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Abstract

Macrophage activation syndrome (MAS), a form of secondary hemophagocytic 

lymphohistiocytosis, is a frequently fatal complication of a variety of pediatric inflammatory 

disorders. MAS has been most commonly associated with systemic juvenile idiopathic arthritis 

(sJIA), as approximately 10% of children with sJIA develop fulminant MAS, with another 30–

40% exhibiting a more subclinical form of the disease. Children with other rheumatologic 

conditions such as systemic lupus erythematosus and Kawasaki disease are also at risk for MAS. 

Moreover, MAS also complicates various genetic autoinflammatory disorders such as gain of 

function mutations in the cytosolic inflammasome NLRC4, pediatric hematologic malignancies 

(e.g., T-cell lymphoma), and primary immunodeficiencies characterized by immune dysregulation. 

Disease-specific and broadly inclusive diagnostic criteria have been developed to facilitate the 

diagnosis of MAS. Recently, simple screening tools such as the serum ferritin to erythrocyte 

sedimentation rate ratio have been proposed. Early diagnosis and rapid initiation of 

immunosuppression are essential for the effective management of MAS. With a better 

understanding of the pathophysiology of MAS and the advent of novel therapeutics, a broad 

immunosuppressive approach to treatment is giving way to targeted anti-cytokine therapies. These 

treatments include agents that block interleukin-1 (IL-1), IL-6, IL-18, interferon-γ, as well as 

inhibitors of downstream targets of cytokine signaling (e.g., Janus kinases). Increased early 

recognition of MAS among pediatric inflammatory disorders combined with the use of effective 

and less toxic cytokine-targeted therapies should lower the mortality of this frequently fatal 

disorder.

1 Introduction

The term ‘macrophage activation syndrome’ (MAS) was first employed by Claude Griscelli 

and collaborators in 1985 to describe seven patients with juvenile idiopathic arthritis (JIA) 

who developed acute-onset encephalopathy, coagulopathy, and hepatitis [1]. The authors 

noted activated macrophages on liver biopsy and speculated that “macrophage activation 
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secondary to drug or intercurrent infection” may play a causal role in the clinical 

presentation [1]. Initially, MAS was considered a complication exclusive to rheumatic 

diseases, most notably systemic JIA (sJIA) [2].

In recent years, it has become clear that MAS is not a phenomenon uniquely observed in 

rheumatologic conditions but instead is closely related to hemophagocytic 

lymphohistiocytosis (HLH) [3–5] (Table 1). Indeed, much of what is known about the 

pathophysiology of MAS is derived from our understanding of the genetic underpinnings of 

familial HLH (FHL). FHL is caused by bi-allelic mutations in one of four known FHL 

genes, perforin 1 (PRF1), unc-13 homolog D (UNC13D), syntaxin11 (STX11), and syntaxin 

binding protein 2 (STXBP2), all of which are required for cytotoxic granule release by 

CD8+ T cells and NK cells [6–9]. Defects in FHL genes lead to impaired cytotoxicity, 

persistence of intracellular infection, and prolonged antigen stimulation that engenders T-

cell and macrophage activation as well as massive release of pro-inflammatory cytokines 

(interleukin [IL]-1β, IL-6, IL-18, tumor necrosis factor [TNF], and interferon gamma 

[IFNγ]) [10–15]. IFNγ is particularly important in driving disease in FHL. In a mouse 

model of FHL caused by perforin deficiency, only neutralization of IFNγ rescued the fatal 

phenotype [10]. In humans, IFNγ blockade appears to ameliorate disease [16]. The clinical 

features of HLH, including fever, multi-organ failure, cytopenias, coagulopathy, 

hypertriglyceridemia, hyperferritinemia, hemophagocytosis, elevated acute-phase reactants, 

and hepatitis, are explained in large part by the cytokine storm that results from defective 

cytotoxicity [17].

Acquired HLH mimics the clinical presentation of FHL and is often triggered by viral 

infections such as Epstein-Barr virus (EBV) and influenza (infection-associated HLH) or 

malignancy (malignancy-associated HLH) (Table 1) [18–20]. MAS is now considered a 

form of acquired HLH in patients with an autoimmune disease (rheumatologic HLH) (Table 

1) [4]. In addition to a common clinical phenotype, acquired HLH, MAS, and FHL are all 

frequently characterized by impaired cytotoxicity and cytokine-driven pathology. NK cell 

dysfunction has been documented in sJIA patients with active disease and is thought to be 

due to IL-6-mediated depression of cytotoxic activity, possibly through decreased perforin 

and granzyme expression [21–23]. A subset of sJIA patients who develop MAS may also 

possess heterozygous defects in FHL genes (e.g., PRF1, UNC13D) that can also contribute 

to cytolytic dysfunction via hypomorphic and partial dominant-negative effects [24–26]. 

