of gene expression random heterogeneities, or does 

the expression of these genes vary systematically along certain well-defined axes across the 

cortex? The primary goal of this article is to discuss recent experimental findings in support 

of the notion of macroscopic gradients — namely, variations of synaptic excitation and 

inhibition across the cerebral cortex are not random but display macroscopic gradients 

primarily along a one-dimensional axis of hierarchy Importantly, strongly recurrent neural 

circuits are described theoretically as nonlinear dynamical systems. In such systems, 

quantitative changes of a property can lead to the emergence of qualitatively different 

behaviour, through a phenomenon mathematically called ‘bifurcation’ that is not possible in 

linear dynamical systems28. I argue that the functional importance of macroscopic gradients 

can be better appreciated with the help of the theory of nonlinear dynamical systems. 

Bifurcations can be viewed as a mathematical engine for understanding how novel brain 

functions emerge, with macroscopic gradients of biological properties shaped through 

biological evolution, brain development and synaptic plasticity.

Below, I first present macroscopic gradients of synaptic excitation, and illustrate the idea of 

bifurcation that arises from such a gradient with an example of the generation of the self-

sustained persistent neural activity that underlies working memory. I summarize 

macroscopic gradients recently reported from analyses of transcriptomic data from mouse 

and human cortex, and differences between the two species. Second, I show the importance 

of macroscopic gradients for the emergence of a hierarchy of timescales and for 

understanding cortex-wide functional connections. Third, I describe how synaptic excitation 

is balanced by inhibition, the latter of which also displays macroscopic gradients. Fourth, I 

briefly describe recent evidence that macroscopic gradients of synaptic excitation and 

inhibition are aberrant in mental disorders such as schizophrenia.

Gradients of synaptic excitation

A well-established hierarchy is that of the visual system in macaque monkey, with V1 at the 

bottom. Starting with the work of van Essen and his colleagues21–22, a functional hierarchy 

of visual information processing has been substantiated anatomically using tract-tracing 

analysis. The basic observation underlying the definition of cortical hierarchy is that a 

feedforward projection tends to originate from neurons in superficial layers, whereas 

neurons that provide feedback projections reside in deep layers. According to a 

quantification analysis, each area in the macaque visual hierarchy was designated a position 
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normalized between 0 and 1 along a one-dimensional hierarchy23 For instance, a qualitative 

description asserts that V2 is higher than V1, V4 is higher than V2, and TEO is higher than 

V4 along the visual hierarchy. Quantitatively, V2, V4 and TEO were assigned hierarchical 

positions of 0.17, 0.42 and 0.71 respectively, with V1 at the starting position 0. To explore 

whether cellular or synaptic heterogeneities vary randomly or systematically along the 

cortical hierarchy, published spine-count data29 were re-examined. Spines are small 

protrusions of pyramidal dendrites where individual excitatory synapses are located; 

therefore, spine count is a proxy of the strength of synaptic excitation per pyramidal cell. 

Remarkably, the spine count data display a strong positive correlation with the hierarchical 

position of cortical areas (Fig. 1a)30. In particular, in the macaque brain, a pyramidal cell in 

a prefrontal area has about 10-fold more spines than a pyramidal cell in V1. By contrast, in 

mouse, total spine count per pyramidal cell seems to be uniform across the cortex31–32, 

suggesting that the macroscopic gradient of spine counts may be a relatively recent 

evolutionary development.

Given that 80% of all excitatory connections are intrinsic in any cortical area33, the spine 

count data imply there are more recurrent excitatory connections within PFC than in V1. 

This is interesting functionally, because sufficiently strong excitatory connections are 

believed to be a mechanism for the maintenance of persistent activity in the absence of 

external stimulation, a neural substrate of working memory representation34–36. Indeed, in a 

biologically realistic local circuit model of spiking neurons (Fig. 1b)36–37, the strength of 

recurrent excitation GEE can be varied as a parameter. When GEE is relatively low, the 

system has a single stable resting state with low spontaneous activity. Neurons respond to a 

presented stimulus, but their firing activity rapidly decays back to the baseline after 

stimulation offset. As GEE is gradually increased in a moderate range, a particular GEE value 

marks a threshold level of excitatory reverberation (indicated by the red arrow) at which 

there is a sudden emergence of a new family of self-sustained, stimulus-selective activity 

states. Thus, for GEE above the threshold, the baseline state co-exists with a number of 

persistent activity states (attractors), each storing a memory item. A transient stimulus can 

bring the system from the resting state to one of the information-selective memory states, 

which then persists after stimulus withdrawal.

