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Abstract
Since theWorldHealthOrganization has declared the current outbreak of the novel coronavirus (COVID-19) a global pandemic,

some have been anticipating that themitigation could happen in the summer like seasonal influenza, while medical solutions are

still in a slowprogress. Experimental studies have revealed a few evidences that coronavirus decayed quickly under the exposure

of heat and humidity. This study aims to carry out an epidemiological investigation to establish the association between

meteorological factors and COVID-19 in high risk areas of the United States (U.S.). We analyzed daily new confirmed cases of

COVID-19 and sevenmeteorological measures in top 50U.S. counties with themost accumulative confirmed cases fromMarch

22, 2020 to April 22, 2020. Our analyses indicate that each meteorological factor and COVID-19 more likely have a nonlinear

association rather than a linear association over the wide ranges of temperature, relative humidity, and precipitation observed.

Average temperature, minimum relative humidity, and precipitationwere better predictors to address the meteorological impact

on COVID-19. By including all the three meteorological factors in the same model with their lagged effects up to 3 days, the

overall impact of the average temperatureonCOVID-19was found topeak at 68.45 �Fanddecrease at higher degrees, though the
overall relative risk percentage (RR %) reduction did not become significantly negative up to 85 �F. There was a generally

downward trend of RR % with the increase of minimum relative humidity; nonetheless, the trend reversed when the minimum

relative humidity exceeded 91.42%. The overall RR % of COVID-19 climbed to the highest level of 232.07% (95% confidence

interval = 199.77, 267.85) with 1.60 inches of precipitation, and then started to decrease. When precipitation exceeded 1.85

inches, its impact onCOVID-19 became significantly negative. Our findings alert people to better have self-protection during the

pandemic rather than expecting that the natural environment can curb coronavirus for human beings.
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1 Introduction

Since the first case was reported in Wuhan, China in

December, 2019, the Coronavirus Disease 2019 (COVID-

19) has evolved into a pandemic within merely 3 months

(World Health Organization 2020). By April 30, more than

3.2 million COVID-19 cases were reported in 186 countries,

with more than 228,000 died from the disease (Johns

Hopkins University 2020). The virus is known to transmit

from person to person either directly through droplets pro-

duced by coughing, sneezing, and talking or indirectly

through contaminated surfaces (Bourouiba 2020; Lai et al.

2020). The combination of high reproduction and fatality

rates of COVID-19, as well as the lack of vaccine and herd

immunity, forces governments around the world to issue

travel restriction, business closedown, and social distancing

measures in the hope to ‘‘flatten’’ the outbreak curve so that

new cases would not overwhelm the health care system. In

the United States (U.S.), the federal government declared a

national emergency on March 13, 2020 and encouraged all

citizens to minimize non-essential social/business activities.

A wide range of case growth rates has been observed

across the 50 U.S. states since March 13. This partially

reflects a non-uniform enforcement of social distancing

among the states and different demographic features such

as population density and age distribution. Local
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meteorology, however, may be an unignorable factor. It

was reported that temperature, relative humidity, and wind

speed influences the survival and transmission of Severe

Acute Respiratory Syndrome (SARS) coronavirus, a close

relative to the COVID-19 (Yuan et al. 2006; Yip et al.

2007). Laboratory studies also suggest that coronaviruses

prefer cool and dry ambient conditions, where it may

remain viable up to days (Chan et al. 2011; van Doremalen

et al. 2013). There is a hypothesis that the pandemic will

slow down in the coming summer of the northern hemi-

sphere, much like seasonal influenza, though this hypoth-

esis has yet been tested at the population level (Araujo and

Naimi 2020).

While the U.S. territory spans multiple climate zones,

this research represents one of the first epidemiological

studies that investigate relationships between COVID-19

incidence and weather conditions at the county level. Our

findings should catalyze further research in this area, and

inform the modelling of COVID-19 outbreak for better

projections and management efforts.

2 Study area, study period, and data source

We selected the top 50 most prevalent counties with

COVID-19 in the U.S. for the period of March 16, 2020 to

April 22, 2020 because the county level data were not

available until March 16, 2020. These counties are mostly

located in the eastern U.S., with 20 of them in the New

York and New Jersey States. The confirmed cases of

COVID-19 were downloaded from Johns Hopkins Coron-

avirus Resource Center (Dong et al. 2020). The original

data were accumulative over days, from which we calcu-

lated daily new confirmed cases in each county. Since the

case data for five counties (Bronx, Kings, New York,

Queens, and Richmond) in New York State were not dif-

ferentiated before April 22, 2020, their daily data were

aggregated onto one record to represent the Greater New

York City area. The meteorological data were based on

long-term weather stations in each county, typically at the

main airports, and downloaded from the Weather Under-

ground database (https://www.wunderground.com/).