Interestingly, a high rate of heterozygous mutations in FHL genes has also been found in 

patients with fatal influenza infections, indicating a predisposition to aberrant cytolytic 

killing that is shared with FHL [27, 28]. Infection-associated HLH and MAS have a similar 

cytokine signature as FHL, including elevated IL-18 and IFNγ [11, 12, 16, 29–34]. In total, 

FHL, HLH associated with infection and malignancy, and MAS in rheumatologic conditions 

should be considered a spectrum of the same disease with a commonly shared underlying 

pathophysiology of impaired cytolytic killing and immune activation leading to a cytokine 

storm (Fig. 1).

While FHL is rare, acquired HLH and MAS are increasingly recognized in patients with 

infections and rheumatologic conditions (Fig. 2). Acquired HLH and MAS may result from 

multiple individual triggers (chronic inflammation, infection, heterozygous defect in 
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cytolysis) that, when combined, breach a threshold level of disease that the immune system 

is no longer able to counteract (Fig. 1) [35, 36]. Traditionally, it was thought that about 10% 

of children with sJIA developed MAS; however, it is now understood that many more (30–

40%) sJIA patients have subclinical features of the disease [37–39]. Further, MAS has been 

described in rheumatologic diseases other than sJIA including systemic lupus erythematosus 

(SLE) and Kawasaki disease (KD) [40–44]. The prevalence of HLH/MAS in critically ill 

patients with sepsis physiology is almost certainly underdiagnosed by large margins, 

particularly in patients with cytopenias, coagulopathy, and/or hepatobiliary dysfunction. In a 

prospective study of intensive care unit (ICU) patients with sepsis and thrombocytopenia, 

hemophagocytosis was found on bone marrow biopsy in 64% of cases [45]. A similar 

proportion of patients who died in the ICU were also found to have signs of 

hemophagocytosis in the bone marrow at autopsy. Hence, acquired HLH and MAS are more 

common than previously appreciated [46, 47]. The high mortality rates associated with these 

conditions highlight the importance of early recognition and effective treatment strategies.

2 Associated Inflammatory Disorders

2.1 Rheumatologic

MAS is a well recognized complication of sJIA and adult-onset Still disease (AOSD) [48, 

49]. It is estimated that about 10% of sJIA patients will develop overt MAS, typically with 

active underlying disease, although infections are also known triggers [38, 48]. In about one-

quarter of patients, MAS is noted at sJIA disease onset [38]. Fever is a near universal feature 

of MAS in sJIA and is characterized by an unremitting pattern that differs from the 

quotidian fever spikes in sJIA without MAS [38, 48, 49]. As in HLH, hepatosplenomegaly, 

coagulopathy, encephalopathy, and hepatic dysfunction are common [38, 48, 49]. Elevated 

D-dimers, transaminitis, and hyperferritinemia are typically noted in > 90% of affected 

patients while cytopenias, elevated triglycerides, and falling erythrocyte sedimentation rate 

(ESR) are also frequently observed [38, 48, 49]. Hemophagocytosis on bone marrow biopsy 

is noted in a majority (60%) but not all sJIA patients with MAS [38]. MAS is a feared 

complication of sJIA with mortality rates as high as 20% in some case series [48].

While MAS is most often associated with sJIA and AOSD, it is increasingly recognized in 

other rheumatologic conditions. In a recent retrospective series, close to 10% of childhood-

onset SLE patients had MAS, a proportion similar to sJIA [41]. MAS has been reported in 

KD (1–2% of patients) but less frequently than in sJIA and SLE [42, 44]. MAS in SLE and 

KD is clinically similar to the presentation in sJIA and is associated with higher mortality 

rates than observed in patients with SLE and KD alone [40, 42, 43, 50].

Cases of MAS have also been identified in patients with autoinflammatory conditions 

(disrupted innate immunity) such as hyper-IgD syndrome, familial Mediterranean fever, 

TNF receptor-associated periodic syndrome, and cryopyrin-associated periodic syndromes 

[48, 49, 51–54]. Of all the monogenic autoinflammatory disorders, MAS is clearly 

associated with heterozygous gain of function mutations in NLR-family CARD domain-

containing protein 4 (NLRC4) [55, 56]. NLRC4 is a cytosolic inflammasome that is 

activated in response to bacterial pathogen-associated molecular patterns (PAMPs). Once 

engaged, NLRC4 converts the precursor form of caspase-1 into a functional enzyme [57, 
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58]. In turn, caspase-1 cleaves pro-IL-1β and pro-IL-18 and induces pyroptosis or 

inflammatory cell death that releases these cytokines into the extracellular space [59]. 

Patients with activating mutations in NLRC4 present with recurrent MAS, early-onset 

colitis, and markedly elevated levels of IL-18 in a condition called autoinflammation with 

infantile enterocolitis (AIFEC) [55, 56]. Interestingly, individuals with milder phenotypes 

including skin predominant features and uveitis have been described [60]. AIFEC patients 

have normal NK cell function between flares, and the MAS phenotype is thought to be 

mediated by cytokine excess, particularly IL-1β and IL-18, with IFNγ also playing a role 

through its induction by IL-18 [55, 56, 61]. Thus, mechanisms other than decreased cytolytic 

function can also contribute to MAS pathophysiology [62, 63].