The abrupt appearance of working memory representation is mathematically described as a 

bifurcation. This concept is technical, but a sudden change of behaviour as a result of graded 

variation of a parameter is not unfamiliar to neurophysiologists. Consider the input–output 

relationship of a single neuron: with a small input current, membrane potential is constant 

over time (a stationary attractor). When the intensity of current is increased above a 

threshold level, repetitive firing of action potentials (an oscillatory attractor) emerges, 

representing a qualitatively different dynamical behaviour from the steady state. The same 

holds true for recurrent neural networks. Thus, the presence of persistent neural activity in 

PFC but not in V1 can be theoretically explained by the strength of recurrent excitation 

being below the threshold in V1 and above it in PFC. This example concretely illustrates 

how a modest quantitative difference can produce a qualitatively novel functional capability.

Furthermore, computational modelling predicted that strong recurrent excitation is necessary 

but not sufficient for persistent neural activity; in addition, synaptic reverberation needs to be 
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slow and dependent on NMDA receptors (NMDARs)38. This molecular-level prediction was 

confirmed in a monkey physiological experiment that demonstrated a special role of NR2B-

subunit-containing NMDARs in the maintenance of working memory representations39. 

Moreover, modelling work showed that slow, NMDAR-dependent reverberation also 

provides a circuit mechanism for decision-making computations40. Is there also a 

macroscopic gradient of NMDAR signalling along the cortical hierarchy? The answer is 

currently not available for macaque monkey, but relevant evidence is emerging for human 

and mouse. As brain-wide transcriptomic data are becoming available, one approach is to 

examine the expression of genes that encode NMDAR subunits — or, more generally, genes 

that encode receptors and other proteins of importance for synaptic excitation and inhibition 

— across parcellated cortical areas.

A human cortical hierarchy, as defined anatomically by tract-tracing analysis, is currently 

not available. However, the ratio of T1-weighted to T2-weighted MRI signal (the T1w/T2w 

ratio), which has been suggested to reflect myelin content in the grey matter41–42, was noted 

to be high in human V1 and low in human PFC18. One study43 showed that, in macaque 

monkeys, the T1w/T2w ratio is strongly correlated negatively (Spearman coefficient of 

−0.76) with the hierarchical position as defined independently using layer-dependent 

connections23, in support of T1w/T2w ratio as a non-invasive index of cortical hierarchy.

Do biological properties such as gene expression levels vary systematically along the 

hierarchy quantified by the T1w/T2w ratio? An analysis43 of published human cortical-RNA 

microarray data44 revealed that multiple genes involved in synaptic transmission display 

macroscopic gradients along the T1w/T2w ratio axis. For example, expression of the gene 

GRIN2B (Fig. 1c), which encodes the NR2B NMDAR subunit, decreases with T1w/T2w 

ratio and thus increases with hierarchy. NMDARs are heterotetramers that each contain two 

copies of the obligatory NR1 subunit together with two other subunits. In V1, a ‘switch’ 

occurs early in development, starting near the time of eyelid opening, from NR2B to NR2A 

dominance in NMDARs45. Interestingly, the expression of both NR1 and NR2A decreases 

rather than increases along the T1w/T2w-ratio-defined hierarchy43. These results are 

consistent with the converging physiological evidence that differences in the abundance of 

NR2B-containing NMDARs mediate the appearance of the more prominent slow 

reverberation in PFC areas than in primary sensory areas5,39

An analysis of genetic data among cortical areas ranked along the T1w/T2w ratio was also 

carried out in mouse cortex, for which hierarchy is still a matter of investigation46. Using in 

situ hybridization transcriptome data47, several macroscopic gradients were identified48. In 

particular, a negative correlation of expression of NR3A-encoding gene with Tw1/Tw2 ratio 

(Fig. 1d) was found in mice, as in humans. By contrast, in the mouse cortex, the expression 

of genes encoding NR2B and NR2A positively correlates with the T1w/T2w ratio. It is 

worth noting that NR3A-containing NMDARs are mostly found perisynaptically, and that 

the functional role of NR3A in NMDAR signalling could be quite different from those of 

