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Stable machine-learning parameterization
of subgrid processes for climate modeling
at a range of resolutions
Janni Yuval 1✉ & Paul A. O’Gorman1

Global climate models represent small-scale processes such as convection using subgrid

models known as parameterizations, and these parameterizations contribute substantially to

uncertainty in climate projections. Machine learning of new parameterizations from high-

resolution model output is a promising approach, but such parameterizations have been

prone to issues of instability and climate drift, and their performance for different grid spa-

cings has not yet been investigated. Here we use a random forest to learn a parameterization

from coarse-grained output of a three-dimensional high-resolution idealized atmospheric

model. The parameterization leads to stable simulations at coarse resolution that replicate

the climate of the high-resolution simulation. Retraining for different coarse-graining factors

shows the parameterization performs best at smaller horizontal grid spacings. Our results

yield insights into parameterization performance across length scales, and they also

demonstrate the potential for learning parameterizations from global high-resolution simu-

lations that are now emerging.
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Coupled atmosphere–ocean simulations of climate typically
resolve atmospheric processes on horizontal length scales
of order 50–100 km. Smaller-scale processes, such as

convection, are represented by subgrid parameterization schemes
that typically rely on heuristic arguments. Parameterizations are a
main cause for the large uncertainty in temperature, precipitation
and wind projections1–6. Although increases in computational
resources have now made it possible to run simulations of the
atmosphere that resolve deep convection on global domains for
periods of a month or more7,8, such simulations cannot be run
for the much longer timescales over which the climate system
responds to radiative forcing9, and the computational cost to
explicitly resolve important low cloud feedbacks will remain out
of reach for the foreseeable future6. Therefore, novel and com-
putationally efficient approaches to subgrid parameterization
development are urgently needed and are at the forefront of cli-
mate research.

Machine learning (ML) of subgrid parameterizations provide
one possible route forward given the availability of high-
resolution model output for use as training datasets10–16. While
high-resolution simulations still suffer from biases, to the extent
that they resolve atmospheric convection, a parameterization
learned from these simulations has the potential to outperform
conventional parameterizations for important statistics such as
precipitation extremes. Training on both the control climate and
a warm climate is needed to simulate a warming climate using an
ML parameterization12,13, and this is feasible because only a
relatively short run of a high-resolution model is needed for
training data in the warmer climate.

ML parameterization could also have advantages for grid
spacings that are smaller than in current global climate models
(GCMs) but not yet convection resolving. At these gray-zone grid
spacings, assumptions traditionally used in conventional para-
meterizations, such as convective quasi-equilibrium17, may need
to be modified or replaced such that the parameterization is scale
aware18,19. Without such modifications, it may be better to turn
off some conventional parameterizations of deep convection for a
range of grid spacings that are too close to the convective
scale20,21. Since ML parameterizations can be systematically
trained at different grid spacings without the need to change
physical closure assumptions, an ML approach to parameteriza-
tion has the potential to perform well across a range of grid
spacings and to provide insights into the scale dependence of the
parameterization problem.

Recently a deep artificial neural network (NN) was successfully
used to emulate the embedded two-dimensional cloud-system
resolving model in a superparameterized climate model in an
aquaplanet configuration11,12, although some choices of NN
architecture could lead to instability and blow ups in the simu-
lations22. An NN parameterization has also been recently learned
from the coarse-grained (spatially averaged to a coarser grid)
output of a fully three-dimensional model, with issues of stability
dealt with by including multiple time steps in the training cost
function and by excluding upper-tropospheric levels from the
input features14,15. This NN parameterization could be used for
short-term forecasts, but it suffered from climate drift on longer
times scales and could not be used for studies of climate. Thus, an
ML parameterization has not yet been successfully learned from a
three-dimensional high-resolution atmospheric model for use in
studies of climate.

One approach that may help the robustness and stability of an
ML parameterization is to ensure that it respect physical con-
straints such as energy conservation23. Using a random forest
(RF)24,25 to learn a parameterization has the advantage that the
resulting parameterization automatically respects energy con-
servation (to the extent energy is linear in the predicted

quantities) and non-negative surface precipitation13. An RF is an
ensemble of decision trees, and the predictions of the RF are an
average of the predictions of the decision trees24,25. Physical
constraints are respected by an RF parameterization because the
predictions of the RF are averages over subsets of the training
dataset. The property that the RF predictions cannot go outside
the convex hull of the training data may also help ensure that an
RF parameterization is robust when implemented in a GCM.
When an RF was used to emulate a conventional convective
parameterization, it was found to lead to stable and accurate
simulations of important climate statistics in tests with an idea-
lized GCM13. Thus RFs are promising for use in learning para-
meterizations of atmospheric processes, but they have not yet
been used to learn subgrid moist processes from a high-resolution
atmospheric model.

In this study we learn an RF parameterization from coarse-
grained output of a high-resolution three-dimensional model of a
quasi-global atmosphere, and we show that the parameterization
can be used at coarse resolution to reproduce the climate of the
high-resolution simulation. By learning different RF para-
meterizations for a range of coarse-graining factors, we assess the
performance of the RF parameterization as the grid spacing in the
coarse model is varied, and this helps addresses the important
question of over what range of coarse-graining factors an ML
parameterization of convection can be successful.