The high rates of MAS in chronic inflammatory disorders characterized by IL-1β and IL-18 

signatures (sJIA, AOSD, inflammasomopathies) underscore the importance of these 

cytokines in driving MAS. Yet, MAS is not restricted to IL-1- and IL-18-associated diseases 

and is observed in conditions such as SLE. This highlights the various pathways that can be 

engaged in the setting of chronic inflammation that ultimately culminate in MAS.

2.2 Oncologic

Malignancy-associated HLH occurs in one of two contexts. First, the inflammatory 

environment created by the neoplasm can trigger HLH (malignancy-triggered HLH). 

Second, treatment with chemotherapy can result in HLH either from the immunomodulatory 

effects of the medications or infection from immunosuppression (chemotherapy-associated 

HLH). HLH in the setting of malignancy is commonly reported in adults and is thought to 

occur in 1% of adult hematologic malignancies [20, 64]. In pediatric patients with HLH, an 

occult oncologic process may be missed because children are often presumed to have an 

underlying genetic defect. Malignancy-associated HLH may be more common in the 

pediatric population than originally believed. A recent case series by Lehmberg et al. 

estimated that 8% of pediatric HLH was associated with malignancy [19]. T-cell 

malignancies, particularly T-cell lymphoma, were most commonly found to trigger HLH in 

children, while Hodgkin lymphoma and B-cell lymphoma were also reported [19]. 

Treatment for leukemia and lymphoma were associated with the development of 

chemotherapy-associated HLH [19, 65]. Immunotherapies such as chimeric antigen receptor 

T cells have been associated with HLH physiology as well [66]. Unraveling the cause of 

death in patients with HLH and malignancy is difficult; however, it appears that active HLH 

increases mortality. Unfortunately, the best treatment for such patients is currently unknown 

[19].

2.3 Primary Immunodeficiency

HLH has been described in many primary immunodeficiencies (PIDs); however, it is more 

common in immune defects that impair T cell, vesicle/lysosomal, and macrophage/

neutrophil function [67]. Of all the inherited immunodeficiencies, HLH, typically triggered 

by EBV, is most frequently reported in X-linked lymphoproliferative disease (XLP) types 1 

and 2 [68]. The genetic causes of XLP1 (SH2 domain protein 1A, SH2D1A) and XLP2 

(BIRC4 gene encoding X-linked inhibitor of apoptosis protein, XIAP) are known; however, 

the exact mechanism by which mutations in these genes leads to EBV vulnerability and 
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HLH is not entirely understood [69, 70]. Both genes are important in the development and 

homeostasis of T, NK, and NKT cells, which are also known to be activated in HLH. 

Interestingly, XIAP deficiency shares some features with AIFEC including inflammatory 

colitis and markedly elevated levels of IL-18 [68, 71]. Other T-cell PIDs associated with 

EBV susceptibility and HLH include IL-2-inducible T-cell kinase (ITK) deficiency; X-

linked immunodeficiency with magnesium defect, EBV infection, and neoplasia (XMEN 

disease); and CD27 deficiency [72–74].

Chediak-Higashi syndrome (CHS), Griscelli syndrome (GS) type 2, and Hermansky-Pudlak 

type 2 are a group of diseases characterized by abnormal lysosomal/vesicular biology that 

results in albinism, primary immunodeficiency, and a predisposition to HLH [67]. CHS is 

caused by mutations in the lysosomal trafficking regulator (LYST) [75]. GS type 2 is due to 

mutations in a GTPase encoded by the RAB27A gene that is needed for vesicular transport 

and fusion with the cell membrane [76]. Hermansky-Pudlak type 2 results from mutations in 

the AP3B1 gene, which is important for lysosome trafficking [77]. These genetic syndromes 

all result in decreased perforin-mediated cytolytic activity of lymphocytes as in FHL [63, 78, 

79].

Chronic granulomatous disease (CGD) is caused by mutations in the NADPH oxidase 

complex that is needed by phagocytes to produce reactive oxygen species and kill bacteria 

and fungi. Affected patients present with recurrent infections and chronic granulomatous 

inflammation such as colitis. HLH has been reported in CGD in the setting of active 

infection, particularly Burkholderia cepacia, and often improves once the infection resolves 

[80–82].

While HLH is reported in several different PIDs, a closer examination reveals a pattern. 

Certain types of immune defects are more likely to be associated with HLH physiology, such 

as T-cell immune deficiencies; disorders of vesicle synthesis, transportation and release; and 

macrophage/neutrophil defects. These conditions share pathways commonly implicated in 

HLH/MAS, including persistence of infection that results in excessive immune stimulation, 

T-cell activation, and cytokine excess. The pro-inflammatory cytokine storm that develops is 

a common thread in most forms of FHL, acquired HLH, and MAS [78, 83].