NR2A and NR2B subunits49. Note that in vitro physiological studies showed that there is a 

stronger NR2B-dependent component of excitatory synaptic transmission at local pyramid-

to-pyramid connections in frontal areas than in V1 of rats5, which appears to contradict a 

higher level of NR2B encoding gene expression in areas lower in the hierarchy, assuming 
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that mouse and rat are similar. However, the relationship between gene expression of a 

receptor and the latter’s physiological function is an indirect one. Furthermore, the overall 

gene expression of a receptor does not provide information about specific locations of the 

encoded receptor, such as at local excitatory-to-excitatory connections in a microcircuit 

versus long-range interareal pathways. Nevertheless, generally, NMDAR signalling displays 

macroscopic gradients in both mouse and human cortices, with some similarities as well as 

some marked differences between species.

Global brain dynamics

Spatial dependence of network connections50 has recently drawn attention in brain 

connectomic studies. In a directed- and weighted- interareal connectivity matrix of macaque 

monkey cortex (published in a series of articles)33,51–52, the connection weight between 

pairs of areas decreases exponentially with their wiring distance (the exponential distance 

rule). Inspired by this work, a class of spatially embedded structural network models of the 

cortex has been proposed53–54 to better describe mesoscopic cortical connectivity than 

purely topological networks that do not take into account spatial relationship between areas. 

The cortical network (Fig. 2a) endowed with this interareal connectivity matrix served as the 

structural basis of a large-scale dynamical model of macaque cortex, that incorporated a 

macroscopic gradient of synaptic excitation calibrated by the previously described spine-

count data30,55–56. In this model, spontaneous neural activity fluctuates fast in an early 

sensory area like V1, and much more slowly in a PFC area such as Brodmann area 9 and the 

dorsal part of area 46 (area 9/46d). Activity time series from each area is quantified by the 

autocorrelation function, which describes how the values of a neural signal between two 

time points decays with the temporal separation interval. A dominant time constant was 

extracted from each area, revealing a wide range of timescales of dynamical operation that 

increase from sensory to association areas (Fig. 2b).

This theoretically predicted hierarchy of time constants gained empirical support in analyses 

of single-unit activity of the monkey cortex57 and mouse58. It is also functionally desirable 

for early sensory areas to operate on fast timescales to process rapidly changing external 

stimuli, while association areas such as PFC display slow transients of neural activity that is 

appropriate for temporal integration of information in decision-making40,59–61. The 

gradually expanding temporal response windows, also found in human cortex62–64 , mirror 

the well-known increases of spatial receptive field size along the visual hierarchy65. It is 

worth noting, however, that the dominant time constant is not a monotonically increasing 

function of the hierarchical position; it depends on the macroscopic gradient of synaptic 

excitation and the specific statistical properties of interareal connectivity including that of 

numerous feedback loops66.

The existence of macroscopic gradients implies that cortical areas are not the same, in 

contrast to the assumption of commonly practiced graph theoretic analysis of functional 

connectivities. Intuitively, one expects that functional connectivity, be it measured by fMRI, 

magnetoencephalography or electrocorticography, would show greater correlation with 

anatomical connectivity if nodes were indeed identical, because in that case the global 

dynamics would be predominantly determined by the interactions between nodes. This was 
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confirmed in simulations of the multi-regional macaque cortex model30 in which functional 

connectivity was defined by co-variance of the activity of pairs of areas (Fig. 2c). Notably, 

the functional connectivity was dramatically altered in the absence of the macroscopic 

gradient, when the area-to-area variation of synaptic excitation based on the spine-count data 

was removed from the model (compare left and right panels of Fig. 2c). This is because the 

slow dynamics in association areas have a large impact on the global neurodynamical 

pattern. Importantly, the correlation between functional connectivity and anatomical 

connectivity was smaller in the presence of a macroscopic gradient (r2 = 0.53) than without 

it (r2 = 0.83)30. It follows from this finding that long-range connections alone cannot predict 

global brain-activity patterns. Indeed, a recent study of human cortex showed that the 

correlation between functional connectivity and structural connectivity (measured by 

diffusion tensor imaging) gradually decreases from unimodal sensory areas to transmodal or 

association areas67. Therefore, functional connectivity analyses that take into account a 

heterogeneous distribution of properties in the cortex, notably in the form of macroscopic 

gradients, are predicted to yield a better understanding of the relationship between functional 

and structural connectivity.