Results
Learning from high-resolution model output. The model used
is the System for Atmospheric Modeling (SAM)26, and the
domain is an equatorial beta plane of zonal width 6912 km and
meridional extent 17,280 km in an aquaplanet configuration. The
distribution of sea surface temperature (SST) is specified to be
zonally and hemispherically symmetric and reaches a maximum
at the equator (the qobs SST distribution27). To reduce compu-
tational expense, we use hypohydrostatic rescaling (with a scaling
factor of 4) which effectively increases the horizontal length scale
of convection and allows us to use a coarser horizontal grid
spacing of 12 km than would be normally used in a cloud-system
resolving simulation, while not affecting the large-scale dynam-
ics28–31. Further details of the model configuration are given in
the methods section.

The high-resolution simulation (hi-res) exhibits organization
on a wide range of length scales from the convective to the
planetary scale (Fig. 1a). The largest-scale organization consists of
two intertropical convergence zones (ITCZs) and an extratropical
storm track in the mid-latitudes of each hemisphere. The
configuration used here in which the SST distribution is fixed
and symmetric about the equator is a challenging test of our RF
parameterization since the resulting circulation is known to be
very sensitive to subgrid parameterizations, and coarse-resolution
GCMs in this configuration give a range of tropical circulations
from a strong single ITCZ to a double ITCZ32. We find there is a
double ITCZ at high resolution for our model configuration, and
this is likely dependent on the exact SST distribution used and the
geometry of the domain. When the model is run with a horizontal
grid spacing of 96 km and thus eight times coarser horizontal
resolution (x8), the double ITCZ switches to a much stronger
single ITCZ (Fig. 1b) and the distribution of mean precipitation is
strongly altered throughout the tropics (Fig. 2a). Extreme
precipitation, which is important for impacts on society and
ecosystems, is evaluated here as the 99.9th percentile of 3-hourly
precipitation; it is sensitive at all latitudes to changing from high
to coarse resolution (Fig. 2b). In this study, we do not compare
the results of the hi-res simulation to a coarse-resolution
simulation with conventional convective and boundary-layer
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parameterizations both because SAM is not equipped with such
parameterizations and because the results in the tropics would be
highly dependent on the specific choice of parameterizations for
both mean precipitation32 and extreme precipitation4.

The RF parameterization predicts the effect of unresolved
subgrid processes that act in the vertical, including vertical
advection, cloud and precipitation microphysics, vertical turbu-
lent diffusion, surface fluxes and radiative heating, on the resolved
thermodynamic and moisture prognostic variables at each
gridbox and time step. The prognostic variables that are explicitly
affected by the RF-parameterization are the liquid/ice water moist
static energy (hL), total non-precipitating water mixing ratio (qT),
and precipitating water mixing ratio (qp). Subgrid momentum
fluxes are not predicted, but this is not expected to strongly affect
the results since we do not have topography that could generate
strong gravity wave drag and since tropical convection occurs in
regions of relatively weak shear in our simulations. We assume
that the subgrid contributions depend only on the vertical column
of the grid point at the current time step, and we predict all

outputs in the vertical column together, and therefore the
parameterization is column based and local in time and in the
horizontal. We chose to use two RFs so that we can separately
predict processes (turbulent diffusion and surface fluxes) that
depend on horizontal winds and are primarily active at lower
levels of the atmosphere.

The first RF, referred to as RF-tend, predicts the vertical
profiles at all 48 model levels of the combined tendencies due
to subgrid vertical advection, subgrid cloud microphysics,
subgrid sedimentation and falling of precipitation, and total
radiative heating. Hence the outputs of RF-tend are YRF�tend ¼
ðhsubg�tend

L ; qsubg�tend
T ; qsubg�tend

p Þ where subg-tend refers to the
subgrid tendency, giving 48 × 3 = 144 outputs. Radiative heating
is treated as entirely subgrid, whereas the other processes have a
resolved representation on the coarse model grid and a subgrid
component represented by the RF parameterization. We do not
use the RF-parameterization to predict radiative heating for levels
above 11.8 km because it does not predict the radiative heating

a

d e

b chi-res ×8 ×8-RF

40

P
re

ci
pi

ta
bl

e 
w

at
er

 [m
m

]