Because some of them are highly correlated (e.g., tem-

perature and dew point temperature) or not known to

associate with respiratory diseases (e.g., wind speed and

sea level pressure), we only selected seven measures:

Maximum temperature, minimum temperature, average

temperature, maximum relative humidity, minimum rela-

tive humidity, average relative humidity, and precipitation

for further analyses. Lastly, we adopted confounding

variables about socioeconomic status from American

Community Survey’s 5-year (2014–2018) estimates,

including county-specific population, age, gender, and

racial compositions, and poverty level (U.S. Census Bureau

2019).

3 Statistical analyses and findings

We applied the generalized additive model (Hastie and

Tibshirani 1990) to evaluate the association between

meteorological factors and the incidence of COVID-19.

The outcome variable was defined as the number of new

confirmed cases with a log link function predicted by a

combination of linear terms, nonlinear functions and an

offset from the logarithm of county-level population. We

proposed three models sharing the same confounding

variables in terms of the day-of-the-week, county’s federal

information processing standard, median age, male per-

centage, White percentage, Black percentage, Hispanic

percentage, and poverty percentage. We also included a

p-spline (Wood 2017) for calendar time to control temporal

autocorrelations as well as a two-dimensional spatial

function of latitude and longitude to control spatial auto-

correlations. The spatial function also explained unob-

served risk factors in each county, such as human activities

and policies (e.g., stay-at-home order). The main difference

of the three models is how meteorological measures were

estimated. In Model 1, meteorological factors were mod-

elled as linear terms. In Model 2, we alternative considered

a p-spline for each meteorological measure. Each model

was fitted seven times for seven meteorological measures

separately to identify whether meteorological impacts on

COVID-19 were linear or nonlinear by using the Akaike

information criterion (AIC).

Table 1 shows that six of seven meteorological factors

were significantly and linearly associated with COVID-19

according to Model 1. Temperature and precipitation

measures were all negatively related to COVID-19, while

relative humidity measures were positively related to

COVID-19. Comparing the AIC between Model 1 and

Model 2, all AICs were smaller in Model 2, suggesting

nonlinearly meteorological impacts on COVID-19.

Figure 1 shows that the percentage change of relative

risk (RR %) of COVID-19 incidence had diverse variations

among different meteorological factors. Comparing the

three temperature measures, average temperature had the

smallest AIC and so best address the association with the

incidence of COVID-19. A RR % larger than 10% was

more likely observed in 63.44 �F or higher, and the highest

RR % was 19.33% (95% CI = 16.54, 22.20) when the

average temperature increased to 67.30 �F. After that, the
RR % decreased to negative when the average temperature

exceeded 74.37 �F. Moreover, compared to the three rel-

ative humidity measures, minimum relative humidity had

the smallest AIC and thus best address the association with
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the incidence of COVID-19. A higher RR % was more

likely observed with a lower level of minimum relative

humidity from 0 to 10%, while it was not reliable because

of very limited observations in this range. The RR %

appeared another surge with a higher level of minimum

relative humidity over 92.61%. Furthermore, precipitation

had a positive impact on COVID-19 between 1.27 and 1.74

inches, resulting in the largest increase in the RR % of

COVID-19 incidence up to 33.89% (95% CI = 28.63,

39.35) with 1.55 inches of precipitation. Then, the RR %

significantly declined to negative when precipitation

increased over 1.77 inches.

Finally, according to the smallest AIC in temperature

and relative humidity measures, the average temperature

and minimum relative humidity were selected to fit with

precipitation in Model 3 to investigate the compound

influence on COVID-19 incidence. We also included three

additional smoothing functions for 1 to 3-day lag in each

selected meteorological factor to take lagged effects into

account. Model 3 resulted in the smallest AIC = 13537271,

compared to all AICs in Model 1 and Model 2. We eval-

uated the overall impact of each selected meteorological

factor by summing up all smoothing functions from the

main effect and three lagged effects, shown in Fig. 2. In

particular, the overall impact of average temperature had a

clear threshold by 59.5 �F, where the overall impact turned

from negative to positive. After reaching the greatest RR %

(73.40%; 95% CI = 62.81, 84.66), the overall impact

consistently decreased after 68.45 �F. The level of RR %

was downward below 0% when the average temperature

increased over 84.67 �F, while the overall impact was no

longer significant. Moreover, the overall impact was higher

with lower levels of minimum relative humidity, while the

trend gradually went downward to reach the smallest

RR % by -36.22 (95% CI = - 40.14, - 32.04) when the

minimum relative humidity increased to 91.42%.

Nonetheless, its overall impact returned to positive as it

increased over 97.28%. Furthermore, the overall impact on

COVID-19 climbed to the highest level (RR % =

232.07%; 95% CI = 199.77, 267.85) with 1.60 inches of

precipitation, and then significantly reduced to negative

when precipitation increased over 1.85 inches.

