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The increasing global atmospheric CO2 concentration due to
heavy reliance on fossil fuels as the primary energy sources
(~410 ppm in 2019)1 has made direct extraction or removal

of CO2 from ambient air (direct air carbon capture (DACC)) the
most logical alternative over traditional modes of carbon capture
from large stationary sources because of many of the perceived
advantages and compelling arguments2. With the current level of
CO2 emissions (32.6 gigatons (Gt)-CO2/year2017)1, Realmonte
and co-workers recently imposed the global capacity at 30 Gt-
CO2/year as a case study for DACC, and concluded that “in
theory DACCS can be an enabling factor for the Paris Agreement
objectives” and recommended the policy makers to “support an
acceleration in development and deployment of DACCS”3. While
challenges of large-scale CO2 utilization and sequestration were
recognized and these approaches were deemed impractical4,5, our
analysis further showed that the energy and materials require-
ments for DACC are unrealistic even when the most promising
technologies are employed. Thus, DACC is unfortunately only an
energetically and financially costly distraction in effective miti-
gation of climate changes at a meaningful scale before we achieve
the status of a significant surplus of carbon-neutral/low-carbon
energy.

The urgent need for a large amount of CO2 removal by DACC
has been recognized since the Intergovernmental Panel on Cli-
mate Change (IPCC)’s assessment report in 20136. This rapidly
growing field has thus attracted industrial, academic and political
attention over the last decades, ultimately pushing DACC tech-
nologies from lab scale to pilot scale with multi-billion dollars of
investments and research funding from the private and govern-
mental sectors7. Realmonte et al. have investigated the roles of
DACC utilizing two integrated assessment modelling (IAM)
studies on DAC1 (based on aqueous hydroxide solutions of
NaOH, KOH, etc.) and DAC2 (based on amine-modified solid
sorbents such as monoethanolamine (MEA)) as the most pro-
mising methods (Fig. 1). Detailed techno-economic character-
istics have been incorporated based on the latest available
literature estimates aiming to meet the Paris Agreement objec-
tives to keep global warming well below 2 °C (i.e. removal of 30
Gt-CO2/year). However, to fully assess the feasibilities of DACC

technologies, the energy cost for manufacturing materials must be
considered.

The total energy requirement to reach the capacity of capturing
30 Gt-CO2/yr was estimated based on the production of the needed
materials as reasonably proposed by Realmonte et al. considering the
make-up rates of sorbents of 0.17–0.29 t/tCO2 of NaOH in DAC18

and a similar replacement rate for MEA in DAC2. For DAC1,
5.1–8.7 Gt/yr of NaOH is required, and the production will need
2.15–3.67 TWe-yr (electrical energy for electrolysis= 13.3 GJe/
tNaOH)9 (Fig. 2a, b). This will account for about 12–20% of total
global energy supply (TGES; 18.55 TW-yr for 2017, but likely greater
than the global electricity generation capacity of 2.92 TWe-yr)10.
One also notes that the industrial electrolysis process, associated with
NaOH production in DAC1, will result in the production of a huge
amount of Cl2 gas (4.6–7.9 Gt), far exceeding the current utilization
capacity (76.8Mt Cl2/yr) and posing risks which are difficult to
evaluate a priori. In addition to the materials production energy cost,
sorbents regeneration also drag a significant amount of heat and
electricity. While DAC1 employs the less “energy-intensive” NaOH,
the necessity of high temperature (>800 °C) for regeneration induces
a larger energy usage (6.57–9.9 GJtotal/tCO2 (1.32–1.8 GJe/tCO2 and
5.25–8.1 GJh/tCO2), 6.25–9.41 TWtotal-yr= 34–51% TGES) (Fig. 2c).
In contrast, even though the milder condition for sorbent regen-
eration in the DAC2 technology costs ~50% of that for DAC1
(3.5–6.6 GJtotal/tCO2 (0.6–1.1 GJe/tCO2 and 2.9–5.5 GJh/tCO2), 3.3–6.3
TW-yr= 18–34% TGES)11,12, 16.3–27.8 Gt of NH3 and 3.3–5.6 Gt
of ethylene oxide (EO) will be necessary to produce the required
amount of MEA (i.e. 5.1–8.7 Gt), which will consume 14.5–24.7
TWh-yr (28GJh/tNH3 if produced only from natural gas13, 78–133%
TGES) or 20.7–35.3 TWe-yr (40GJe/tNH3 if produced only by elec-
trolysis13, 112–190% TGES) and 2.6–4.1 TWtotal-yr (25 GJtotal/tEO,
14–24% TGES)14, respectively (Fig. 2).

From our analyses, DAC2 is clearly an unsuitable option to
capture 30 Gt-CO2/yr, most likely due to enormous amount of
materials (16.3–27.8 Gt of NH3 and 3.3–5.6 Gt of EO) and energy
needed (20.4–35.1 TW-yr, 110–191% TGES if NH3 production
from only natural gas is being considered). DAC1 also takes at
least 8.4–13.1 TW-yr (46–71% TGES), excluding the potential
environmental risks and the associated energy costs required for
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carbon storage and utilization (CSU)4. Since the replacement of
every 10% TGES under the current energy status by low-carbon
sources, such as nuclear, hydro, wind and solar, can reduce ~4 Gt-
CO2/yr of emission (Fig. 2d), it is not logical to allocate low-
carbon energy for DACC at present without accelerating the
depletion rate of limited fossil fuels.

Considering the projected global energy demand to be
increased at least by 50% before 205015, it is imperative that
TGES cannot only be invested to harness the CO2 issue. While
DACC (and CSU) technologies are an important topic of R&D
and may indeed offer some commercial opportunities with
incentivized carbon prices (given the surplus electricity is
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Fig. 2 Energy and materials requirement for DACC—current status and prospects. a Estimated materials required for CO2 (30 Gt) capture in DACC and
compared to their current production. Estimated energy required for b material production and c sorbent regeneration. d Current and future energy mix
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available), before a significant amount of carbon-neutral and/or
low-carbon energy can be deployed, any DACC activities will be a
significant distraction with negligible contributions to mitigating
climate changes. Concentrated efforts on the deployment of low-
carbon energy generation plants across the globe together with
raising public awareness to use alternative energy and on the
development of technologies in enhancing the energy usage effi-
ciency (e.g. in transportation) must be prioritized to address the
pressing twin problems of climate changes and energy security.

Finally, discerning the number of related challenges in DACC
and CSU4,5, it is of utmost importance to conduct not only a
thorough techno-economic analysis on the future proposed pro-
cesses but comprehensive assessments on the materials and energy
needs at the scale of multi-Gt-CO2/yr before a realistic solution can
be identified. Wide-ranging discussions/debates between experts
from all sectors from all angles are urgently needed.

Data availability
All relevant data supporting the findings of this study are available within the paper.
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