60

20

0

45°

–45°

20°

Longitude

50° 20°

Longitude

50° 20°

Longitude

50°

La
tit

ud
e

0°

Fig. 1 Snapshots of column-integrated precipitable water taken from the statistical equilibrium of simulations. a High-resolution simulation (hi-res),
b coarse-resolution simulation (x8), and c coarse-resolution simulation with random forest (RF) parameterization (x8-RF). Insets in a show d a zoomed-in
region and e the same region but coarse-grained by a factor of 8 to the same grid spacing as in b. The colorbar is saturated in parts of panel b.
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Fig. 2 Mean and extreme precipitation as a function of latitude. a Zonal- and time-mean precipitation and b 99.9th percentile of 3-hourly precipitation,
for the high-resolution simulation (hi-res; blue), and the coarse resolution simulation with the random forest (RF) parameterization (x8-RF; orange
dashed–dotted) and without the RF parameterization (x8; green). For hi-res, the precipitation is coarse-grained to the grid spacing of x8 prior to calculating
the 99.9th percentile to give a fair comparison41.
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well for those levels, possibly because of insufficient coupling
between the stratosphere and troposphere. Subgrid tendencies for
vertical advection and microphysics are calculated as the
horizontal coarse-graining of the tendencies at high resolution
minus the tendencies calculated from the model physics and
dynamics using the coarse-grained prognostic variables as inputs
(see methods). The features (inputs) for RF-tend (XRF-tend) are
chosen to be the vertical profiles (discretized on model levels) of
the resolved temperature (T), qT, qp, and the distance from the
equator (∣y∣). Hence XRF-tend = (T, qT, qp, ∣y∣), giving
48 × 3 + 1 = 145 features. Distance from the equator serves as
a proxy for the SST, surface albedo and solar insolation, as these
are only a function of this distance in the simulations considered
here. For a different simulation setup that is not hemispherically
symmetric, we would include these physical quantities as separate
features instead of distance from the equator.

The second RF, referred to as RF-diff, predicts the coarse-
grained turbulent diffusivity (D) for thermodynamic and moisture
variables and the subgrid correction to the surface fluxes. We
predict D rather than the turbulent diffusive tendencies so as to
ensure that the turbulent fluxes remain downgradient. For
computational efficiency we only predict D in the lower tropo-
sphere (the 15 model levels below 5.7 km) because it decreases in
magnitude with height (Supplementary Fig. 1d). Hence the outputs
of RF-diff are YRF�diff ¼ ðD; hsurf�flux

L ; qsurf�flux
T Þ where surf-flux

refers to a subgrid surface flux, giving 15 + 1 + 1 = 17 outputs.
The features of RF-diff are chosen to be the lower tropospheric
vertical profiles of T, qT, zonal wind (u), meridional wind (v),
surface wind speed (windsurf), and distance from the equator,
so that XRF−diff = (T, qT, u, v, windsurf, ∣y∣), giving
4 × 15 + 1 + 1 = 62 features. Since the meridional velocity is
statistically anti-symmetric with respect to reflection about the
equator, the meridional wind in the southern hemisphere is
multiplied by −1 when it is taken as a feature for RF-diff to help
ensure that RF-diff is not learning non-physical relationships
between inputs and outputs that could artificially improve our
results. We include the wind variables as features for RF-diff
because they improve the prediction of the diffusivity and subgrid
surface fluxes. Adding wind features to RF-tend does not improve
the accuracy of the predicted tendencies.

The methods section gives further details about the RFs. In
Supplementary Note 1 we demonstrate that the RF parameter-
ization respects the physical constraints of energy conservation
(Supplementary Fig. 2) and non-negative surface precipitation
(Supplementary Fig. 3).

Simulation with RF parameterization. A simulation with the RF
parameterization at 96 km grid spacing (x8-RF) was run using an
initial condition taken from the statistical equilibrium of the
x8 simulation with no RF parameterization. The x8-RF simula-
tion transitions to a new statistical equilibrium with a double
ITCZ similar to that in the high-resolution simulation (Fig. 1c)
and it runs stably over long timescales (we have run it for a
1000 days). At statistical equilibrium, the distribution of mean
precipitation is close to that of the high-resolution simulation
(Fig. 2a), and the distribution of extreme precipitation is
remarkably well captured (Fig. 2b). Other measures such as eddy
kinetic energy, mean zonal wind, mean meridional wind and
mean qT are also correctly captured by x8-RF (Supplementary
Table 1). Overall, these results show that using the RF subgrid
parameterization brings the climate of the coarse-resolution
simulation into good agreement with the climate of the high-
resolution simulation.

The x8-RF simulation requires roughly 30 times less processor
time than the high-resolution simulation (for x16-RF the speed
up is by roughly a factor of 120). Further increases in speed could
be obtained by increasing the time step but this is limited in part
by the fall speed of precipitation. In Supplementary Note 2, we
present an alternative RF parameterization in which qp is no
longer treated as a prognostic variable and which could be used to
achieve even faster simulations at coarse resolution in future
work. This alternative parameterization has comparable perfor-
mance to our default parameterization (Supplementary Fig. 4) but
it requires certain outputs to be set to zero (above 11.8 km) to
avoid a deleterious feedback possibly related to an issue of
causality when qp is not evolved forward in time15, and it is less
accurate for extreme precipitation in mid-latitudes.

Performance for different horizontal grid spacings. The fact
that the RF parameterization is learned from a fully three-
dimensional simulation with a wide range of length scales allows
us to explore the question of whether there is a particular range of
grid spacings for which an ML parameterization could be most
successful. With increasing grid spacing, coarse-graining involves
more averaging over different cloud elements which should make
the subgrid tendencies more predictable, but the parameterization
is then also responsible for more of the dynamics and physics.