One study68 addressed this matter by comparing a computational model of the human cortex 

with functional imaging measurements from more than 300 healthy participants. In this 

model, the interareal connectivity was based on the structural MRI data from the Human 

Connectome Project. As in previous work69–70, the dynamics of each local area were 

described by a population rate model adopted from ref. 71 and BOLD signal was extracted 

from neural activity using the Balloon model72. The global brain connectivity for each 

parcellated area was defined as the average of its functional connectivities with all the other 

cortical areas, and the global brain connectivity values (one for each area) of the model were 

compared with those measured using human resting-state fMRI. With areas differing only in 

their connection patterns, the correlation (r) between the global connectivity values from the 

computational model and from the fMRI data was about 0.48, which is comparable 

comparable to that of a previous study73. However, when a linear gradient of strength for 

local synaptic excitation as well as inhibition was introduced along the T1w/T2w axis, the 

correlation between the global functional connectivity from the computational model and 

that from the fMRI data was substantially higher (~0.74).

In a separate work, the strength of recurrent connections in a modelled cortical network was 

allowed to vary from area to area and was optimized to fit the model to functional 

connectivity data from human resting-state fMRI. The resulting model parameters revealed a 

macroscopic gradient of local recurrent excitation74. However, surprisingly, the gradient that 

emerged from model fitting decreased rather than increased along the hierarchy. The 

discrepancy between the two studies68,74 may arise from differences in the details of 

experimentation and modelling, and its resolution warrants future research. Regardless, these 

works highlight the importance of considering macroscopic gradients in network studies of 

large-scale brain dynamics30.

Wang Page 7

Nat Rev Neurosci. Author manuscript; available in PMC 2020 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gradients of inhibition

A hallmark of cortical organization is the balance between synaptic excitation and 

inhibition75. Does synaptic inhibition also display a macroscopic gradient?

Cortical GABAergic cells display remarkable diversity76–79, and the density of various 

inhibitory cell types is heterogeneous across the cortex. These diverse interneuron types can 

be labelled with different markers. Conventionally, three major interneuron classes have 

been defined based on their expression of the calcium-binding proteins parvalbumin (PV+), 

calbindin (CB+) or calretinin (CR+), and their relative proportions are quite different in V1 

versus PFC80–81. More recent studies in rodents commonly divide most interneurons into 

three types according to their mutually exclusive expression of PV, somatostatin (SST) or 

vasoactive intestinal peptide (VIP); there is a large overlap between SST+ interneurons and 

CB+ interneurons (collectively referred to hereafter as SST+/CB+ neurons), as well as 

between VIP+ interneurons and CR+ interneurons (VIP+/CR+ neurons). In a disinhibitory 

motif initially proposed theoretically82 and later supported by experiments (for reviews, see 

Refs. 83–84), PV+ interneurons target the perisomatic region of pyramidal cells and control 

their spiking output, whereas SST+/CB+ interneurons target pyramidal dendrites and gate 

synaptic input flow. The third interneuron subpopulation, VIP+/CR+ neurons, preferentially 

project to SST+/CB+ interneurons (Fig. 3a).

A comprehensive cell-count analysis of GABAergic cells in the mouse brain revealed that 

the ratio of input-controlling SST+ cells and output-controlling PV+ cells varies considerably 

across cortical areas85. When areas were plotted by rank order, it became clear that the ratio 

of SST+ neurons to PV+ neurons is generally low in early sensory areas and motor areas, and 

is high in association areas including frontal areas (Fig. 3b), revealing a macroscopic 

gradient of synaptic inhibition in the mouse cortex. Notably, PV+ cells are twice as abundant 

as SST+/CB+ cells in V1, but SST+/CB+ cells are 4-fold more numerous than PV+ cells in 

frontal areas. This gradient of input-controlling versus output-controlling inhibition holds for 

primates81. Indeed, using an entirely different methodology, a separate study43 found that 

the expression of the genes encoding PV, CB and CR all display strong correlations with the 

T1w/T2w ratio in the human cortex (Fig. 3c).