4 Discussion and conclusion

Along with the development of the COVID-19 pandemic,

biomedical researchers have devoted a great effort to

looking for treatments and vaccines against COVID-19

(Chen et al. 2020; Cascella et al. 2020). Unfortunately, the

process of clinical trials also needs time to go through

several phases to confirm that a treatment or a vaccine can

efficiently work without side effects (Gouglas et al. 2018).

Previous experience from SARS and Zika did not have

successful treatments and vaccines because both epidemics

ended before treatment and vaccine developments were

complete (Lurie et al. 2020). It is alleged that approval

treatments or vaccines of COVID-19 probably cannot be

developed sooner than 12–18 months (Lanese 2020).

Therefore, people turned to anticipate that the mitigation of

the COVID-19 pandemic will happen in the summer

because another similar disease, SARS, started the epi-

demic since February 2003, and quickly diminished in July

2003 (Dutton 2020).

Literature has revealed that a higher level of temperature

and humidity can reduce the transmission of COVID-19

(Wang et al. 2020), and a preliminary research hosted by

the U.S. Department of Homeland Security indicates that

the coronavirus died faster in hotter and more humid

conditions—despite the raw data and analytic report have

not been released and peer-reviewed (U.S. Department of

Homeland Security 2020). From the viewpoint of epi-

demiology, such evidence is far from conclusive. Some

multi-city studies in China found no strong evidence to

support that COVID-19 epidemic could mitigate when the

weather becomes warmer (Xie and Zhu 2020; Yao et al.

2020). In our study, we first investigated the linear asso-

ciation between meteorological factors and COVID-19 in

the U.S. We found that higher temperatures significantly

reduced the risk of COVID-19, while higher relative

Table 1 The linear association

between meteorological factors

and COVID-19 from Model 1

Variable RR % 95% CI P value AIC

Maximum temperature - 0.21 (- 0.26, - 0.15) \ .0001 14577558

Average temperature - 0.32 (- 0.40, - 0.25) \ .0001 14577544

Minimum temperature - 0.21 (- 0.27, - 0.14) \ .0001 14577580

Maximum relative humidity 0.09 (0.07, 0.12) \ .0001 14577558

Average relative humidity 0.07 (0.05, 0.09) \ .0001 14577575

Minimum relative humidity 0.01 (- 0.01, 0.03) 0.4156 14577617

Precipitation - 6.79 (- 7.86, - 5.71) \ .0001 14577473§

RR % relative risk percentage change, CI confidence interval, AIC Akaike information criterion
§ The smallest AIC
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Fig. 1 Nonlinear influence of meteorological factors on COVID-19 incidence from Model 2
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humidities significantly increased the risk. We further

verified that the nonlinear association might be better to

address the impact of meteorological factors on COVID-

19. While increasing temperature and relative humidity

may lead to a decline of risk, it only happened within

certain temperature/relative humidity ranges. The mitiga-

tion might not occur at a higher level of relative humidity

approaching 100%. In the final model (Model 3), our

findings did not support the hypothesis and expectation that

a higher level of temperature was significantly negatively

associated with COVID-19, while the RR % was signifi-

cantly decreased. However, it is still too early to conclude

that the pandemic will be mitigated in the summer.

A new finding which has not been fully discussed in

literature is that precipitation can greatly reduce the risk of

COVID-19. We used to wonder whether the variation to

COVID-19 incidence was more likely explained by rainfall

rather than relative humidity. Nonetheless, the correlation

between precipitation and relative humidity is quite low

(q = - 0.06–0.20). Thus, in statistical viewpoints, the two

meteorological factors may not affect each other in our

models. We haven not seen reliable evidence of precipi-

tation reducing the risk of COVID-19 from literature yet,

while our finding in precipitation should be explained

conservatively because such a short study period can

hardly represent the true profile of precipitation during this

year.

To sum up, the study found that average temperature,

minimum relative humidity, and precipitation can better

address the impact of meteorological factors on COVID-

19. However, we did not find evidence of reducing the risk

of COVID-19 from the higher level of minimum relative

humidity. Despite an increasing average temperature likely

can reduce the risk of COVID-19, the evidence on the

highest level of average temperature was still not strong

enough. Precipitation can greatly reduce the risk of

COVID-19, though observations of heavy precipitation are

few in this study. Notice that valid data points were few for

the lowest and highest ranges of each meteorological

measure because of a short study period, making the results

more uncertain in those ranges. Thus, further research is

warranted to build the relationship from a longer study

period. Our findings alert people that the fight on the

pandemic is still on-going, and we human beings have no

capital to relax from COVID-19 yet. Therefore, rather than

expecting that the natural environment can curb coron-

avirus, it is more realistic to have a better self-protection

during the pandemic, and be patient to wait for treatments

and vaccines.
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