We train RF parameterizations for a range of coarse-graining
factors from x4 to x32 and use them in simulations with
corresponding grid spacings. We first describe the performance of
the RFs on offline tests (i.e., when the RFs are not implemented in
SAM) based on data withheld in training. The offline performance
as measured by the coefficient of determination (R2) improves
substantially as the grid spacing increases (Fig. 3a, compare Fig. 3c,
e), consistent with the idea of more predictable subgrid tendencies
with more averaging over larger grid boxes. Improved offline
performance with increasing grid spacing is shown to hold for all of
the predicted outputs in Supplementary Table 2.

However, online performance (i.e., the ability of the coarse-
resolution simulations with the RF parameterization to correctly
capture the climate of hi-res) varies very differently with grid
spacing as compared to offline performance. Online performance
increases monotonically with decreasing grid spacing (Fig. 3b and
compare Fig. 3d, f), and the best performance is found for x4-RF,
indicating that the RF parameterization can work well with a
relatively small gap between the grid spacings of the coarse-
resolution model and the high-resolution model from which it
was learned.

One might think the decrease in online performance at larger
grid spacings is due to more of the subgrid dynamics and physics
becoming subgrid and thus the absolute errors in the predicted
subgrid tendencies becoming larger even if R2 increases, but the
root mean square error (RMSE) in offline tests actually decreases
as the grid spacing increases (Fig. 3a and Supplementary Table 3).
To understand the discrepancy between variations in offline and
online performance, it is helpful to think of the variables that the
RFs predict as having two components—a predictable component
and a stochastic component. For smaller grid spacing, the
stochastic component is large (compare the same snapshot for
different coarse-graining factors in Fig. 4a, c), and the prediction
task becomes more difficult (compare Fig. 4d, f). Therefore, the
relatively low offline R2 at smaller grid spacing does not
necessarily imply that the RF does not predict the predictable
component accurately. To demonstrate this point we make a
comparison between offline performance of x4-RF and x32-RF,
but we first coarse grain the subgrid tendencies calculated and
predicted at x4 to the x32 grid, and we refer to the results of this
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procedure as x4 → x32 (Fig. 4b and methods). The RMSE for
x4 → x32 is substantially smaller than for x4 because the
stochastic component averages out with coarse-graining (com-
pare Fig. 4a, b). Importantly the RMSE for x4 → x32 is also

substantially smaller than for x32 (compare Fig. 4e, f). Therefore,
x4-RF has smaller offline errors compared to x32-RF when these
parametrizations are compared in an apples-to-apples compar-
ison at the same length scale, and this is consistent with the better
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online performance of x4-RF than x32-RF. Similar results are
found for other vertical levels and other outputs of the RF
(Supplementary Fig. 5 and Supplementary Table 4). We note that
for some outputs R2 is still higher for x32 than x4 → x32
(Supplementary Table 4), and thus it seems it is more appropriate
in this case to compare the absolute rather than relative errors of
the parameterization.

For extreme precipitation, the improvement in online perfor-
mance with decreasing grid spacing is weaker than for mean
precipitation, and there is no improvement in extreme precipitation
performance when decreasing the grid spacing from x8 to x4
(Supplementary Fig. 6) indicating the possibility of a slight gray zone
for this statistic. Nonetheless, we conclude there is a clear overall
improvement in online performance of the RF parameterization as
grid spacing decreases, which suggests that ML parameterizations
could be useful for grid spacings that are quite close to that of the
high-resolution model from which they are learned.

Robustness of the RF parameterization. We performed tests to
check the robustness of the RF parameterization, and in parti-
cular to confirm that its skill is not based on learning that par-
ticular circulations (such as ascent in an ITCZ) and associated
clouds occur at particular latitudes. As a first test, we re-trained
the RF parameterization without using the distance from equator
as a feature since much of the subgrid dynamics and physics (e.g.,
vertical advection, cloud, and precipitation microphysics, and
longwave cooling) represented by the RF parameterization should
be largely predictable from features other than distance to the
equator (which is a proxy for surface albedo, insolation, and SST).
We find that the offline results are similar regardless of whether
distance from the equator is used as a feature in the RFs (Sup-
plementary Tables 2, 3).

As a second test, we trained new versions of the RF
parameterization in which latitudes bands of width 10∘ were
excluded during training in both hemispheres, and thus the RF
parameterization must generalize across latitudes when it is used
in simulations. Based on offline tests we find that x8-RF can
generalize remarkably well when tropical latitude bands contain-
ing the ITCZs are excluded (Fig. 5a), and there is only a slight
decrease in performance for excluded latitude bands at high
latitudes (Fig. 5c). Excluding latitude bands in mid-latitudes leads
to a marked deterioration in performance (Fig. 5b), likely due to
the small overlap between the features in the center of the
excluded latitude bands and the training data outside the latitude
bands. The lack of feature overlap in the midlatitude case is due to
strong meridional gradients in temperature and mixing ratios,
and lapse rates and relative humidity could be used as alternative
features to avoid this overlap problem in future work. The
resulting climates in coarse-resolution simulations with these RF
parameterizations are remarkably similar (with a slight exception
for precipitation in the midlatitude case) to the climate obtained
using x8-RF trained on all the latitudes (Fig. 5d–f and
Supplementary Fig. 7).