3 Diagnosis

3.1 HLH-2004 Diagnostic Criteria

The HLH-2004 diagnostic criteria were originally used in the HLH-2004 treatment study 

evaluating the efficacy of etoposide, dexamethasone, and cyclosporine-based induction 

therapy before hematopoietic stem-cell transplant (HSCT) (Table 2) [84]. The criteria are 

often used to diagnose genetic and acquired HLH in the clinical setting. The HLH-2004 

criteria reflect some of the common clinical and laboratory features of HLH, including fever, 

splenomegaly, cytopenias, hypertriglyceridemia, hyperferritinemia, and hemophagocytosis, 

but also require specialized diagnostic tests such as soluble IL-2 receptor alpha levels 

(sCD25), NK-cell functional assays, and genetic testing. The HLH-2004 criteria were 

originally employed in the setting of a clinical trial where a homogenous population of well 

defined patients was required. The need for genetic and immunologic tests that take days for 
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results may unnecessarily delay the diagnosis and treatment of critically ill patients. Further, 

some of the HLH-2004 parameters are not sensitive or specific for HLH. Hemophagocytosis 

is not always noted on bone marrow biopsy in HLH patients, especially in the early stages of 

the disease [85–87]. Non-nucleated erythrophagocytosis can be seen in many conditions 

while engulfment of nucleated cells may be more specific to HLH; however, the HLH-2004 

criteria do not differentiate between these morphological features [88]. The ferritin cut-off 

value of 500 μg/L is particularly problematic and lacks specificity for HLH. Ferritin values > 

500 μg/L are commonly seen in patients treated with multiple blood transfusions or stem-

cell transplant as well as individuals with renal disease, liver disease, malignancy, infection, 

or hemoglobinopathies [89, 90]. Alternate ferritin cut-off values for HLH such as 2000, 

4000, or even 10,000 μg/L have been suggested as more specific for the diagnosis [89, 91, 

92]. Finally, the HLH-2004 criteria do not include liver pathology or recently identified 

biomarkers of HLH including CXCL9 and IL-18 that may be helpful in diagnosis [16, 29–

31, 93, 94].

3.2 Classification Criteria for Macrophage Activation Syndrome (MAS) in Systemic 
Juvenile Idiopathic Arthritis (sJIA)

Identifying evolving MAS in a patient with an underlying inflammatory disorder is difficult. 

In many respects, the HLH-2004 diagnostic criteria do not adequately discriminate between 

sJIA patients with MAS/HLH physiology and those with a flare of autoimmune disease [95]. 

In 2016, a multinational research collaborative of pediatric rheumatologists and hemato-

oncologists developed classification criteria for MAS in sJIA based on expert opinion and 

validated with patient data and a replication cohort (Table 2) [96, 97]. As in the HLH-2004 

criteria, fever, hyperferritinemia, thrombocytopenia, hypertriglyceridemia, and 

hypofibrinogenemia were included with the addition of transaminitis [96, 97]. In the 

validation cohort, the 2016 MAS classification criteria displayed 73% sensitivity and 99% 

specificity for MAS in sJIA. It should be noted that this tool was designed as classification 

criteria for use in clinical trials and was not validated for diagnostic purposes in the clinical 

setting. These criteria may not capture all patients with MAS and sJIA, particularly those 

with atypical features.

A Japanese group confirmed that the 2016 MAS classification criteria are highly sensitive 

and specific for full blown MAS in sJIA; however, the tool’s ability to identify early-onset 

MAS was limited [98]. Monitoring the trend in laboratory studies in an individual patient 

appears to be essential for the recognition of early MAS [98–100]. sJIA patients typically 

display elevated white blood cell and platelet counts, ESR, and fibrinogen during active 

disease. Decreases in these laboratory values in a patient with active inflammation (fever, 

rash) is concerning, even if the test values remain within normal limits. A further layer of 

diagnostic complexity is added by the impact of biologic medications on the features of 

MAS. In particular, tocilizumab treatment (anti-IL-6) masks fever and hyperferritinemia in 

MAS while lowering platelet, fibrinogen, and AST levels below the values typically seen in 

patients with sJIA [101]. The result is that the 2016 MAS criteria are less accurate in 

patients treated with tocilizumab, which is a substantial portion of the sJIA population [101].
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The 2016 MAS classification criteria have been applied to other inflammatory conditions 

that are often complicated by MAS. In SLE and AOSD, the criteria successfully identified a 

group of febrile patients with high mortality [102, 103]. The classification criteria 

demonstrated relatively preserved sensitivity in AOSD; however, specificity was decreased 

due to the poor performance of the triglyceride and ferritin cut-off values in the adult 

population [102, 104]. Preliminary SLE-specific MAS criteria have also been developed by 

Parodi and collaborators based on the study of 38 patients with SLE and MAS; however, this 

study did not have a replication cohort [105]. A recent retrospective review of a different 

cohort of 403 pediatric SLE patients, including 38 patients with MAS, showed that all SLE 

patients diagnosed with MAS by the treating physician also met the Parodi MAS criteria 

[41].