Synaptic inhibition is crucial for processes such as stimulus selectivity86–87, synchronous 

oscillations88–89; the functional implications of a macroscopic gradient of inhibition remains 

to be elucidated in future research. A particularly relevant idea is that the disinhibitory motif 

could serve to gate inputs into pyramidal dendrites flexibly according to behavioural 

demands. Specifically, when VIP+/CR+ inhibitory neurons are activated, SST+/CB+ neurons 

would be suppressed, thereby opening the gate for inputs into pyramidal dendrites82,90–91. 

The need for such pathway gating is likely greater in association areas (as recipients of 

converging inputs) than in primary sensory areas along a cortical hierarchy, which I propose 

to be subserved by a macroscopic gradient of input-controlling versus output-controlling 

inhibitory neurons. Moreover, different GABAergic cell types are differentially modulated 

by neuromodulators in different brain states. The identification of macroscopic gradients of 

synaptic inhibition represents an important clue for extending our understanding of the role 

of inhibitory neurons, from local circuits towards multi-regional large-scale cortical systems.
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Gradient deficit in mental disorders

The notion of macroscopic gradients has begun to be applied to studies of mental disorders. 

For instance, schizophrenia is characterized by large-scale cortical dysconnectivity 

(abnormally reduced or increased connectivity, depending on brain regions and task 

conditions, compared with health individuals)92. Interestingly, dysconnectivity mostly 

implicate the PFC and other association areas, raising the question of how such differential 

impairment can be explained if biological abnormalities are common across the neocortex.

This question motivated a study of brain dysconnectivity in schizophrenia that combined 

fMRI with a large-scale cortical network model of the human cortex93. In the model and the 

data analysis, parcellated cortical areas were divided into association areas and sensory 

areas. Functional connectivity between a pair of areas was defined by the covariance of their 

activity, and ‘within-network connectivity’ was computed by the average of functional 

connectivities between association areas, or between sensory areas, separately. The 

computational model was used to simulate the effect of low-dose ketamine injection, which, 

in healthy humans, produces symptoms of schizophrenia [(94)]. The effect of ketamine was 

assumed to reduce NMDAR-dependent drive to inhibitory neurons, leading to weakened 

inhibition (the effect of ketamine on excitatory-to-excitatory connections was not included in 

this study). In the model, local recurrent excitation strength was scaled by a parameter WA 

for association areas and WS for sensory areas. The existence of a macroscopic gradient was 

incorporated in a simple way by assuming a higher recurrent excitation in association areas 

than in sensory areas (WA > WS). Reducing the strength of the excitatory-to-inhibitory 

connection throughout the cortex, mimicking ketamine application, produced an increase of 

functional connectivity in the association network, but no noticeable change of functional 

connectivity in the sensory network By contrast, when there was no heterogeneity in 

recurrent excitation between association areas and sensory areas (WA = WS), simulated 

ketamine results in increased functional connectivity similarly for the sensory network and 

association network. Concomitantly, resting-state fMRI measurements were carried out in 

164 healthy individuals and 161 individuals with schizophrenia. The experiment revealed a 

differential increase of functional connectivity in association areas of individuals with 

schizophrenia compared with healthy individuals, but no difference in the functional 

connectivity of sensory areas between the two participant groups, supporting the presence of 

a macroscopic gradient. Therefore, macroscopic gradients offer a potential explanation for 

selective impairments centred around PFC and other association areas, even if biological 

alterations may be widespread and uniform over the entire cortex95.

Are macroscopic gradients themselves deficient in mental illness? A recent transcriptomics 

study96 investigated the expression of key markers of glutamate and GABA 

neurotransmission from postmortem cortical tissues of healthy individuals and individuals 

afflicted with schizophrenia. Four areas (V1, V2, posterior parietal cortex (PPC) and 

dorsolateral PFC) were chosen because of their contributions to visuospatial working 

memory, a cardinal cognitive function that is impaired in schizophrenia. The expression of 

genes encoding receptors, enzymes that synthesize transmitters, vesicular transmitter 

transporters, and so on, were combined into two composite measures, for glutamate 

signalling and GABA signalling. In the healthy controls, there were pronounced 
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macroscopic gradients for both synaptic excitation and inhibition (Fig. 4). By sharp contrast, 

in individuals with schizophrenia, the gradient of glutamatergic signalling was blunted, 