The results of these tests suggest that the success of the RF
parameterization is not based on learning that particular
circulation features occur at particular latitudes (for example,
the RF parameterization is successful even when its training
excludes the ITCZ regions), but rather it is learning robust
physical relationships between features and outputs.

Discussion
The results presented here provide a step forward by demon-
strating the viability of stable and accurate parameterizations of
subgrid physics and dynamics learned from a high-resolution
three-dimensional simulation of the atmosphere. The results also

give insights into how well an ML parameterization can perform
as a function of grid spacing. Online performance improves with
decreasing grid spacing of the coarse-resolution model. This is in
contrast to the experience that some conventional para-
meterizations are best turned off for a range of length scales that
are too close to the convective scale20,21, and the difference may
arise because conventional parameterizations rely on physical
assumptions that are not uniformly valid across length scales,
although this can be mitigated by trying to make such para-
meterizations scale aware18,19,33. Care is needed in comparing
offline performance across grid spacings, and we find that it is
useful to compare offline error statistics at a consistent reference
length scale. Further work using a model without hypohydrostatic
scaling would be helpful to further investigate the behavior of ML
parameterizations at different grid spacings.

The approach to ML parameterization for the atmosphere in this
study is different in important aspects to previous studies. First, the
predicted tendencies are calculated accurately for the instantaneous
atmospheric state rather than approximating them based on dif-
ferences over 3-hour periods14,15. Second, the subgrid corrections
are calculated independently for each physical process rather than
for all processes together as in previous studies12,14,15 which allows
for an ML parameterization structure that is motivated by physics
and the calculation of the precipitation rate from the predicted
tendencies. Third, we use an RF to learn from a high-resolution
model whereas NNs have been used in previous studies that learned
from a high-resolution model10,12,14,15 and RFs were used only to
emulate conventional parameterizations13,34. Parameterizations
based on an RF have advantages in that their predictions auto-
matically satisfy physical properties in the training data (without
being imposed explicitly23) and they make conservative predictions
for samples outside of the training data which may help with the
robustness of their online performance. On the other hand, NNs
require less memory and may have better offline performance. To
further compare RF and NN parameterizations, future work should
evaluate their online and offline performance using the same
training data and atmospheric model.

Future research on ML parameterization for the atmosphere must
address technical challenges such as how best to train over land
regions with topography and how best to deal with the need for a
separate parameterization of radiative heating in the stratosphere.
However, future research should also continue to seek insights into
the nature of the parameterization problem, such as how perfor-
mance varies across length scales or whether parameterizations
should be nonlocal in time and space, which may also inform the
further development of conventional parameterizations.

Methods
Model. The model used in this study is SAM version 6.326, which is a relatively
efficient model that integrates the anelastic equations of motion in Cartesian
coordinates. The bulk microphysics scheme is single moment with precipitating
water consisting of rain, snow and graupel, and non-precipitating water consisting
of water vapor, cloud water, and cloud ice. Cloud ice experience sedimentation, and
we include the surface sedimentation flux (which is small) in all reported surface
precipitation statistics. The subgrid-scale turbulent closure is a Smagorinsky-type
scheme. The radiation scheme is based on parameterizations from the National
Center for Atmospheric Research (NCAR) Community Climate Model (CCM)
version 3.535.

The equations for the prognostic thermodynamic and moisture variables in
SAM are important for our study and may be written as26

∂hL
∂t

¼ � 1
ρ0

∂

∂xi
ðρ0uihL þ FhL i

Þ � 1
ρ0

∂

∂z
ðLpPtot þ LnSÞ þ

∂hL
∂t

� �
rad

; ð1Þ

∂qT
∂t

¼ � 1
ρ0

∂

∂xi
ðρ0uiqT þ FqT i

Þ þ 1
ρ0

∂

∂z
ðSÞ � ∂qp

∂t

� �
mic

; ð2Þ

∂qp
∂t

¼ � 1
ρ0

∂

∂xi
ðρ0uiqp þ Fqp i

Þ þ 1
ρ0

∂

∂z
ðPtotÞ þ

∂qp
∂t

� �
mic

; ð3Þ
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where hL = cpT + gz − Lc(qc + qr) − Ls(qi + qs + qg) is the liquid/ice water static
energy; ρ0(z) is the reference density profile; qT is the non-precipitating water
mixing ratio which is the sum of the mixing ratios of water vapor (qv), cloud water
(qc) and cloud ice (qi); qp is the total precipitating water mixing ratio which is the
sum of the mixing ratios of rain (qr), snow (qs) and graupel (qg); FAi is the diffusive
flux of variable A; ui = (u, v, w) is the three-dimensional wind; Ptot is the total
precipitation mass flux (defined positive downwards); S is the total sedimentation
mass flux (defined positive downwards); the subscript rad denotes the tendency
due to radiative heating; the subscript mic represents the microphysical tendency
due to autoconversion, aggregation, collection, and evaporation and sublimation of
precipitation; Lc, Lf and Ls are the latent heat of condensation, fusion and
sublimation, respectively; Lp = Lc + Lf(1 − ωp) is the effective latent heat
associated with precipitation, and ωp is the partition function for precipitation
which determines its partitioning between liquid and ice phases;
Ln = Lc + Lf(1 − ωn) is the effective latent heat associated with non-precipitating
condensate, and ωn is the partition function for non-precipitating condensate
which determines its partitioning between liquid and ice phases. Note that we do
not introduce any prescribed large-scale tendencies in our simulations.