3.3 MAS/sJIA (MS) Score

To address some of the shortcomings of the 2016 classification criteria, the data were 

reanalyzed with a Bayesian model averaging approach to develop the MAS/sJIA (MS) score 

(Table 2) [106]. The MS score includes seven parameters and differs from the 2016 

classification criteria in that strict cut-off values are not used for laboratory variables [96, 97, 

106]. Instead, the patient’s laboratory values are entered into a weighted equation that is 

used to calculate the final score. In contrast to the 2016 classification criteria, lactic 

dehydrogenase (LDH) is included while aspartate aminotransferase (AST) and triglycerides 

are excluded. The platelet count, fibrinogen, and ferritin were retained in the score [96, 97]. 

Central nervous system (CNS) dysfunction and hemorrhagic manifestations were found to 

be highly discriminative between active sJIA and sJIA with MAS and were included in the 

model along with the lack of active arthritis [106]. In the validation cohort, an MS score of 

−2.1 or higher had 85% sensitivity and 95% specificity [106]. Unlike the 2016 classification 

criteria, the MS score is validated to aid in the clinical diagnosis of sJIA in MAS.

3.4 Ferritin:ESR Ratio

The ferritin:ESR (ng/mL ÷ mm/h) ratio was also developed in an effort to improve and 

simplify the 2016 classification criteria (Table 2). Hyperferritinemia is known to rise 

exponentially as a patient enters HLH/MAS, while the ESR falls due to fibrinogen depletion 

from the consumptive coagulopathy that is a hallmark of the condition. In 2013, Gorelik and 

collaborators showed the ferritin:ESR ratio to be superior to ferritin alone in discriminating 

new-onset sJIA from MAS (n = 28 patients) [107]. Building upon this finding, Eloseily et al. 

re-evaluated data from the 2016 classification criteria study along with new information 

from matched febrile patients who were hospitalized for infection [108]. The easy-to-use 

ferritin:ESR ratio compared favorably to the 2016 classification criteria and was superior to 

ferritin alone in discriminating between active sJIA and sJIA with MAS (a cut-off of 21.5 

showed 82% sensitivity and 78% specificity) [108]. By contrast, ferritin alone outperformed 

the ferritin:ESR ratio in discerning MAS from children hospitalized with a febrile infection 

(non-sJIA patients) [108].

3.5 HScore

Diagnosing acquired HLH, which is often triggered by infection or malignancy, poses many 

of the same problems as identifying MAS in children with active sJIA. The inflammatory 
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environment resulting from the infection or cancer often increases acute-phase reactants, 

which may render the HLH-2004 laboratory cut-off values less informative. In addition, the 

HLH-2004 criteria were developed for a pediatric population and may not perform as well in 

adults where infection- and malignancy-associated HLH is more common [84]. The HScore 

(reactive hemophagocytic syndrome diagnostic score) was created to accurately identify 

acquired HLH in adults (Table 2) [109]. It was developed by expert review of clinical cases 

and the performance of the HScore was verified in a validation cohort [109]. The HScore 

comprises nine variables, many of which are included in the HLH-2004 criteria (fever, 

organomegaly, cytopenias, ferritin, triglyceride, fibrinogen, and hemophagocytosis on bone 

marrow). For each laboratory parameter, a weighted number of points is given based on the 

degree of abnormality. A score of ≥ 250 is associated with a high probability of acquired 

HLH (> 99%) [109]. The HScore was not validated in the pediatric population. Since 

malignancy-associated HLH is more common in adults while infection-associated HLH is 

more prevalent in children, there is reason to suspect that the HScore may not be 

generalizable to pediatric patients. Debaugnies and collaborators found that a lower HScore 

cut-off (> 141) may provide more sensitivity and specificity in children [110].

3.6 MH Score

Given the shared pathophysiology of FHL, acquired HLH, and MAS, these disorders often 

present in a similar manner. While FHL was once thought to present exclusively in the first 

year of life, there are patients with autosomal recessive mutations in classic FHL genes who 

develop their first HLH manifestations at much older ages [111]. Infections such as EBV can 

trigger a cytokine storm in patients with genetic and non-genetic forms of the disease [18, 

86]. Genetic testing can certainly discriminate between FHL and acquired HLH and MAS; 

however, it can take weeks to obtain results, which is often unhelpful in a critically ill 

patient. Thus, it can be difficult to determine if an affected patient has an inherited form of 

HLH. Yet, it is necessary to identify such patients because FHL is associated with high rates 

of mortality and the standard of care remains chemotherapy and HSCT [86, 112]. The MH 

(MAS/HLH) score is a diagnostic tool that was validated to differentiate inherited HLH from 

MAS in sJIA (Table 2) [87]. Surprisingly, ferritin levels did not distinguish between the two 

study subject groups. Instead, age at onset, neutrophil count, fibrinogen, splenomegaly, 

platelet count, and hemoglobin were the six variables included, with age < 1.6 years and 

neutrophil count < 1.4 × 109/L contributing most to the discriminating power of the MH 

score [87].