whereas the gradient of GABAergic signaling was accentuated (Fig. 4). Although this study 

was limited to four areas, it suggests that macroscopic gradients of synaptic excitation and 

inhibition across the cortical hierarchy are aberrant in schizophrenia. Future research is 

needed to dissect functional consequences of abnormal macroscopic gradients associated 

with Schizophrenia and other mental disorders including autism97. For instance, how does 

the absence of a graded increase of glutamatergic signalling along the hierarchy contribute to 

distributed working memory deficits? The answer requires a more complete description of 

differential distributions of transcripts in pyramidal neurons and various interneuron types, 

as well as across cortical laminae47,98–99 . Our efforts to achieve an understanding across 

levels from transcripts to circuits and behaviour would benefit from continued collaborations 

between experiments and theoretical modelling, in a nascent field known as computational 

psychiatry100.

Concluding remarks

Above, I have discussed work giving rise to the idea of macroscopic gradients of synaptic 

excitation and inhibition, which can be viewed as variations on the common theme of a 

canonical cortical circuit. Thus, structural differences not only serve as anatomical markers, 

but also have important implications for understanding distributed brain dynamics and 

functions. A priori, variations of biological properties in the cortical tissue could be high 

dimensional. Consider, for instance, a large number (N in the thousdands) of brain-specific 

genes in the cortex, whose expression levels in different parcellated cortical areas can be 

plotted as points in N-dimensional space. Analyses have revealed that variations in gene 

expression in the brain are not random in a space with thousands of dimensions; instead they 

can be accounted for largely in a low-dimensional (~10) space of principal components, with 

the largest component aligned with the axis of the T1w/T2w-ratio-defined hierarchy43,48. 

Macroscopic gradients represent an emerging principle of large-scale cortical organization.

The main findings from the discussion above are twofold. First, there is an increasing 

gradient of synaptic excitation along the cortical hierarchy, which can be measured in 

various ways including the number of spines per pyramidal neuron, level of NMDA receptor 

coding genes, etc. Functionally, modelling38 and experiments5,39 point to a crucial role in 

cognition of NMDAR-dependent recurrent excitation, but a gradient of NMDA receptor 

dependent excitation in a multi-regional cortex remains to be elucidated in future research. 

Second, the proportion of input-controlling SST+/CB+ interneurons versus output-

controlling PV+ interneurons increases along the cortical hierarchy. The density of PV+ cells 

may correlate with the density of pyramidal cells, but whether their ratio is constant across 

cortex remains to be assessed. An increase of SST+/CB+ neuronal density with hierarchy is 

in line with the demand of areas higher in the hierarchy to receive more converging inputs 

from different domains. SST+/CB+ cell density is layer-dependent, and these neurons 

subdivide into subgroups of cells with different targets. A comprehensive characterization of 

cell-type-specific connections is needed to fully understand the functional implications of 

this gradient of synaptic inhibition. This article covers recent analyses of gene expression, 

but linking gene expression to function is indirect. An important intermediate step is to 
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quantify the labelling of receptors or their subunits that are involved in synaptic excitation 

and inhibition101.

The best descriptor for defining quantitatively a one-dimensional hierarchy in different 

species22–23,43,46,102 and that can also be confirmed by physiology55,103–105 is a topic of 

active current research. Moreover, conventionally defined hierarchies are steep across 

sensory areas but become rather shallow in PFC. An alternative approach to quantify a 

hierarchy, initially derived from the analysis of PFC subregions, is based on the observation 

that parcellated areas show varying degrees of laminar differentiation14,106–107. 

Classification on the basis of laminar differentiation has been shown to predict afferent and 

efferent patterns of parcellated cortical areas. The hierarchy within PFC established this way 

seems to be broadly consistent with a functionally revealed gradient of processing along the 

rostro-caudal axis of the frontal lobe, in terms of increasingly abstract representation of 

behavioral rules and action control108–111.

The concept of macroscopic gradients can be extended to more than one dimension. As a 

matter of fact, it should, because defining a single one-dimensional hierarchy tends to be 

vision-centric and does not fairly consider different sensory modalities. In addition, motor 

areas are not readily placed in a linear framework from sensory to association areas. 