Simulations. All simulations are run on the same quasi-global domain with an
equivalent latitude range from −78.5∘ to 78.5∘ and longitudinal extent of 62.2∘ at
the equator. There are 48 vertical levels with spacing that increases from 85 m at
the surface to 1650 m in the stratosphere, and the top level is at 28,695 m. The
default time step is 24 s, and this is adaptively reduced as necessary to prevent
violations of the CFL condition. The insolation is set at perpetual equinox without
a diurnal cycle. The simulations are run with a zonally symmetric qobs27 SST
distribution which varies between 300.15 K at the equator and 273.15 K at the
poleward boundaries. Surface albedo is a function of latitude, and there is no sea ice
in the model. Simulations with a diurnal cycle and different SST distributions
should be investigated in future work.

Hypohydrostatic rescaling of the vertical momentum equation with a rescaling
factor of 4 increases the horizontal length scale of convection while leaving the
large-scale dynamics unaffected and still retaining a very large range of length
scales in the hi-res simulation28–31,36. A similar configuration of SAM with
hypohydrostatic rescaling (though not at equinox) was recently used to investigate
tropical cyclogenesis in warm climates31. Furthermore, SAM was also used in
previous studies that developed ML parameterizations12,14,15.

The hi-res simulation has 12 km grid spacing (recalling that hypohydrostatic
rescaling is used) and was spun up for 100 days. It was then run for 500 days with
three-dimensional snapshots of the prognostic variables, radiative heating, and
turbulent diffusivity saved every 3 h. Results for the hi-res simulation are averaged
over 500 days. Coarse-resolution simulations were run for 600 days, with the first
100 days of each simulation treated as spinup, and results averaged over the last
500 days. Simulations with the RF parameterization start with initial conditions
taken from simulations without the RF parameterization (at the same resolution).
The transition in the simulations with the RF parameterization from a single ITCZ
in the initial condition to a double ITCZ sometimes occurs in two distinct steps,

but a spinup period of 100 days was found to be sufficient for this transition
to occur.

The version of SAM that was used for the hi-res simulation had some minor
discretization errors, the most important of which were in the Coriolis parameter
in the meridional momentum equation and in the momentum surface fluxes.
Effectively the Coriolis parameter is shifted by a distance of half a gridbox (6 km) to
the south, and the surface winds used for calculating the surface momentum fluxes
are also shifted by a distance of half a gridbox (but each wind component in a
different direction). We corrected these errors when running the coarse-resolution
simulations since discretization errors become larger in magnitude with coarser
grid spacing. To avoid wasteful rerunning of the expensive hi-res simulation, in all
coarse-resolution simulations we also shifted the Coriolis parameter in the
meridional momentum equation by 6 km (half of the hi-res gridbox size) and
shifted the surface winds by 6 km when calculating the surface momentum fluxes
such that the coarse-resolution simulations are completely consistent with the hi-
res simulation.

Coarse graining and calculation of subgrid terms. For each 3-hourly snapshot
from the hi-res simulation, we coarse grain the prognostic variables
(u, v, w, hL, qT, qp), the tendencies of hL, qT, and qp (eqs. (1)–(3)), the surface fluxes
and the turbulent diffusivity. Coarse-graining is performed by horizontal averaging
onto a coarser grid as follows:

Aði; j; kÞ ¼ 1

N2

Xl¼Ni

l¼Nði�1Þþ1

Xm¼Nj

m¼Nðj�1Þþ1

Aðl;m; kÞ; ð4Þ

where A is the high-resolution variable, A is the coarse-grained variable, N is the
coarse graining factor, k is the index of the vertical level, and i, j (l, m) are the
discrete indices of the longitudinal and latitudinal coordinates at coarse resolution
(high resolution).

Different coarse-graining factors were used to study how well the ML
parameterization performs at different resolutions. The horizontal grid spacings
that were used were 48 km (×4), 96 km (×8), 192 km (×16), and 384 km (×32). The
hi-res simulation has a grid size of 576×1440, and coarse graining it by factors of 4,
8 and 16 results in grid sizes of 144 × 360, 72 × 180 and 36 × 90, respectively. These
grids can be simulated in SAM. Unfortunately, coarse-graining the hi-res
simulation by a factor of 32 results in a grid (18 × 45) which cannot run in SAM.
Instead, the number of grid points in the latitudinal direction in these simulations
was increased to 48 points (18×48 grid size), leading to a slightly larger domain,
and the presented results were interpolated to the coarse-grained high-resolution
grid (with 45 points in the latitudinal direction).