In summary, the diagnosis of HLH and MAS remains a challenge. There are no 

pathognomonic characteristics that define this group of disorders to aid diagnosis. Since 

HLH and MAS occur most often in individuals with infection, autoimmune diseases, and 

malignancy, these underlying conditions can easily obscure the evolving cytokine storm. 

Various tools have been developed to facilitate the diagnosis of HLH and MAS, all of which 

use clinical symptoms and laboratory abnormalities common to this group of disorders to 

risk-stratify patients. These diagnostic tools are useful; however, they are not applicable to 

every clinical circumstance and certainly do not replace the value of a vigilant clinician who 

is prepared to recognize HLH and MAS in its many forms. In this sense, the ferritin value 

alone and the ferritin : ESR ratio are simple, inexpensive, timely, and readily available 
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measures that can be used as screening tools for identifying febrile hospitalized HLH and 

MAS patients and for driving further work-up of these disorders.

4 Treatment

Prompt diagnosis, elimination of inciting triggers, and rapid initiation of 

immunosuppression are essential for effective management of HLH/MAS. The prognosis for 

untreated FHL is dismal with close to 100% fatality [113]. Historically, MAS in sJIA was 

also characterized by mortality rates over 20% [48]. Treatment regimens detailed below have 

reduced FHL mortality to 40% and MAS to 8% [38, 114]. Patients diagnosed early tend to 

fare better than those who are identified later in the disease course, highlighting the 

importance of early diagnosis. Management by a multidisciplinary team of experts including 

hemato-oncologists, rheumatologists, and intensivists is needed to provide patients with the 

required supportive care and access to the full complement of treatment options ranging 

from chemotherapy to cytokine blockade [100].

4.1 Treatment of Triggers

Both genetic and acquired HLH as well as MAS are often triggered by infections, 

particularly herpesviruses [18, 38, 86]. In patients with EBV-driven HLH, B-cell depletion 

with rituximab improves clinical parameters of the disease when used in combination with 

traditional HLH therapies [115]. Other infections should be treated aggressively with 

antimicrobials and in some cases intravenous immunoglobulin (IVIG). Rarely, patients with 

acquired HLH and MAS improve with eradication of the infection alone and may not require 

further immunosuppression [112]. Similarly, patients with MAS induced by active 

autoimmune disease may respond to increased immunosuppression for the underlying 

condition.

4.2 Broad Immunosuppression

The first formal treatment protocol for HLH (HLH-94) consisted of 8 weeks of induction 

therapy with dexamethasone, etoposide (VP-16), and intrathecal methotrexate and 

continuation therapy with dexamethasone pulses, VP-16, and cyclosporine [116]. 

Subsequently, patients with FHL or recurrent disease proceeded to HSCT [116]. These 

medications were selected for their ability to target and kill T cells and also penetrate the 

CNS. At long-term follow-up, 55% of patients had survived, a marked improvement 

compared with the near universal mortality in untreated FHL and 10% survival rate of 

children treated with chemotherapy-based protocols without transplant [86, 113, 116]. In 

2004, HLH-94 was slightly modified by starting cyclosporine in the induction phase and 

adding hydrocortisone intrathecal therapy (HLH-2004), which resulted in decreased time to 

HSCT but no improvement in survival [84, 114]. Thus, cyclosporine is now frequently 

avoided, and others have advocated for lowering the VP-16 burden and associated risk of 

infection [117].

In rheumatologic patients with MAS, glucocorticoid treatment had been recognized as 

beneficial in the 1980s [1, 2]. Based on the success of HLH-94, cyclosporine in combination 

with glucocorticoids was used in patients with MAS and several case series reported rapid 
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benefit [1, 49, 118]. Cyclosporine is still used widely in the field of pediatric rheumatology 

to treat MAS [5]. Refractory cases of MAS are sometimes treated successfully with reduced 

intensity VP-16 regimens [38]. IVIG is also used frequently based on a small number of 

studies with reported benefit; however, IVIG monotherapy is rarely successful, and it is 

typically used in combination with other medications [49, 119–121].

