View full-text article in PMC Sci Rep. 2020 Jul 3;10:10968. doi: 10.1038/s41598-020-67364-0 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. PMC Copyright notice Table 2. Polynomial expressions in (18-21) for the case of N=3 and Gaussian source with σ0 (bj,j+1≠0 for j∈[0,2]). pol1 π(-2ıb01q7πβ22-2π(2π(a01q7-b12q12)β22+b12b23ıq19)σ02+b01b12b23q11) pol2 2π(4β12π2(a01q7-b12q12)β22-a01b01b122b23+2b12ıπq17)σ02+b01(4β12ıπ2q7β22+b01b122b23(-ı)-2b12q23π) pol3, pol4 -2b01b12b23π(2a01πσ02+b01ı), π(b01(b01b12q12-2ıβ12q7π)-2π(2π(a01q7-b12q12)β12+a01b01b12ıq12)σ02) pol5 -4β22b012b123b23π2q20(b122b014+4β12π2q13b012+4π2σ02(2β12q14b012+(4π2q28β12+a012b012b122)σ02)) pol6 (4b012π2q112β14+b014b122+4π2σ02(2β12b012b122+(4π2q192β14+a012b012b122)σ02))×((16β14π4q72β24+b012b124b232+4b122π2q8)b012+4π2σ02(2β12b012q9b122+q22σ02)) pol7, pol10 16β12β24b01b12π4(4a01π2q19σ04+b012q11)q29, ıβ12β22b01b12σ0(b01-2ıa01πσ02)(b01(b01b12-2ıβ12q11π)-2πq18σ02) pol8 -8β12β22b01b122b23π3(4a01π2q19σ04+b012q11)(b122b014+4β12π2q13b012+4π2σ02(2β12q14b012+(4π2q28β12+a012b012b122)σ02)) pol9, pol12 -8β24b012b122π3q20q29, 2β22b122π2(-4β12q13π2b012-8β12π2q14σ02b012-4(4π4q28β12+a012b012b122π2)σ04-b014b122) pol11 (2a01πσ02+b01ı)(2πq15σ02+b01(2πq11β12+b01b12ı))×(b01q16-2π(4β12π2(a01q7-b12q12)β22-a01b01b122b23+2b12ıπq17)σ02) pol13 (16β14π4q72β24+b012b124b232+4b122π2q8)b012+4π2σ02(2β12b012q9b122+q22σ02) pol14 4π3σ02(σ02(a012b012b124b232d23+16π4β14β24q4(a01q7-b12q12)+4π2b122q1)+2β12b012b122(4π2β22q6+b122b232d23))+πb012(16π4β14β24q5q7+b012b124b232d23+4π2b122q2) The functionsqjforj∈[1,30]utilized while defining the polynomials are defined as follows:q1≡b122b232d23β14-2a01b12b232q11d23β14+a012q2,q2≡a232b012b122d23β24-a23b012b12q27β24+b23q3,q3≡b23d23q112β14+2β22b012b23d23β12+β24b012d12q26,q4≡b12(b12-q12d23)-a01b12q11+a01d23q7,q5≡-b01b23d23+a12b01q25+b12d01q25,q6≡(β12b232+β22q122)d23-β22b12q12,q7≡-b01b23+a12b01q12+b12d01q12,q8≡a232b012b122β24+2a23b012b12b23d12β24+b232q24,q9≡4π2(β12b232+β22q122)β22+b122b232,q10≡(b12q12-a01q7)2,q11≡a12b01+b12d01,q12≡a23b12+b23d12,q13≡b122d012β12+2a12b01b12d01β12+(a122β12+β22)b012,q14≡2β12π2β22+b122,q15≡a01b01b12-2ıβ12q19π,q16≡-4ıβ12q7π2β22+b01b122b23ı+2b12πq23,q17≡a01q23-β12b12b23,q18≡2πq19β12+a01b01b12ı,q19≡a01a12b01-b12+a01b12d01,q20≡b012+4π2σ02(β12+a012σ02),q21≡b122b232β14-2a01b12b232q11β14+a012q8,q22≡16β14π4q10β24+a012b012b124b232+4b122π2q21,q23≡b23q11β12+a23β22b01b12+β22b01b23d12,q24≡a122b012β14+b122d012β14+2a12b01b12d01β14+2β22b012β12+β24b012d122,q25≡b23d12d23+b12(a23d23-1),q26≡b23d12d23-b12,q27≡b12-2b23d12d23,q28≡q13a012-2β12b12q11a01+β12b122,q29≡4b012π2q11q7β14+b014b122q12+4π2σ02(2β12b012q12b122+q30σ02)and finallyq30≡4π2q19(a01q7-b12q12)β14+a012b012b122q12.