We define the resolved tendency as the tendency calculated using the dynamics
and physics of model with the coarse-grained prognostic variables as inputs. The
tendencies due to unresolved (subgrid) physical processes were calculated as the
difference between the coarse-grained tendency and the resolved tendency. The
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subgrid tendency for a given process is then written as

∂B
∂t

� �subgrid

¼ ∂B
∂t

ðhL; qT; qp; u; v;wÞ �
∂B
∂t

ðhL; qT; qp; u; v;wÞ; ð5Þ

where B is a certain variable, ∂B∂t ðhL; qT; qp; u; v;wÞ is the coarse-grained high-

resolution tendency of that variable due to the process, ∂B∂t ðhL; qT ; qp; u; v;wÞ is the
resolved tendency due to the process, and ∂B

∂t

� �subgrid
is the subgrid tendency due to

the process. For example, the subgrid tendency of hL due to vertical advection is

∂hL
∂t

� �subgrid

vert: adv:

¼ � ∂whL
∂z

� ∂whL
∂z

� �
: ð6Þ

Subgrid and resolved contributions are defined in a similar way for the surface
fluxes of hL and qT.

The procedure of coarse graining and calculating the subgrid tendencies and
subgrid surface fluxes was done offline in postprocessing. For each high-resolution
snapshot, the coarse-grained fields, the instantaneous tendencies associated with
different physical processes, and the surface fluxes were calculated. The coarse-
grained fields were then used to calculate the instantaneous resolved tendencies of
the different physical processes and the resolved surface fluxes. Finally the subgrid
contributions were calculated. This procedure is more accurate compared to
previous studies that calculated the tendencies using the difference between the
prognostic variables over 3-h time steps14,15. Furthermore, this procedure allows us
to calculate a different subgrid tendency for each physical process, which is
necessary for the RF parameterization structure that we use.

Choice of outputs for the RF parameterization. The RF parameterization pre-
dicts the combined tendencies for the following processes: subgrid vertical
advection of hL, qT, and qp, subgrid cloud and precipitation microphysical ten-

dencies included in
∂qp
∂t

� �
mic

, subgrid falling of precipitation and subgrid sedi-

mentation of cloud ice, and the total radiative heating tendency (see below). The RF
parameterization also predicts the coarse-grained turbulent diffusivity and the
subgrid corrections to the surface fluxes of hL and qT.

For radiation, the RF parameterization predicts the total radiative heating
and not the subgrid part. The choice to predict the radiative heating tendency
rather than predicting its subgrid correction was mainly motivated by the
complexity of calculating subgrid radiative heating tendencies in postprocessing.
Radiative heating is not predicted above 11.8 km since the RF has poor
performance above this level in offline tests. Instead the SAM prediction for
radiative heating is used at those levels. We checked that the results were not
sensitive to the exact choice of cutoff level. Including the RF prediction for
radiative heating at all stratospheric levels leads to a temperature drift in the
stratosphere when RF-tend is implemented in SAM (a problem with
temepratures in the stratosphere was also found in a previous study12), though
tropospheric fields are still similar to the presented results. It is possible that due
to weak troposphere-stratosphere coupling it is difficult to accurately predict the
radiative heating tendency simultaneously in both the troposphere and the
stratosphere. In future work, it might be beneficial to train different
parameterizations for the stratosphere and troposphere.

The turbulent vertical diffusive flux for a thermodynamic or moisture variable A
is FAz ¼ �D ∂A

∂z , where D is the turbulent diffusivity for thermodynamic and
moisture variables. We predict the coarse-grained turbulent diffusivity (D) and
apply it only to vertical diffusion of the thermodynamic and moisture variables
(i.e., hL, qT, qp). This is consistent with our general approach in which the RF
parameterization only represents processes that act in the vertical and only their
effects on the thermodynamic and moisture variables. The approach of predicting
the coarse-grained diffusivity has the advantage that it constrains the diffusive
fluxes in the coarse model to be downgradient, unlike if we had predicted the
tendency due to diffusion. This approach also had the advantage that the same
diffusivity is applied to all thermodynamic and moisture variables, unlike if we had
predicted the effective diffusivity based on coarse-grained fluxes and gradients for
each variable separately. The coarse-grained diffusivity is not predicted above 5.7
km, and the diffusivity from SAM at coarse resolution is used instead for these
levels.

Surface precipitation is not predicted separately by the RF parameterization but
is rather diagnosed (including any surface sedimentation) as the sum of the

resolved precipitation and the subgrid correction (Psubgrid
tot ðz ¼ 0Þ þ Ssubgridðz ¼ 0Þ)

which is calculated from water conservation as

Psubgrid
tot ðz ¼ 0Þ þ Ssubgridðz ¼ 0Þ ¼ �

Z 1

0
qsubg�tend
p þ qsubg�tend

T

� �
ρ0dz: ð7Þ

Training and implementation. Before training the RFs, each output variable is
standardized by removing the mean and rescaling to unit variance. For output
variables with multiple vertical levels, the mean and variance are calculated across
all levels used for that output variable.