4.3 Cytokine-Targeted Therapies

The recombinant human IL-1 receptor antagonist, anakinra, blocks the activity of both 

IL-1α and IL-1β and was originally developed to reduce inflammation in sepsis [122]. It is 

commonly used to treat patients with sJIA [123–126]. Starting in 2008, case reports surfaced 

demonstrating efficacy of anakinra in sJIA patients with MAS, especially at doses > 1–2 

mg/kg/day [127–130]. In 2011, Miettunen et al. reported dramatic improvement after 

anakinra therapy in 12 patients with MAS who were refractory to traditional treatments, 

including seven patients who met full criteria for HLH [119]. Since that time, IL-1 blockade 

has been increasingly accepted as a first-line option for MAS associated with sJIA and 

AOSD [4, 100, 131, 132]. Anakinra treatment in cytokine storm is not limited to 

rheumatologic patients but is also beneficial in children and adults with infection-associated 

HLH [133, 134]. Re-analysis of the randomized controlled trial of anakinra in sepsis showed 

improved survival in patients with signs of MAS treated with anakinra compared with the 

placebo group (65% vs 35%) [134]. These findings unequivocally demonstrate the safety of 

high-dose anakinra in patients with active infection. In practice, anakinra is typically used in 

combination with other medications, particularly glucocorticoids, to treat MAS. There are 

several recent publications advocating for anakinra in combination with high-dose 

glucocorticoids, IVIG, and cyclosporine as first-line treatment for acquired HLH instead of 

the etoposide-based protocols [100, 133, 135, 136]. Anakinra monotherapy is typically 

appropriate in patients with known sJIA and MAS or in circumstances when glucocorticoids 

use needs to be delayed for diagnostic purposes (concern for infection or malignancy). 

Typically, patients respond to anakinra rapidly and lack of improvement within 24–48 h of 

treatment initiation suggests the need for additional immunosuppression. Interestingly, there 

is little evidence to support the use of other anti-IL-1 agents such as canakinumab or 

rilonacept in MAS, which may be due to lack of clinical data, divergent mechanism of action 

of these drugs, or under-dosing [4].

The efficacy of IL-1 blockade in HLH and MAS has spurred exploration of other cytokine-

directed therapies. In one report, recombinant human IL-18 binding protein (rhIL-18BP) 

ameliorated MAS in a patient with NLRC4 gain of function mutations [61]. Currently, 

rhIL-18BP is an investigation drug; however, the elevated IL-18 levels in AIFEC, XIAP, 

HLH, and MAS indicate that it may be a promising therapeutic option in the future [31, 55, 

71]. Indeed, results from a phase II open-label study of rhIL-18 PB in 23 AOSD patients 

showed some indications of efficacy [137].

Based on mouse models and human data, IFNγ is considered a linchpin cytokine in driving 

HLH and MAS pathophysiology [10–12, 16, 29–34]. Preliminary results from a phase III 

open-label trial of emapalumab (anti-IFNγ monoclonal antibody) confirm that neutralization 

of IFNγ is a promising option. Emapalumab was used in combination with dexamethasone 
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and cyclosporine in patients with presumed genetic HLH and demonstrated a 63% response 

rate (https://www.fda.gov/drugs/fda-approves-emapalumab-hemophagocytic-

lymphohistiocytosis). Based on these findings, emapalumab was approved by the Food and 

Drug Administration (FDA) in 2018 for FHL. There is also an ongoing phase II trial 

evaluating emapalumab for MAS complicating sJIA. An abstract presented at the 2019 

European League Against Rheumatism (EULAR) meeting showed that a complete clinical 

response was achieved in all six patients enrolled in the study to date [138]. While the final 

results of these two trials are not yet published, there is a case report in the literature 

describing successful use of emapalumab in the setting of EBV-associated HLH [139]. In 

addition, two patients with NLRC4 mutations and early-onset HLH and one patient with 

neonatal-onset cytopenia with dyshematopoiesis, autoinflammation, rash, and 

hemophagocytosis (NOCARH syndrome) due to mutations in CDC42 responded to 

emapalumab treatment (reported in abstracts) [140, 141].

IL-6 blockade has proven beneficial in the specific circumstance of cytokine release 

syndrome secondary to chimeric antigen receptor T-cell therapy, and from blinatumomab 

treatment, but there are limited data for its use outside of this setting [142, 143].

An alternate strategy for blocking cytokine effects is to target signaling pathways 

downstream of cytokines binding their cognate receptors. Many cytokine receptors signal 

through JAK/STAT pathways. There are four mammalian Janus kinases (JAKs) and seven 

signal transducers and activators of transcription (STATs) [144]. JAKs dimerize upon 

cytokine receptor binding and recruit and activate STATs, which ultimately enter the nucleus 

and induce transcriptional changes [144]. Ruxolitinib is a JAK1/2 inhibitor that blocks 

signaling of type I interferons, IFNγ, and IL-6, among other cytokines. In mouse models of 

genetic and acquired HLH, ruxolitinib was effective in ameliorating disease manifestations 

[145]. There are several case reports in the literature of successful ruxolitinib use as salvage 

therapy for infection-associated HLH [146–148]. JAK inhibitors possess many appealing 

characteristics including an ability to block multiple cytokines, a rapid onset of action in 

patients with HLH/MAS, and existing FDA approval for other conditions. Until more data 

are available, they are considered mainly salvage medications for HLH/MAS with much 

promise for future expanded use.