Decades ago, a two-dimensional diagram of cortical organization was proposed112, with the 

radial direction along the hierarchy and the polar direction covering different sensory 

modalities and motor domains. This view was recently confirmed by a sophisticated analysis 

of interareal functional correlations of the human cortex42,113, according to the seven-

network parcellation114 (Fig. 5a). A two-dimensional organization of cortical areas was also 

reported for macaque monkey30, with the radial direction defined by hierarchy and the 

angular distance between areas defined by the inverse of their interareal connection strength 

(Fig. 5b).

In recurrent neural networks described by nonlinear dynamical systems, a quantitative 

difference in the network’s properties can lead to qualitatively different dynamical behaviour 

by virtue of bifurcations. The concept of bifurcations, here illustrated with a local circuit 

model of working memory (Fig. 1b), is widely applicable in the field of neural-network 

modelling115–118 In a multi-regional large-scale system of the brain, bifurcations could arise 

at certain locations in space, as a result of macroscopic gradients of biological properties. 

This possibility points to an appealing mechanism for the generation of novel and diverse 

functions in different subnetworks of brain areas. It potentially offers a theoretical account 

of distributed cognitive processes such as working memory, which can be tested rigorously 

using multi-regional neurophysiology119 in behaving animals. Importantly, variations of 

biological properties, including macroscopic gradients themselves, are partly determined 

genetically, shaped during brain development and modifiable through plasticity in 

adulthood.

Variations of a canonical circuit architecture, in the form of macroscopic gradients, provide a 

promising approach towards understanding the vastly diverse brain functions at the 

biological and computational levels. The time is ripe to tackle distributed dynamics in the 

brain58,120–122. Progress in this direction would help to bridge circuit neurobiology and 
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cognitive psychology, the latter of which emphasizes the diversity of mental faculties: 

“Faculty psychology is impressed by such prima facie differences as between, say, sensation 

and perception, volition and cognition, learning and remembering, or language and 

thought”123. A marriage of the biological concept of macroscopic gradients and the 

mathematical concept of bifurcations, in close interplay with experimentation, offers a 

concrete dynamical systems perspective in our quest of understanding distributed yet 

modularly organized cognitive processes in the complex large-scale neural circuits of the 

brain.
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Fig. 1 |. Macroscopic gradients of synaptic excitation and bifurcations.
a | The number of spines on the basal dendrites of layer 3 pyramidal cells in an area of 

macaque cortex is strongly correlated with the area’s hierarchical position, as determined by 

layer-dependent projections. b | Self-sustained network states are shown by their neural 

firing rates (y-axis) as a function of the strength of recurrent synaptic connectivity (x-axis) in 

a local circuit model. Solid lines represent the spontaneous state and the mnemonic 

persistent memory state; dashed line: unstable states. Above a critical threshold of synaptic 

strength, persistent activity appears abruptly as an all-or-none bifurcation phenomenon. c | 

Across different areas of human cortex, the expression of GRIN2B, which encodes the 

NMDA receptor subunit NR2B, negatively correlates with MRI-derived T1-weighted/T2-

weighted (T1w/T2w) ratio. d | In mouse cortex, Grin3a, which encodes the NMDA receptor 

NR3A subunit, is expressed as a function of T1w/T2w ratio. ρ, Pearson correlation 

coefficient; 2, somatosensory area 2; 7A, area 7A; 7B, area 7B; 7m, area 7m; 8l, lateral part 

of area 8; 8m, medial part of area 8; 9/46d, dorsal part of area 9/46; 9/46v, ventral part of 

area 9/46; 10, area 10; 24c, area 24c; TEO, area TEO; TEpd, posterior-dorsal part of area 

TE; rs, Spearman rank coefficient; V1, primary visual cortex; V4, visual area 4. Parts a is 

adapted from ref. 30. Part b is adapted from ref. 36. Part c is adapted from ref. 43. Part d is 

adapted from ref. 48.
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Fig. 2 |. Timescale hierarchies and their implications for functional connectivity,
a | Connections between 29 areas in an anatomically constrained dynamical model of 

macaque cortex. Strong connections are indicated by lines, with line thickness determined 

by connection strength, b | The model shows a hierarchy of timescales, with sensory areas 

and association areas characterized by short and long timescales, respectively. The left graph 

depicts the autocorrelation function of neural activity in each of a subset of areas. From 