We use 337.5 days of 3-hourly model output from the hi-res simulation to
calculate the features and outputs of the RFs. This model output was divided
into a training dataset, validation dataset and a test dataset. The training dataset
was obtained from the first 270 days (80% of the data) of the hi-res simulation,
the validation dataset was obtained from the following 33.75 days (10% of the
data), and the test data was obtained from the last 33.75 days (10% of the data).
After tuning the hyperparameters, we expanded the training dataset to include
the validation dataset for use in the final training process of the RFs used
in SAM.

To make the samples more independent, at each time step that was used, we
randomly subsample atmospheric columns at each latitude. For coarse-graining
factors of ×4, ×8 and ×16, we randomly select 10, 20 and 25 longitudes,
respectively, at each latitude for every time step. For ×32, the amount of coarse-
grained output is relatively limited and so we do not subsample. This results in test
and validation dataset sizes of 972, 360 samples for ×4 and ×8, 607, 770 samples for
×16 and 218, 790 samples for ×32. The amount of training data used is one of the
hyperparameters we tuned as described below.

To train the RFs, we use the RandomForestRegressor class from scikit-learn
package37 version 0.21.2. Different hyperparameters governing the learning
process and complexity of the RFs may be tuned to improve performance. The
most important hyperparameters that we tuned are the number of trees in each
forest, the minimum number of samples at each leaf node, and the number of
training samples. Supplementary Fig. 8 shows the coefficient of determination
(R2) evaluated on the validation dataset for different combinations of
hyperparameters. We stress that unlike standard supervised machine-learning
tasks, higher accuracy on test data is not our only goal. We also want to have a
fast RF since it will be called many times when used in a simulation, and we do
not want to have an RF that is overly large in memory since it will need to be
stored on each core (or possibly shared across all cores in a node). Based on a
compromise between RF accuracy, memory demands and speed when the RF is
implemented in SAM, for coarse-graining factors of ×4, ×8 and ×16 we chose 10
trees in each RF, a minimum of 20 samples in each leaf and 5,000,000 training
samples. However, fewer training samples were available for ×32, and in order to
have a similar size of RFs in this case, a minimum of seven samples in each leaf
were taken.

Training typically takes less than an hour using 10 CPU cores. For x8, RF-
tend is 0.75 GB and RF-diff is 0.20 GB when stored in netcdf format at single
precision. We found that this size in memory did not pose a problem when
running across multiple cores. We also emphasize that the RF parameterization
can achieve similar accuracy at a smaller size. For example, we reduced the
number of trees in RF-tend from 10 to 5 which reduces its size in memory by
more than a factor of two to 0.35 GB without any noticeable difference in the
results when it is implemented in SAM at coarse resolution. Furthermore, there
are available techniques to reduce the memory needed to store RFs38–40 in case
memory becomes a limiting factor when using an RF parameterization in
operational climate simulations with more degrees of freedom. Each RF was
stored as a netcdf file, and routines to read in the netcdf files and to use the RFs
to calculate outputs were added to SAM (using Fortran 90).

Offline performance. Offline performance is primarily evaluated using the coef-
ficient of determination (R2) as applied to the unscaled output variables in the test
dataset. R2 is plotted for outputs of the RF parameterization as a function of the
latitude and pressure in Supplementary Fig. 9. For reference, the standard deviation
of true outputs is plotted in Supplementary Fig. 10 and the mean of the true
outputs is plotted in Supplementary Fig. 1. R2 is generally higher in the lower and
middle troposphere, though performance does vary across outputs. Generally, the
RFs tend to underestimate the variance in predictions compared to the true var-
iance, although less so for larger coarse-graining factors (Supplementary Fig. 11).
R2 for the different outputs (combining data from all vertical levels for a given
output) at different coarse-graining factors are given in Supplementary Table 2,
and corresponding values of the RMSE are given in Supplementary Table 3.

RF-tend is also able to accurately predict the instantaneous surface precipitation
rate (Supplementary Fig. 3) with R2 = 0.99 based on the test dataset for ×8. The
predicted precipitation (including any surface sedimentation) is the sum of the
resolved precipitation and the predicted subgrid correction

(Psubgrid
tot ðz ¼ 0Þ þ Ssubgridðz ¼ 0Þ) which is calculated from Eq. (7).
To further investigate the offline performance at different grid spacing, we focus

on a comparison between ×4 and ×32. We coarse grain the subgrid tendencies
calculated and predicted at ×4 to the same grid as ×32 (referred to as ×4 → x32)
such that they are on the same grid as the subgrid tendencies calculated and
predicted at ×32. To do the coarse graining, it was necessary to make an alternative
test dataset since the default test dataset is randomly subsampled in longitude for
×4. 100 snapshots from the hi-res simulation were used without subsampling in
longitude. This results in an alternative test dataset size of 5,184,000 for the ×4 case
and 81, 000 for the ×4 → ×32 and ×32 cases. We find that calculating R2 and
RMSE from these 100 snapshots gives almost identical results compared to the test
dataset that was used for model evaluation (compare Supplementary Tables 2 and 3
to 4). One snapshot from the alternative test dataset is shown in Fig. 4, and we also
use the alternative test dataset for the results shown in Supplementary Fig. 5 and in
Supplementary Table 4.
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