4.4 Other Therapies

Various other therapeutic agents have been used for HLH and MAS spectrum diseases. Anti-

thymocyte globulin (ATG) is a polyclonal immunoglobulin that targets T cells. Upfront use 

of ATG in FHL resulted in significant initial responses rates (73%) but was associated with 

high rates of infection and relapse [112, 149, 150]. It is currently used as salvage therapy for 

MAS and HLH with limited information on efficacy [149, 151]. Alemtuzumab or Campath 

is an anti-CD52 antibody that depletes circulating B and T lymphocytes and other immune 

cells. In the largest retrospective review to date, alemtuzumab therapy for refractory HLH 

resulted in a complete response in 0/22 patients and a partial response in 14/22 patients 

[152]. Plasmapheresis has also been explored anecdotally as therapy for HLH [153–156].
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5 Conclusion

Our understanding of HLH and MAS spectrum diseases has expanded, and the available 

treatment strategies have diversified. Traditionally, glucocorticoids, cyclosporine, and 

cytotoxic agents were mainstays of therapy. By elucidating the key role of cytokines in 

driving the pathophysiology of HLH and MAS, entirely new classes of medications have 

become available. Cytokines can be directly neutralized with biologic agents such as 

anakinra or emapalumab. Alternately, the action of cytokines can be inhibited by blocking 

signaling pathways with JAK inhibitors. These cytokine-directed therapies hold much 

promise in their ability to control inflammation with less toxicity than chemotherapy. Yet, 

data on how to treat patients in the age of biologics and JAK inhibitors are limited. Rigorous 

studies must be conducted to directly compare traditional and novel treatment regimens 

while biomarkers are needed to determine which patients will respond to a given therapy. In 

the meantime, clinicians are left to rely on expert opinion to guide management (Fig. 3). It is 

therefore essential that rheumatologists with expertise in cytokine blockade and hemato-

oncologists with access to chemotherapy work collaboratively to ensure all patients with 

HLH and MAS have access to the full spectrum of available therapies.
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Key Points

Macrophage activation syndrome (MAS) is a well known, frequently fatal complication 

of inflammatory pediatric rheumatic diseases (e.g., systemic juvenile idiopathic arthritis), 

genetic autoinflammatory disorders (e.g., NLRC4 mutation), and hematologic 

malignancies (e.g., T-cell lymphoma).

Diagnostic criteria have been developed to aid in the identification of MAS in the setting 

of specific diseases (e.g., systemic juvenile idiopathic arthritis) and more broadly (e.g., 

HScore).

Novel therapies targeting pro-inflammatory cytokines (e.g., anti-interferon-γ) are being 

explored for less toxic, yet effective, approaches for treating children with MAS.
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Fig. 1. 
The spectrum of HLH- and MAS-related diseases. The cytokine storm characterized by 

FHL, acquired HLH, and MAS can be considered a final common pathway that results from 

impaired cytotoxicity, baseline immune activation, or a combination of both of these factors. 

CHS Chediak-Higashi syndrome, FHL familial hemophagocytic lymphohistiocytosis, GS 
Griscelli syndrome, HLH hemophagocytic lymphohistiocytosis, HPS Hermansky-Pudlak 

syndrome type 2, IA-HLH infection-associated HLH, IC-HLH immune-compromised HLH, 

IFNγ interferon gamma, IL interleukin, MA-HLH malignancy-associated HLH, MAS 
macrophage activation syndrome, R-HLH rheumatologic HLH, stim stimulation, TNF tumor 

necrosis factor
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Fig. 2. 
Exponential increase in the number of publications per year cited in PubMed on MAS, 

HLH, and cytokine storm. CSS cytokine storm syndrome, HLH hemophagocytic 

lymphohistiocytosis, MAS macrophage activation syndrome
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Fig. 3. 
Suggested treatment algorithm for patients with HLH and MAS spectrum diseases. The 

depicted treatment algorithm is based on expert opinion and currently available data, which 

are limited. Decisions about treatment are the responsibility of the treating clinician and 

should always be tailored to individual clinical circumstances. *Anakinra, cyclosporine, 

glucocorticoids, and IVIG can be used alone or in combination. If anakinra monotherapy is 

employed, lack of response within 24–48 h suggests the need for additional 

immunosuppression, particularly high-dose glucocorticoids. ATG anti-thymocyte globulin, 

FHL familial hemophagocytic lymphohistiocytosis, HLH hemophagocytic 

lymphohistiocytosis, HSCT hematopoietic stem-cell transplant, IVIG intravenous 

immunoglobulin, MAS macrophage activation syndrome
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