these functions, a dominant time constant was extracted (displayed as a function of the 

area’s hierarchical position on the right), c | The functional connectivity matrix of the 

macaque cortex model where areas are assumed to be identical (left) is compared to the 

matrix when the model includes a macroscopic gradient (right). A gradient of synaptic 

excitation enhances functional connectivity especially for association areas with slow time 

constants, whereas functional connectivity of early visual areas (upper left corner of the 

matrix) is similar with or without a macroscopic gradient. 2, somatosensory area 2; 5, 

somatosensory area 5; 7A, area 7A; 7B, area 7B; 7m, area 7m; 8B, area 8B; 81, lateral part 

of area 8; 8m, medial part of area 8; 9/46d, dorsal part of area 9/46; 9/46v, ventral part of 

area 9/46; 10, area 10; 24c, area 24c; 46d, dorsal part of area 46; DP, dorsal prelunate area; 

FI, frontal area FI; F2, frontal area F2; F5, frontal area F5; F7, frontal area F7; MT, middle 

temporal area; PBr, rostral part of the parabelt area; ProM, area ProM; STPc, caudal part of 

the superior temporal polysensory area; STPi, intermediate part of the superior temporal 

polysensory area; STPr, rostral part of the superior temporal polysensory area; TEO, area 

TEO; TEpd, posterior-dorsal part of area TE; VI, primary visual cortex; V2, visual area 2; 

V4, visual area 4. Parts a-c are adapted from Chaudhuri et al.30.
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Fig. 3 |. Macroscopic gradients of synaptic inhibition.
a | A disinhibitory circuit comprising a parvalbumin-expressing (PV+) interneuron, a 

somatostatin-expressing (SST+) interneuron and a vasoactive intestinal peptide-expressing 

(VIP+) interneuron. b | The ratio of SST+ interneuron density to PV+ interneuron density 

plotted and ranked for different areas of mouse cortex. PV+ neurons are abundant in primary 

sensory areas, whereas frontal areas are dominated by SST+ neurons. Areas are colour-coded 

to depict six types of cortical subnetwork to which they belong. c | Genes encoding calbindin 

(CB), calretinin (CR) and PV exhibit macroscopic gradients in the human cortex. Part a is 

adapted from ref. 91. Part b is adapted from an image in ref. 91 that was generated using 

data in ref. 85. Part c is adapted from ref. 43.
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Fig. 4 |. Macroscopic gradients in schizophrenia.
A comparison of postmortem brains of healthy controls and individuals with schizophrenia 

examined composite measures of glutamate-signalling-related and GABA-signalling-related 

transcripts in the visuospatial working-memory network. In control brains (filled bar), the 

composite glutamate signalling (top) and GABA signalling measures (bottom) showed 

marked, and opposing, caudal-to-rostral gradients. However, in individuals with 

schizophrenia (open bar), the gradient was lost for the glutamate-signalling measure, but 

enhanced for the GABA-signalling measure. Error bars represent variability across each 

group of 20 individuals. DLPFC, dorsolateral prefrontal cortex; PPC, posterior parietal 

cortex; V1, primary visual cortex; V2, Brodmann area 18. Figure reproduced from ref. 96.
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Fig. 5 |. Two-dimensional gradients of primate cortex.
a |Spatial relationships of seven subnetworks of the human cerebral cortex.. A method called 

diffusion map was used to deduce two principal gradients from functional activity data in the 

resting state. The first (radial) gradient defines a hierarchy, with visual, somatosensory and 

motor areas at the bottom that are arranged along the second (angular) gradient. Association 

areas are in three higher levels of the hierarchy. Abbreviation: dmn, default-mode network; 

dorsal attn, dorsal attention network; sal, salience network; somato/mot, somatosensory/

motor network. b |Two-dimensional plot of areas of macaque cortex, representing long-

range connectivity and hierarchy. The distance of an area from the edge corresponds to its 

hierarchical position, whereas the angular distance between two areas is inversely related to 

their connection strength. Each color corresponds to a different cortical lobe: occipital 

(yellow), temporal (red), parietal (green), frontal subdivided into agranular (cyan) and 

granular (prefrontal proper, blue). Definitions of individual area abbreviations are included 

in the legend of Fig. 2. Part a is adapted from ref. 113. Part b is adapted from ref. 30.
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